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Abstract.  With the use of second-order perturbation theory in the 
long-range interatomic interaction for the degenerate states of two 
Rydberg atoms we have obtained a general formula for the depen-
dence of atomic interaction energy on the interatomic distance R in 
the presence of the Förster resonance. Inside of the ‘Förster sphere’ 
(R < RF) this dependence transforms to the formula for electric 
dipole interaction energy DEd – d = C3/R3 and for R > RF it trans-
forms to the formula for the van der Waals interaction energy 
DEVdW = –C6/R6. The van der Waals constant C6 is represented as 
an expansion in terms of irreducible components which define the 
dependence on the interatomic axis orientation relative to the quan-
tisation axis of projections M of the total angular momentum J. 
The numerical values of the irreducible components of tensor C6 
were calculated for rubidium atoms in the same Rydberg states 
|nlJM ñ with large quantum numbers n. We present the calculated 
resonance interaction energy of two rubidium atoms in the states 
|43D5/2 M ñ, whose total energy exceeds by only 8 MHz the total 
energy of one of the atoms in the state |45P3/2 M ñ and of the other in 
the state |41F7/2Mñ.

Keywords: atom, Rydberg states, interatomic interaction, van der 
Waals constant, Förster resonance.

1. Introduction

Rydberg atoms are promising candidates for performing logi-
cal operations in quantum information processing devices 
[1 – 3]. The function of quantum information carriers may be 
fulfilled by bound states which are primarily highly excited 
Rydberg states. The existing laser radiation sources permit 
exciting specific states with prescribed quantum numbers. 
The efficiency of excitation and of the possibility of quantum 
coding is determined by the effect of interatomic interaction, 
which changes the energy spectrum of an individual atom. 

The interaction energy shifts a Rydberg energy level and 
suppresses the radiative transition probability almost com-
pletely. In the absence of external fields, the interaction energy 
of atoms A and B in states |nAñ and |nBñ of certain parity 
located at a rather long distance R from each other [R > RLR, 
where RLR = 2(ánA|rA

2|nAñ1/2 + ánB|rB
2|nBñ1/2 ) is the Le Roy radius 

[4], which is the total linear dimension of the atoms] is 
described by the van der Waals formula DEVdW = –C6 /R6. The 

van der Waals constant C6 for S states is a scalar quantity, 
which is found from the general formula of second-order per-
turbation theory in the dipole interatomic interaction opera-
tor and may be represented as a series in the complete set of 
discrete spectrum states and the integral over the continuum 
spectrum states of a diatomic system [5]: 

( ; ) 6
| | | | | | | |

S S
P S P S

C n n
n d n n d n

,
A B A B

A
A

B
B

n n

z z

n n
6

1
2

2
2

1 21 2

G H G H
w w

=
+

t t
/ ,	 (1)

where d ( )A B
z
t  is the electric dipole moment operator and 

 
( )A B

E E( )
( )

A B S
A B

n
n

( )
( ) ( )A B

1 2
1 2

'
w =

-Pn  

is the dipole transition frequency between the states of the 
atom A(B). The main contribution to the sum of series (1) is 
made by the states |n1(2)Pñ, which are closest in energy to the 
states|nA(B)Sñ. That is why the series converges rather fast, its 
convergence improving with increasing principal quantum 
numbers of the |nA(B)Sñ states, so that in the calculation of the 
sum it would be sufficient to include only several terms cor-
responding to the states |n1(2)Pñ with energies both higher and 
lower than the energy E ( )

S
A B
n ( )A B

. With increasing principal quan-
tum numbers of the Rydberg states |nAñ and |nBñ the matrix 
elements in the numerator of the fraction in the right-hand 
side of expression (1) grow proportionally to the squares 
( )n n2 2

A B . In this case, the transition frequencies decreases as: 
A
n1w  µ 1/n 3A , 

B
n2w  µ 1/nB

3 . As a result, the absolute value of the 
constant C6 rapidly increases. In particular, for similar atoms 
in the same state (nA = nB = n) |C6| µ n11. 

