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Abstract.  The dynamics of an ensemble of noninteracting cold 
atoms is considered in the field of a moving optical lattice subjected 
to random amplitude and phase fluctuations. The effect of the 
reversal of an atomic ensemble under the action of lattice fluctua-
tions is demonstrated, in which the atoms begin to move in the 
direction opposite to that of the lattice motion. A kinetic model is 
constructed that reproduces this effect and makes it possible to 
relate its emergence to the asymmetry of the amplitudes of the 
interlevel transitions in a momentum space. 

Keywords: moving optical lattice, cold atoms, harmonic noise, 
atomic flux reversal.

1. Introduction 

Moving optical lattices formed by two counterpropagating, 
frequency-detuned laser beams are of interest from different 
points of view. For example, they are considered as a means 
of transferring macroscopic ensembles of atoms in entangled 
states into a given region during quantum computations 
[1, 2]. They can also be used to simulate various phenomena 
of solid state physics, for example, electron – phonon [3] and 
spin – orbit [4, 5] interactions. The somewhat unusual band 
structure of the energy spectrum of atoms in moving optical 
lattices allows the transport of atoms to be coherently con-
trolled [6, 7]. Another interesting application of moving opti-
cal lattices is the investigation of the phase transition from a 
superfluid state to the state of a Mott insulator in 
Bose – Einstein condensates [8, 9]. 

Optical potentials are virtually always subjected to some 
extent to noise, resulting, for example, from fluctuations of 
laser radiation. As a rule, these noises are destructive in 
nature, causing heating and decoherence of atoms [10]. At 
the same time, in certain cases, the lattice noise can lead to 
quite interesting physical phenomena, for example, to noise-
induced Landau – Zener transitions [11] and to a significant 
prolongation of the time of Zitterbewegung oscillations [12]. 
In a recent paper, Makarov and Kon’kov [13] considered the 
problem of the motion of atoms in an optical potential, 
which is a superposition of a random static potential and a 

moving lattice. It was found that in this case the fluctuations 
of the moving lattice not only can significantly enhance the 
transport of atoms, but also cause a spontaneous change in 
the direction of the atomic flux, i.e. after a certain time, the 
atoms begin to move against the direction of motion of the 
optical potential. In the present paper, we intend to investi-
gate this effect in the absence of a random potential, i.e., in 
an optical potential that includes only a moving optical lat-
tice. 

2. Description of the model 

Let us consider the case of a cigar-shaped optical trap inside 
which an optical lattice is formed. In the absence of the inter-
atomic interaction, the behaviour of the atoms is described by 
the one-dimensional Schrödinger equation 
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u is the velocity of the lattice along the X axis; w0 is the fre-
quency difference between the counterpropagating laser 
beams producing an optical lattice; and kL is the wave num-
ber of these laser beams. We introduce the normalisation of 
the variables: 
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is the recoil frequency. Then, equation (1) is transformed to 
the form 
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Er is the recoil energy. Our next task is to simulate the random 
‘shaking’ of the optical lattice. To this end, we use the method 
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first used in paper [14] and then in papers [12, 13, 15]. We 
replace expression (2) for V(x, t) by the expression: 

( , ) ( )cosV x A f x sht t b= - f( )sin )xt t+6 @,	 (4)

where f (t) is some random signal with a finite bandwidth, and 
f (t + tsh) is a replica of this signal with a time shift tsh. In 
what follows, we shall consider signals whose spectral width is 
much narrower than the centre frequency w or has the same 
order of magnitude. We are interested in the case when the 
magnitude of the time shift is given by formula 

2sh
pt
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Then, if we set f(t) ~ coswt , then ( , )~cos( )V x xt bwt- .
As the signal model f (t), we use the so-called harmonic 

noise [16, 17], also known as a two-dimensional 
Ornstein – Uhlenbeck stochastic process. Harmonic noise is a 
solution of a system of stochastic differential equations in the 
form of the Langevin equation 
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where x(t) is the Gaussian white noise; e is a constant charac-
terising the amplitude of the harmonic noise; and G is a posi-
tive constant characterising the degree of stochasticity. The 
first two moments of the harmonic noise are described by for-
mulas 
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In what follows, we set the constant e so that the condition

f
2
12

= 	 (6)

is fulfilled. The spectral density of the harmonic noise is 
described by the formula 
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and has, for G < 2W, a maximum at a frequency 
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The width of the maximum is described by formula
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It follows from (6) and (7) that Dw ® 0 and wp ® w at G ® 0. 
For small values of G, we have Dw » G.

3. Simulation of the dynamics of atoms 
in the momentum representation 

One can achieve a significant simplification if we assume that 
in the course of the motion the atoms do not leave a certain 
bounded region in the space of the variable x 

L x L
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whose size is described by the formula L = 2pN, where N is a 
sufficiently large integer. Setting periodic boundary condi-
tions on the boundaries of this region, we can introduce a 
basic set of eigenstates of the momentum operator 
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where m > 1 is an integer. Then, the solution of the Schrödinger 
equation can be represented as the sum 
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Substituting this expansion into (3), we obtain 
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Taking into account (4), we find the expression for the matrix 
element V m V n,m n / : 
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where di j is the Kronecker symbol. It is convenient to repre-
sent nonzero matrix elements in the form: 
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Below we shall consider only the case b = 1. The equations of 
motion for the amplitudes am are transformed to the form 
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We simulated the dynamics of atoms by numerically solving 
the system of equations (12) followed by averaging over 1000 
harmonic noise realisations. The initial condition was chosen 
as follows: 

(2 )( ) L e da x0 /
( )

i
m x

x x
p x

x

L2 2 1 4
4

0
x

m2
0
2

pt s= = s
- -

-
-

=
y ,	 (15)



453Effect of atomic flux reversal in a fluctuating moving optical lattice

where sx = 10p. With this initial condition, the quantum-
mechanical mean value of the momentum operator at the ini-
tial instant of time is zero. 

