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Abstract.  Approximate analytical solutions to the time-indepen-
dent two-dimensional Gross – Pitaevsky equation are obtained by a 
variational method. The solutions found are compared with the 
results of direct numerical calculations. The accuracy of analytical 
solutions is determined under various conditions of the problem, 
primarily the degree of nonlinear interaction of atoms in a Bose 
condensate.

Keywords: Bose – Einstein condensates, two-dimensional Gross-Pi
taevskii equation, variational method, trial functions, approximate 
analytical solutions.

1. Introduction

Many important phenomena of modern physics are described 
by nonlinear equations, the exact solutions of which, unfortu-
nately, have not yet been found in a number of cases. To date, 
numerical methods are an effective way of solving nonlinear 
physics problems. However, the application of numerical 
methods is often very time-consuming, and the solutions 
obtained with their help are not universal. In this situation, 
approximate analytical solutions become especially useful for 
problems of nonlinear physics. They can be used to obtain 
approximate solutions of direct and inverse problems and 
analyse effectively experimental data. In particular, for 
Bose – Einstein condensates it becomes possible to recover the 
coefficients of the Gross –Pitaevskii equation from the experi-
mental data, for example, the determination of the radiation-
modified coefficient of the interatomic interaction in a Bose 
condensate [1].

Using the variational approach, Medvedev et al. [2] deve
loped a method for obtaining approximate analytic solutions 
of the two-dimensional Gross – Pitaevskii equation. The main 
attention was paid to the dynamic problem of the expansion 
of the Bose gas after switching off the magnetic trap. In the 
present paper, using the method proposed in [2], we obtain 
approximate analytical solutions of the time-independent 2D 
Gross – Pitaevskii equation and investigate their properties. 
The accuracy of the approximate analytical solutions is deter-
mined in this paper by comparing them with a direct numeri-
cal solution of the time-independent 2D Gross – Pitaevskii 
equation.

2. Two-dimensional Gross – Pitaevskii equation

Theoretical analysis of Bose condensates is now traditionally 
based on the Gross – Pitaevskii equation [3]. This equation has 
been especially intensively studied after the first experimental 
work on the creation of Bose – Einstein condensates (BECs) 
of rarefied gases [4, 5]. The present study has been also initi-
ated by our paper [6], in which we compared the experimental 
data and numerical calculations of the expansion of the Bose 
condensate of rubidium atoms after switching off the mag-
netic trap. The three-dimensional Gross – Pitaevskii equation 
for the condensate wave function Y (r, z, t ), r = (x, y) has the 
form [7]
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Here, the wave function is normalised to unity; N is the num-
ber of condensed particles; V(r, z) = m ( x

2w x2 + y
2w y2 + z

2w z2)/2 
is the harmonic potential of the trap; wx, wy and wz are the 
frequencies of vibrations of atoms in the trap; m is the mass of 
the atom; U0 = 4p 2' a/m is the interatomic interaction; and a 
is the scattering length of the s-wave.

A significant simplification arises in the solution of the 2D 
problem. For example, for a disk-like condensate with fre-
quencies wz >> wx » wy and a chemical potential m < z'w , 
where
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the motion along one coordinate turns out to be ‘frozen’. In 
this case, the condensate wave function can be written in the 
form [7]
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and Yr (r, t ) is found as the solution of the 2D Gross – Pi
taevskii equation
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where V(r) = 1/2 m ( x
2w x2 + y

2w y2), with the normalisation

( , ) 1dtr rr
2

R2
Y =y .

In this paper we confine ourselves to an analysis of 2D 
Bose condensates, which are described by Eqn (2). For conve-
nience, we will consider the 2D Gross – Pitaevskii equation in 
a dimensionless form,
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For equation (2) to be reduced to equation (3) in dimen-
sionless variables, it is necessary to replace t  = twx / s , r = 
x/rs and Yr (r, t ) = rs y (x, t); in this case, the coefficients of the 
equations are related to each other in the following way:

a1 = 1,    a2 = wy /wx,    s = (lx /rs)4,    s = ds5/4,

d = 2 /( )aN l l2 x zp ,   /( )l mx x' w= ,   /( )l mz z' w= ,	
(5)

where rs is the characteristic size of the condensate [in the case 
of a weakly interacting condensate, we can take rs = O (lx)].