Rydberg states |nAñ and |nBñ may have nonzero orbital, 
lA(B) ¹ 0, and total, JA(B) ¹ 0, angular momenta, whose direc-
tions [defined by the direction of the quantisation axis and the 
projections MA(B) of the total angular momenta], in the most 
general case, may not coincide with the direction of the inter-
atomic axis defined by the radius-vector R and the corre-
sponding unit vector n = R/R. In this case, the van der Waals 
constant depends not only on the magnetic quantum numbers 
of bound atomic states but also on the relative orientation of 
the axes (on the angle q between the radius-vector R and the 
direction of quantization axis defined by the unit vector a; 
Fig. 1). In the general case these dependences are defined by 
five irreducible C6 tensor components (see Section 4 below). 

Given in Section 2 are explicit expressions for the long-
range atomic interaction operator (R > RLR). We write out 
formulas for the interaction energy in the first and second 
orders of the perturbation theory and determine the terms of 
asymptotic (in parameter RLR/R << 1) series that describe the 
main contribution to the energy. 
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Section 3 presents the general formulas for the depen-
dence of the van der Waals constant on the direction of the 
radius-vector R = nR. We give expressions for the irreducible 
C6 tensor components in the form of combinations of 
diatomic radial matrix elements of dipole moment operators. 
Asymptotic formulas are found for approximate estimates of 
the C6 tensor components for Rydberg atoms in the same 
states. 

Using second-order perturbation theory for closely spaced 
levels, in Section 4 we obtain general formulas for the interac-
tion energy of atoms in the states that have close-in-energy 
dipole-bound diatomic states. Unless otherwise stated, advan-
tage is everywhere taken of the atomic system of units: 
e m 1'= = = . 

2. Perturbation theory for the long-range  
interaction of atoms in nondegenerate states

2.1. Asymptotic atomic interaction operator 

The electrostatic interaction operator ( )V RAB
t  between two 

distant (R > RLR) neutral atoms A and B may be represented 
in the form of an asymptotic series of interaction operators  

( )V RL LA B
t  between 2l-pole electric moments 

( )Q C n( )A B

i
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1
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=lm
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( ) ( )A B A Bi irt / ,	 (2)

which account for the contribution of each of ZA(ZB) elec-
trons described by its radius-vector rA(B)i = rA(B)i nA(B)i [nA(B)i is 
the unit vector directed from the nucleus of the atom A(B) to 
the ith electron]: 
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An individual term of this sum is the interaction operator of 
2LA -pole and 2LB-pole electric moments of atoms A and B: 
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Here use is made of the universally accepted notation of the 
quantum theory of the angular momentum for scalar and ten-
sor products [6]; ( ) 4 /(2 1) ( )LC n Y nL Lp= +m m  is a modified 
spherical function, which defines the dependence of the inter-
action of 2LA -pole and 2LB-pole moments on the angular 
variables of the vector n = R/R (Fig. 1); and ( )Y nL m  is a spher-

ical function. The first term ( )V R11
t  of double series (3) defines 

the dipole – dipole interaction of atoms in degenerate diatomic 
states in the first order of the perturbation theory and the van 
der Waals interaction for atoms in nondegenerate diatomic 
states in the second order of the perturbation theory. 

Eventually the dependence on the orientation of vec-
tor R is transformed to the dependence on the angle q = 
cos–1(na) between the vector n and the unit vector a (Fig. 1). 
Expression (4) for the interaction operator appears to be 
most convenient, because all variables of the ‘external’ vec-
tor R  are contained in the tensor CL(n)/RL + 1, which is sepa-
rated from ‘internal’ variables of the interacting atoms con-
tained in tensor A BQ Q LA B

7L L
t t" , . The components of these 

tensors appear explicitly in the matrix elements of the opera-
tor ( )V RL LA B

t  in accordance with selection rules for angular 
momenta. 

The dipole – dipole interaction operator may be expressed 
in terms of electric dipole operators Q d( ) ( )A B A B

1 /t t  in two 
ways:

	 R
-

( )

( ) ,

.
V

R

R

C n d d

d d d n d n

6

3

A B

A B A B11

3 2 2

3

7

=
-

t

t t

t t t t

^

^ ^ ^

h

h h h

Z

[

\

]]

]]

" ,
.	 (5)

The former expression is better suited for practical calcu-
lations. The dependence on the orientation of the vector R = 
Rn, which is distributed over the numerous components of 
scalar products in the latter expression, requires labourious 
calculations of different dipole matrix elements even in the 
first order of the perturbation theory, making energy calcula-
tions in the second and higher orders extremely cumbersome. 
By contrast, the former expression is convenient to use in high 
orders of the perturbation theory, since the n dependence is 
confined in the single factor C2(n) alone. 