The results of the simulation are shown in Fig. 1. One can 
see that at G = 0.1 and 0.5, one can observe at the initial stage 
a fairly rapid acceleration of the atoms in the direction of 
positive x values, i.e., in the direction of motion of the optical 
lattice. After reaching a certain peak value of the average 
pulse, this process terminates, after which the atoms experi-
ence deceleration, and then accelerate in the opposite direc-
tion. The displacement of the atomic ensemble can be esti-
mated from the formula

t

( )p( ) ( ) dx x 0
0

t t t t= = + l ly ,	

where áx(t = 0)ñ is determined by the initial condition (15) and 
is equal to zero (Fig. 1b). One can see that, after changing the 
direction of motion, the atomic ensemble passes its initial 
position and continues to move further against the direction 
of motion of the optical lattice. Comparing the data obtained 
for different values of G, we can conclude that amplification 
of fluctuations of the moving lattice makes the flux reversal 
effect stronger. Thus, it is reasonable to assume that fluctua-
tions play a very important role in the occurrence of this 
effect. 

The effect of atomic flux reversal can be explained using 
the kinetic approach. The simplest form of the kinetic equa-
tions for populations | |am m

2/r  looks like this [18]: 
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We can neglect interference effects, which decay shortly. This 
makes it possible to average the coefficients Jm,n over a suffi-
ciently large time interval, subsequently setting the length of 
this interval to infinity. As a result, the expressions for non-
zero coefficients are as follows: 
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where E E,m N m m N mw = -! ! , and F and F' are the Fourier 
transforms of the functions f(t) and f(t + tsh), respectively. 
Assuming that the correlation time of the harmonic noise is 
sufficiently large, we can use the approximation 

( ) ( )eF Fi sh.W WtWl .	 (17)

Taking into account (6), we have |F (W) |2 = S(W)/2. Thus, we 
obtain an expression for the amplitude of the transitions
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This formula does not work if ,m m N.w w !  and ,m m N shw t!  = 
± p/2. In this case, approximation (17) becomes inapplicable. 
Formula (18) assumes that the amplitudes of transitions 
between states with positive momenta are larger than the 
amplitudes of transitions between states with negative 
momenta. It follows that the states with negative momenta, 
which correspond to the motion that is antidirectional to that 
of the optical lattice, are ‘dark’ and are able to accumulate the 
population with time due to noise-induced transitions. As a 
result, it is possible to reverse the atoms in the opposite direc-
tion. 

Figure 2 shows the time dependence of the average 
momentum, obtained by numerically solving kinetic equa-
tions (16). We can note a fairly good qualitative agreement 
between this result and the curves presented in Fig. 1a. Some 
quantitative discrepancy may be due to the influence of inter-–0.4

–0.2

0

 0.2

 0.4

 0.6

 0.8

0  500  1000  1500  t/p

G = 0.1

G = 0.1

G = 0.5

G = 0.5

–1000

–500

0

 500

 1000

 GxH

0  500  1000  1500  t/p

GpH

a

b

Figure 1.  Time dependences of (a) the average momentum and (b) aver-
age displacement of atoms, obtained by solving equations (12), A = 
0.25, w = 1. 
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Figure 2.  Time dependence of the average momentum of atoms, ob-
tained by solving the system of kinetic equations; the values of the pa-
rameters are the same as in Fig. 1.
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ference terms, which can enhance the initial acceleration of 
atoms in the direction of motion of the optical lattice. Thus, 
we can conclude that our kinetic model reproduces quite well 
the main features of the physical system under consideration. 

4. Conclusions 

We have considered the dynamics of cold atoms in the field of 
a moving optical lattice subjected to random amplitude and 
phase fluctuations. It has been shown that fluctuations lead to 
a spontaneous reversal of the atomic flux, as a result of which 
they begin to move in a direction that is opposite to the 
motion of the optical lattice. A kinetic model has been con-
structed that describes the dynamics of atoms in a momentum 
space. The analysis carried out with its help allows us to con-
clude that the reversal of the atomic flux is due to noise-
induced pumping of the momentum states corresponding to 
motion in the direction opposite to that of the optical lattice. 

At the same time, there are a number of questions, the 
answers to which could help both to discover new properties 
of the flux reversal effect and to assess the prospects for its 
experimental implementation. First, it is interesting how the 
atomic dynamics will change when the internal degrees of 
freedom are taken into account? Secondly, the question 
remains: is the effect of atomic flux reversal possible if the 
moving lattice is subjected to deterministic modulation 
instead of random fluctuations? The answers to these ques-
tions are expected to be found in further work. 
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