3. Variational solution of the problem

Equation (3) can be obtained from the standard action (for 
details, see [2])
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We introduce the representation

y(x, t) = ( , ) ( ( , ))exp iB t tx xj ,	 (8)

where B(x, t) and j(x, t) are real functions. It can be shown 
that H  contains even powers: B 2 (x, t) and B 4(x, t). The 

potential V(x) is symmetric with respect to reflections from 
the coordinate axes, and therefore the functions j and B 2 are 
also symmetric. For the phase j we confine ourselves to the 
first terms of the expansion in the Maclaurin series,

( , )t x xx 0 1 1
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and we represent the function B2 in the form
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Here, j0, j1, j2, A, B1 and B2 are the time-independent func-
tions; and f (x) [x = (x1, x2))] is some symmetric trial function 
normalised so that the zero moment and the second moments 
are equal to unity:
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Examples of specific trial functions f (x) are considered in 
Section 4.1.

Representations (9) and (10) make it possible to replace 
the action of S  (6) for equation (3) by its finite-dimensional 
approximation
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where the Hamiltonian has the form
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Here, the constants C0, C1 and C2 are defined in terms of the 
integrals of the function f (x): 
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The parameters P1, P2, Q1 and Q2 are related to the functions 
B (x, t) and j(x, t) as follows:
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where Q0 is the zero moment; and Q1 and Q2 are the corre-
sponding characteristic dimensions of the function B 2.

The Hamiltonian H does not depend on R0; therefore, Q0 
is an integral of the finite-dimensional system given by (11) 
and coincides with the integral of the original continuous sys-
tem (3). In accordance with the normalisation (4), Q0 = N  = 1. 
Equation (3) can be reduced to finite-dimensional equations 
of motion [2]
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which are obtained by varying the finite-dimensional action 
(11).

Thus, the problem of finding the solution of (8) reduces to 
determining the quantities Q1, Q2, R1 and R2 from the given 
parameters of the problem, a1, a2, s and s. The parameters C0, 
C1 and C2 are given by the form of the normalised trial func-
tion f (x) by formula (13). 

To find the time-independent solution of the Hamiltonian 
system (11), (12), it is sufficient to equate to zero the time 
derivatives in equations of motion (15), (16). This gives R1 = 
R2 = 0 and a system of algebraic equations for Q1 and Q2:
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The numerical solution of these equations gives stationary 
values of Q1, Q2, substitution of which in the chosen trial 
function (10) gives the required time-independent solution 
(see Section 4.2):
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The steady-state value of the chemical potential m is found 
from the equation

2 2¶
¶

d
d
t Q

H sQ
Q

C

Q

C
C
Q Q
Q

2
30

0
0

1

1

2

2
0

1 2

0
2

m s
R

=- = = + +e o .

If we set trap parameters a1, a2 and condensate sizes Q1, 
Q2, then the parameters s and s can be found from formulas
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Since we only consider the positive values of s and s, not all 
combinations of the initial parameters correspond to this con-
dition. There are two mutually exclusive situations for which 
s and s are positive:
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Below, we will assume that a2 C2  ³ a1 C1 , and consider the 
first condition from (21), which imposes a restriction on the 
ratio of the sizes.

We use Hamiltonian (12) of the variational formulation of 
the problem and introduce the notation for its linear (l), 
potential (u) and nonlinear (n) parts:
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Substituting the values of s and s into l, n and H, we obtain 
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The expression for the Hamiltonian follows from the virial 
relation l + n = u, which can be verified directly. Moreover, 
the coefficients C0, C1 and C2 can be any positive numbers. It 
is interesting that the value of H formally depends on a1, a2 
and Q1, Q2 and does not depend on the values of s and s or 
C0, C1 and C2.

We introduce the parameter n for the ratio of the linear 
and the nonlinear parts of the Hamiltonian:
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This formula allows us to determine the single-valued 
positive Q2 from positive parameters a1, a2 and from the posi-
tive nonlinearity level n and the value of Q1. Then, using for-
mula (20), we can find s and s. Here the coefficients C0 and C1 
are determined from the form of the normalised trial function 
by formula (13). Thus, using the nonlinearity parameter, it is 
convenient to specify various nonlinear regimes for the given 
parameters of the trap and the size of the condensate. The 
magnitude of the nonlinearity dictates the choice of the trial 
function. For the average nonlinearity n = 1, as a trial func-
tion, we select a Gaussian function with the corresponding 
values of C0 and C1. For the strongly nonlinear case, when the 
Thomas – Fermi approximation is valid, we take the super-
Gaussian function as a trial function.

4. Trial functions

As analytical trial functions, we consider the Gaussian func-
tion, the Thomas – Fermi function of the Gross – Pitaevskii 
equation with a harmonic potential and the super-Gaussian 
function [8].