In the first order of the perturbation theory the 
dipole – dipole interaction can make a contribution to a shift 
of energy levels in atoms A and B in the following cases:

1) when the states of interacting atoms are superpositions 
of dipole-bound states of opposite parity; and

2) when the identical atoms A and B are in different states 
with an allowed dipole transition between them. 

For similar atoms in identical states of certain parity the 
contribution of the dipole – dipole interaction (and of all odd 
interactions: dipole, octupole, etc.) in the first-order perturba-
tion theory in R( )VABt  is equal to zero. In this case, the interac-
tions of even multipole moments may become significant for 
the states with nonzero angular momenta. Furthermore, 
higher multipole interactions between atoms (quadru-
pole – quadrupole, etc.) should be taken into account so as to 
verify the applicability of dipole – dipole approximation in 
higher orders of the perturbation theory. 

2.2. First-order perturbation theory for the asymptotic 
interaction of two Rydberg atoms

To determine the interaction energy in the system of two 
highly excited Rydberg atoms in the first-order perturbation 
theory in interatomic interaction it is sufficient to calculate 
the matrix element of operator (3). Let the wave function 
árA, rB|ABñ (in Dirac’s notation) define the state of an isolated 
system of two noninteracting atoms A and B (árA, rB|ABñ  = 
árA|Añ árB|Bñ) in their stationary states árA(B)|A(B)ñ with prin-
cipal quantum numbers nA(B), nonzero angular momenta 
lA(B) ³ 1, and magnetic quantum numbers mA(B) (|A(B)ñ = 

A Bn R = nR

q

a

Figure 1.  Rydberg atoms A and B in identical states separated by a dis-
tance R = nR. The unit vector a aligned with the quantisation axis of the 
projections of the total angular momentum JA(B) makes an angle q with 
the unit vector n directed from atom A to atom B.
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|nA(B) lA(B) mA(B)ñ). Then the first-order interaction energy 
E ( )
AB
1D = AB| ( )|ABV RABG Ht  is determined by the total contribu-

tion of even electric multipole moments Q CL l
l

2 #= L02 0
0   

ánl |r2L|nl ñ (the matrix elements with odd momenta are equal 
to zero in states of specific parity): 

R( )E C C( )
AB

l m

L

l

L

l
l m1

11
A A A

A A

B

B

A

A

B B B

B BD =
==

2 0l m L l m L2 0//

	
A B

( ) !( ) !
( ) !

( )
L L R
L Q Q

P na
2 2
2

A B
L

L L
L2 1

2 2
2

A B#
+

.	 (6)

Here, like in Eqn (4), L = LA + LB and advantage is taken of 
the commonly accepted notation Ca b

c
a b
g  for Clebsch – Gordan 

coefficients and Legendre polynomials P2L(cosq) = C2L0(q, j). 
Evidently the main contribution to the first-order interaction 
energy (6) is made by the term of the lowest nonvanishing 
order in 1/R defined by the electric quadrupole moments 
Q ( )A B
2 . The next term, which describes the interaction of the 

moments Q ( )A B
2  and Q ( )B A

4  is a quantity of order n4/R2 of the 
quadrupole – quadrupole term. This ratio, which is equivalent 
to the ratio of the mean-square radius | |n r n2G H µ  n4 of the 
Rydberg electron orbit and the squared interatomic distance 
R, is rather small in the applicability domain of the long-
range approximation (3), (4) in the interaction at a distance R 
> RLR » 5n2. Therefore, the main contribution to the first-
order energy (6) is made by the term with 2LA = 2LB = 2, 
which is proportional to R –5. In the right-hand side of expres-
sion (6) the number of terms is NAB = lAlB, and therefore the 
energy (6) turns to zero (NAB = 0) when one of the atoms is 
in an nS state (lA(B) = 0). When both atoms are in nP states, 
NAB = 1, and only the quadrupole – quadrupole term remains 
in the right-hand side of expression (6), which may be esti-
mated by the formula E ( )

AB
1D  µ /n R8 5 . For n = 100, the appli-

cability condition for the long-range approximation is ful-
filled for R > RLR » 5 ´ 104 au » 2.6 mm. At this separation 
distance   E 1( )

AB
1
1D  GHz. However, the shift (6) will vanish at 

the nodes of the polynomial P4(na) for angles q between vec-
tors n and a equal to 30.6°, 70.1°, 109.9°, and 149.4°. The 
energy E ( )

AB
1D  also vanishes after averaging over the orienta-

tions of radius-vector R or orbital momentum lA(B) (on aver-
aging over magnetic quantum numbers mA(B)) of the atom 
A(B).

The states with sufficiently large absolute values of mag-
netic quantum numbers mA(B) and therefore high angular 
momenta (lA(B) ³ |mA(B)| ³ 5) are equivalent to degenerate 
states of a hydrogen atom. These states do not possess specific 
parity and possess both even and odd permanent electric mul-
tipole moments [7], which can also make a nonzero contribu-
tion to the sum (6). 

2.3. Second-order perturbation theory for asymptotic 
interaction of atoms in nondegenerate states

In the second order of the perturbation theory the diatomic-
state energy shift 

, ) ( )|ABVr R H( , ;r r r BR( ) | ( )ABE V GR( )
AB AB AB A B A AB
2 GD =- l l lt t

is defined by the matrix element with two dispersion interac-
tion operators (3) and reduced diatomic Green’s function, 
which comprises the sums over bound spectrum states and the 
integrals over the continuum states of noninteracting atoms: 
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Summation is performed over the complete eigenvector basis  
|niñ º |ni li Ji Miñ (i = 1, 2) of the Hamiltonian H H HAB A B= +t t t  
of noninteracting atoms, with the exception of the eigenvector 
árA, rB|ABñ, which corresponds to the eigenvalue EA + EB = 
EAB for the total energy of infinitely separated atoms (this is 
indicated by the primed summation sign). There are numer-
ous methods for calculating higher-order matrix elements 
with diatomic Green’s functions based on the separation of 
infinite summation for the atom A from that for the atom B. 
For this purpose the diatomic functions may be written in the 
form of convolution of the imaginary parts of the complex 
energies of monoatomic Green’s functions [8, 9] with the use 
of their Sturmian representation [10]. The use of Laguerre 
orbitals turned out to be most efficient in the calculation of 
higher orders of the van der Waals interaction for the ground-
state hydrogen atoms [11]. For diatomic Green’s function 
with the total energy of two Rydberg states, the representa-
tion in terms of expansion in the eigenstates of noninteracting 
atoms (7) turns out to be most convenient, because the main 
contribution to the double sum is made by the terms nearest 
in energy to the state árA, rB|ABñ. In practice, from six to eight 
terms from each sum with En1 (En2 ) lower and higher than EA 
(EB) provide a precision of at least five decimal places in the 
determination of the matrix elements. 

It is evident that E ( )
AB
2D  ¹ 0 independently of the values of 

the angular momenta lA(B), because Green’s function contains 
all states and allows arbitrary second-order multipole transi-
tions between states in accordance with the parity conservation 
law. Consequently, the correction to the second-order energy 
comprises an infinite series of terms arising in the expansion of 
the interaction operator (3) in powers of 1/R [11]: 
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Here the infinite sum takes into account all virtual multipole 
moments of atoms A and B in operators R( )VL LA B

t : from LA(B) 
= 1 to infinity. The shift R( )E ( )

AB
2D  in the second order of the 

perturbation theory is expanded in a series in even powers of 
the parameter 1/R. Coefficients ( )C n( )

q6 2
2
+  depend on the ori-

entation of the interatomic axis n. The main contribution to  
R( )E ( )

AB
2D  is made by the term of lowest order in 1/R, so that 
R( )E ( )

AB
2D  » ( ) /C Rn( )

6
2 6

- , where the van der Waals constant 
( )C n( )

6
2  describes the second-order interaction of the virtual 

electric dipole moments of atoms A and B. From the general 
relation | / |C C( )

( ) ( )
q q q6 2

2
6 2
2

+ + +l  µ n q4 l ( , , ,q 0 1 2 f=l ) between the 
coefficients of series (8) there follows an inequality n2/R < 1, 
which defines the convergence domain of series (8) and is fully 
consistent with the inequality R > RLR given above. 