4.1. Normalised trial functions

The normalised Gaussian variational function has the form

( )
2
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2

2
2x x x= + . The constants C0 and C1 are as follows: 

4
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4
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This function is most common in the variational method, 
since it allows one to calculate the majority of integrals explic-
itly.

The Thomas – Fermi solution is widely used to describe 
BECs. In the normalised form this solution has the form
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Since the terms with the Laplacian are neglected in this 
approximation, in further calculations we can set C1 = C2 = 0. 
Thus, for the calculations we have

9
,C 2

0 p=    C C 01 2= = .	 (26)

In the case of strong nonlinearity, the Thomas – Fermi 
approximation works well, but has singularities. Therefore, it 
was suggested in [9] to use smooth approximations obtained 
by expanding the exponent for the exponential representation 
of the Thomas – Fermi function.

We consider a super-Gaussian function, which is smooth. 
The choice of the free parameter k makes it possible to 
approximate it sufficiently well to the Thomas – Fermi func-
tion from the condition that the values of the normalised 
Thomas – Fermi and super-Gaussian functions at a zero level 
coincide. The normalised super-Gaussian function has the 
form:
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where G is the gamma function; and the parameter k > 0. For 
k = 1/2 we obtain the normalised Gaussian function. The cor-
responding constants are as follows: 
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We numerically find the value k* = 0.2791 from the condition 
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to which there correspond the constants

C0 = 0.0721,   C1 = 0.2986.	 (27)

Note also that the parameter k can be chosen from other 
criteria for the closeness of the super-Gaussian function and 
the Thomas – Fermi function. For example, we can choose a 
value of k so that the fourth moments of the solution of these 
two functions coincide. In this case, for probabilistic distribu-
tions, their excess is said to be the same. For the Gauss func-
tion, the excess is zero.

4.2. Approximate analytical solutions

In Section 4.1 the trial functions were presented in the nor-
malised form. Here we give approximate analytic solutions 
obtained with the help of these normalised functions. Taking 
into account formula (19) and formulas for the normalised 
trial functions, we obtain the approximations:

Gaussian variation function:
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super-Gaussian function:
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Thomas – Fermi approximation:
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A direct verification shows that the variational method yields 
exactly the same result as the standard Thomas – Fermi 
approximation:
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where m = /a a1 2 ps  is found from normalisation (4).
We note that the quantities Q1 and Q2 from the varia-

tional solution coincide in this case with the prescribed sizes 
of the cloud:

Q1 = s1= x x1 1
2-^ h ,   ,Q x x2 2 2 2
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( ) ( ) ( , ) df f tx x x x2

R2
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5. Comparison of analytical and numerical 
solutions

To find the stationary solution yst(x) = f (x) of equation (3) 
corresponding to the minimum energy level, we used the 
imaginary-time method [10] and iterative refinement to stabi-
lise the solution [11].

In this section we compare the results obtained with the 
help of numerical and variational methods for a weakly 
anisotropic trap. It is shown how variational approximations 
behave. In addition, we have compared the numerical solu-
tion and the solution obtained using the Gaussian function, 
which is an analytical solution of the corresponding linear 
problem [in the equation (3), the coefficient s = 0]

2 2

( , ) expx x
s

a a

s

a x a x

2
G 1 2 4

1 2
4

1 1 2 2

p
f = -

+e o,	 (31)

because this function is often used to evaluate the solution in 
practice.

Numerical experiments are constructed in terms of the 
integral level of nonlinearity [n] vG = [l/n] vG [see formula (23)]. 
This approach allows us to more correctly and clearly deter-
mine the type of the equation (strongly, weakly or medium-



	 Yu.V. Likhanova, S.B. Medvedev, M.P. Fedoruk, P.L. Chapovsky488

linear) and to show the possibilities of using the variational 
method.

In all numerical experiments, the trap potential parame-
ters are a1 = 1, a2 = 2. The problem was solved in the domain 
S2 = [–6.6]´[–4.4].

The results of direct numerical simulation are compared 
with the approximate analytical solutions presented above: 
the Gaussian variational function fvG (x1, x2) (28); super-
Gaussian function fsG (x1, x2) (29); the Thomas – Fermi func-
tion fTF (x1, x2) and the Gaussian function, which is the exact 
solution of the linear problem, f G (x1, x2) (31).

The behaviour of the density profiles of the solution 
( , )x xst 1 2

2y  = ( , )x x1 2
2f  is shown in Figs 1 – 3.