3. Perturbation theory for asymptotic  
interaction of Rydberg atoms in states  
with close energy values

When the applicability condition |DEVdW/d| << 1 of the per
turbation theory is not fulfilled for the energy difference d = 
E2 – E1 in the expression for diatomic Green’s function (7) E1 
º EAB = EA + EB = 2En of the initial diatomic state  ár1, r2|1ñ = 
ár1, r2|ABñ = ár1|nñár2|nñ  and E2 º E E En n n n1 2 1 2= +  of the inter-
mediate state ár1, r2|2ñ = ár1|n1ñár2|n2ñ, and use should be made 
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of the perturbation theory for close levels. For identical states 
of interacting atoms, |Añ = |Bñ = |nlJMñ, in the diatomic state 
|1ñ the monoatomic states ár1|n1l1J1ñ in the energetically close 
diatomic state ár1, r2|2ñ = ár1|n1l1J1ñár2|n2l2J2ñ should be differ-
ent. The permutation of individual atomic states corresponds 
to the third close state ár2, r1|3ñ = ár2|n1l1J1ñár1|n2l2J2ñ energeti-
cally equivalent to the state ár1, r2|2ñ, which is also present in 
the expansion of Green’s function (7). Consequently the sub-
space of close states comprises at least three different 
diatomic states – |1ñ, |2ñ, and |3ñ – the last two being of equal 
energy, E3 = E2 = .E En n1 2+  The states |2ñ and |3ñ may be 
united in a pair of alternative resonance states, |±ñ = (|2ñ ± 
|3ñ)/ .2  However, the |–ñ state does not interact with the ini-
tial state |1ñ (a ‘dark’ state) and does not make a contribution 
to the resonance increase in C6. That is why the basis consist-
ing of the three vectors – |1ñ, |2ñ, and |3ñ – is most convenient. 
Vectors |2ñ and |3ñ contain the sum of states with all possible 
magnetic quantum numbers M, and therefore in the calcula-
tion of the matrix elements 

, ,W W W W W W W W( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12
1

21
1

13
1

31
1

22
2

33
2

23
2

32
2

= = = = = 	 (9)

of operator (3) summation should be performed over all 
Zeeman sublevels dipole-coupled to state |1ñ, like in the full 
set of states for Green’s function (7). In this case, the interac-
tion energy DE between Rydberg atoms may be determined in 
an arbitrary order of the perturbation theory in interaction 
(3) by solving equation

det||Wij + (ei – DE)dij|| = 0,	 (10)

which is equivalent to the diagonalisation procedure of a 3 ´ 3 
matrix (here, dij is the Kronecker delta) with the elements 

RR( ) ( )W i V G V E j1AB ABij E
1D= + -

-lt t6 @" , ,	 (11)

where i, j = 1, 2, 3 correspond to close states separated out 
from series (7) to the three-vector subspace. The interaction-
induced shift DE = E E-  relates to Green’s function energy, 
for which it is convenient to choose E E1= . Then, the shifts 

E Ei ie = -  in Eqn (10) (e1 = 0 and e2 = e3 = d) define three 
solutions DEi = ei of the cubic equation for infinitely sepa-
rated atoms (for R ® ¥, when the matrix elements Wij tend to 
zero). Using expansion (3) of the interaction operator R( )VABt  
in powers of 1/R, for each term of the perturbation theory 
series

W W ( )
ij

k

k 1

=
3

=

ij/ ,    E E ( )k

k 1

D =
3

=

/ 	 (12)

it is possible to obtain the corresponding expansions in pow-
ers of the parameter 1/R for the matrix elements and energy in 
expression (11). In this case, in the first order (k = 1) we have 
the sum of a finite number of terms which describe only the 
allowed transitions between the initial and final states of 
atoms A and B, similarly to the sum for the first-order energy 
(6) for the isolated state |ABñ:
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W i V j
R

w q n( )
( )

ABij q
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q q

L
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11

1

= =
=

+S
t / ,	 (13)

where LS = lA(i) + lA( j) + lB(i) + lB( j) is the sum of angular 
moments of both atoms in their initial (|iñ) and final (| jñ) states 
(i, j = 1, 2, 3). The starting power value q1 also depends on the 

angular momenta of the diatomic states |iñ and | jñ. When 
these states are dipole-coupled for both atoms (D A(B) = |lA(B)
(i) – lA(B)( j)| = 1), summation for a nondiagonal element of 
expression (13) starts with q1 = 3. When the states are dipole-
coupled only for one of the atoms and only a quadrupole 
transition is allowed for the other one, then q1 = 4; when 
dipole transitions are forbidden and quadrupole transitions 
are allowed for both atoms, then summation for the first-
order matrix element of expression (13) starts with the quad-
rupole--quadrupole term and q1 = 5, like in the expansion (6) 
for the first-order energy defined by the diagonal matrix ele-
ment   .W ( )

ii
1

The second-order term in the expansion for the matrix ele-
ment in series (12) may be represented in the form of a series:

RR( ) ( )
( , )

W i V G V j
R

w q n( )
( )

AB ABij E q
ij

q q

2
2

2

=- =
3

=

lt t / ,	 (14)

which contains even powers of 1/R, beginning with q2 = 6, for 
diagonal matrix elements W ( )

ii
2 . The parity and starting value 

of power q2 for nondiagonal matrix elements W W( ) ( )
12
2

13
2

=  
depend on the relation between the parities of individual 
monoatomic states in the initial (|1ñ) and final (|2ñ, |3ñ) 
diatomic states. We restrict ourselves to the most interesting 
case of dipole-coupled close states |1ñ and |2ñ, |3ñ, which per-
mits taking into account only the first-order matrix element 
W ( )

12
1  µ 1/R3. 
With allowance for the matrix elements of the lowest non-

vanishing orders in expressions (13) and (14) and for identities 
(9), the solutions of the secular equation (10) may be repre-
sented as 

R( )
E E W

2,
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1 2 11
2/D D D

= +!

	 R( ) W
2
1 8 ( )2
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1 2

! D + , E W W( ) ( )
3 22

2
23
2dD = + - ,	 (15)

where R( ) W W W( ) ( ) ( )
11
2

22
2

23
2dD = - + +  is the interatomic-

distance-dependent splitting of close energy levels with the 
account for their van der Waals shift up to second-order of 
the perturbation theory in R( )VABt  inclusively. The solutions 
E E W W( ) ( )
2 22

2
23
2dD D= = + ++  and DE3 determine the split-

ting of completely degenerate states |2ñ and |3ñ induced by the 
interaction (3), (4) [under the assumption that W 0( )

12
1 /  and  

D(R) > 0]. It is pertinent to note that the degeneracy of the 
diatomic states which differ by permutation of the monoat-
omic states of identical atoms should be taken into consider-
ation in the calculation of the van der Waals interaction 
energy. For W 0( )

12
1 /  the solution E E W ( )

1 11
2D D= =-  defines 

the energy shift of the isolated state ár1, r2|1ñ [in this case, the 
states |2ñ and |3ñ are included in Green’s function (7)]. 

Diagonal matrix elements decrease rapidly with increas-
ing interatomic distance, as is clear from their asymptotic 
dependences W ( )

ii
2  µ n11/R6. That is why for long distances 

(R > n3) the main contribution to D(R) is made by the energy 
difference d between diatomic states, which is independent of 
R. In particular, for the states with n » 50 and |d| > 100 MHz 
the difference between D(R) and d does not exceed 10 % even 
for R > 10 mm. The first-order nondiagonal matrix element 
W ( )

12
1  µ n4/R3 also decreases with R. Therefore, the inequality 

8|W ( )
12
1 |2 << |D(R)|2 holds in the indicated region of R > n3 and 

approximate solutions of Eqn (10), which describe the van der 
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Waals shifts of the diatomic states, may be written in the form 
[assuming that D(R) > 0] 

( )
| |

0E E W
R

2( )
( )

R1 11
2 12

1 2

/D D
D= -

"3-
W

,	
(16)

( )
| |

.E E W W
R

2( ) ( )
( )

R2 22
2

23
2 12

1 2

2/ d e dD D
D= + + - =

"3+
W

Here, the fraction with the doubled square of the first-order 
nondiagonal matrix element W ( )

12
1  in the numerator is respon-

sible for the restoration of the terms in reduced Green’s func-
tion which correspond to states |2ñ and |3ñ and which are pres-
ent in non-reduced Green’s function of the matrix elements in 
the second-order perturbation theory for the isolated state |1ñ. 