Figures 4 and 5 show dependences of relative errors of 
various integral characteristics (sizes Q1, Q2, Hamiltonian H  
and chemical potential m of the system) on the nonlinearity 
parameter n vG = [l/n] vG in the case of different solutions. The 
relative error was calculated as follows. For example, for the 
variational Gaussian function, the value of errQ1 was found 
from the formula 

,
100

max
err

Q Q

Q QvG
vG ns

vG ns

Q
1 1

1 1
1 #=

-

^ h
%,

where the superscript ‘ns’ corresponds to a numerical solu-
tion. For other types of functions, the relative error was cal-
culated in a similar way.

The results of the comparison of the variational approach 
and direct numerical simulation presented in this section can 
be used as follows. From the coefficients of equation (3) we 
find the values of the parameters Q1, Q2 and then determine 
the level of nonlinearity in terms of the Gaussian variational 
function (n) vG = [l/n] vG. This value makes it possible to choose 
the appropriate trial function (based on the comparison 
results presented: in weakly nonlinear and medium-linear 
cases, the variational Gaussian function; in the strongly non-
linear case, the super-Gaussian function or the Thomas – Fermi 
approximation) and to construct the variational approxima-
tion. Then, we use it for preliminary estimation of the solu-
tion, setting the initial approximation for the iterative process 
or for estimating the integral parameters [which, as we see 

|f(0, x2)|2|f(x1, 0)|2
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Figure 1.  (Colour online) Density profiles of the solution in the case of weak nonlinearity: [l /n] vG = 10 ( [l /n] ns = 10.078).
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Figure 2.  (Colour online) Density profiles of the solution in the case of average strong nonlinearity: [l /n] vG = 1 ( [l /n] ns = 1.067).
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from numerical experiments (Figs 4, 5), are approximated 
with a high accuracy by the variational approach].

Note also the significant role of anisotropy, which mani-
fests itself in the dependence of the shift of the applicability 
domain of trial functions on the longitudinal and transverse 
sizes of the trap. For Q1, the intersection points of the error 
curves for trial functions fall to a lower level of nonlinearity 
(for a larger inverse nonlinearity) compared to the corre-
sponding points for Q2.

In addition, the proposed approach can also be used to 
evaluate information about the problem. For example, using 
formula (20), the values of the coefficients s, s, directly related 
to the number of particles and the interatomic interaction [see 

formula (5)] can be reconstructed from the prescribed con-
densate sizes Q1, Q2 and the trap parameters a1, a2.

6. Conclusions

We have obtained approximate analytical solutions and for-
mulas relating the integral characteristics of stationary Bose 
condensates (characteristic scales, Hamiltonian and chemical 
potential, number of particles) with the parameters of the 
equation (oscillation frequency of atoms in the trap, nonlin-
earity parameter). These analytical relations allow one to 
solve both the direct problem of determining the characteris-
tics of the Bose condensate with respect to the parameters of 
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Figure 3.  (Colour online) Profiles and densities in the case of strong nonlinearity: [l/n] vG = 0.1 ( [l/n] ns = 0.13).
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the Gross – Pitaevskii equation and the inverse problem of 
reconstructing the parameters of the equation with respect to 
certain given characteristics of the problem, for example, 
from the given size of the cloud.

The presented method is heuristic, and therefore the accu-
racy of the found approximate analytical functions (Gaussian, 
super-Gaussian and Thomas – Fermi solution) is verified by 
comparison with the numerical solution of the 2D Gross – Pi
taevskii equation. A comparison has been made for various 
levels of nonlinearity and has shown that the use of the solu-
tion of the linearised equation and the Thomas – Fermi solu-
tion is limited by the weak and very strong nonlinearities, 
respectively. At the same time, for the intermediate values of 
the nonlinearity parameter, the variational approach based 
on the Gaussian and super-Gaussian functions demonstrates 
greater accuracy. In addition, for the values of the nonlinear-
ity parameter considered above, the super-Gaussian function 
with a fixed degree is more accurate than the Thomas – Fermi 
solution. For trial functions, the anisotropy has a significant 
influence on the comparative accuracy. The Thomas – Fermi 
approximation becomes better than the linear approximation 
at a greater level of nonlinearity and a smaller transverse size. 

Note also that we can choose other trial functions, except 
for those proposed in this paper, for example exponential 
approximations for the Thomas – Fermi solution [9]. In the 
first order, this approximation coincides with the Gaussian 
function, while in the higher order it is very close to the 
Thomas – Fermi solution at the zero point. In addition, ratio-
nal functions with a compact carrier can also be used [12], 
although they, like the Thomas – Fermi solution, have singu-
larities.
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