In the opposite case, 8|W ( )
12
1 |2 >> |D(R)|2, when the splitting 

d between close levels may be neglected, the main contribu-
tion is made by the second term in the radicand of Eqn (15). 
In this case, the two solutions are of the form 

ED !  » 
R R( ) ( )

W
W

W2 1
16 2

( )

( )

( )
12
1

12
1 2

2

11
2

!
D D

+ + += G .	 (17)

This case corresponds to the so-called Förster resonance, 
when the power-six van der Waals dependence DEVdW = – C6 /
R6 may turn into a power-three dependence DEd – d = C3 /R3 
determined by the first-order non-diagonal matrix element 
W ( )

12
1 . Since |W ( )

12
1 | and |D(R)| depend differently on R, the 

inequality 8|W ( )
12
1 |2 >> |D(R)|2 is violated both at short range, 

where |W12|/|D(R)| tends to zero proportionally to R3 for R ® 
0, and at long range, where |W12|/|D(R)| tends to zero propor-
tionally to R–3 for R ® ¥. Therefore, the range of distances R 
in which relation (17) holds is limited both from above and 
from below. In this case, the dependence of the matrix ele-
ment on the orientation of the interatomic vector R (on the 
angle q) may be represented in the form 

( )JM( , ) ( )W R
R
d Z( )
AB

12
1

3 1 2
q q= ;J J ,	 (18)

where 1|| ||2d d dAB A BG H= t t  is the reduced matrix element of 
dipole-dipole interaction. In the calculation of the factor 
|W ( )

12
1 (R, q)|2 of the second term of the radicand in expression 

(15), the summation was performed over magnetic quantum 
numbers M1, M2 of resonance diatomic states |2(3)ñ = árA(B)|n
1l1J1M1ñ ́ árB(A)|n2l2J2M2ñ. Expressions (17) and (18) make 
evident the existence of the dipole – dipole (Förster) depen-
dence of the energy shift on the separation distance

( , )
E

R
C M

3
3!

qD =! 	 (19)

in some ranges of interatomic distances RLR < R < RF limited 
above by the Förster radius. This region may be extended to 
infinity in the case of exact resonance (d = 0), when Eqns (17) 
and (18) and the corresponding condition 8|W ( )

12
1 |2 >> |D(R)|2 

hold up to R ® ¥. That is why different methods were 
employed for lowering the magnitude of energy defect |d| in 
external static and time-dependent monochromatic fields [12, 
13] to achieve the resonance distance dependence (19). The 
dependence of coefficient ( , )C M 23 #q =  | | ( )d Z ;

( )AB
J J
JM
1 2

q  on 
the magnetic quantum number M and the angle q   is con-
tained in the dependence of the factor: 

( )
( ) ( )

(2 3 )cosZ
J J

M X X
3 2 1

2
2
2

2;
( )
J J
JM

2
3

2
1 2 2

1 2
q q=

+
+ -; E)

	
( ) ( )

[ ( )] ( )
(1 3 )cos

J J
M J J Y Y
3 2 1 2 1

3 1
5

2
1 2 2q+

+ -

- + +
-

( )
( )

( )cos cos
J

M J J
YY

2 1
3 1

1 8 9
/

5

2 2

1 2
2 4

1 2

q q+
-

- +
- += G 3 ,	 (20)

where X1(2) = J(J + 1) + 2 – J1(2) (J1(2) + 1) and Y1(2) = 3X1(2) ´ 
(X1(2) – 1) – 8J(J + 1). Unlike the electrostatic energy of two 
independent dipoles, the shift (19) does not vanish either on 
averaging over the orientations of interatomic axis or on aver-
aging over the orientations of angular momenta (over mag-
netic quantum numbers M). It is significant that the summa-
tion over the magnetic quantum numbers of states |2ñ and |3ñ 
was performed in the determination of the squared matrix ele-
ment |W ( )

12
1 (R, q)|2 in the radicand of Eqn (15), because all 

Zeeman sublevels of resonance states |2ñ and |3ñ possess the 
same energy and were therefore excluded from the complete 
Hilbert space of Green’s function expansion (7) and intro-
duced into the subspace of close states. 

The domain of separation distances R in which the second 
term of the radicand in Eqn (15) is significantly greater than 
the first one is rather small. That is why the dependence of 
energy shift (15) proportional to R–3 occurs only in a limited 
region of interatomic distances. The dependence of expres-
sion (20) on the interatomic axis orientation is significantly 
different from the corresponding dependence for the 
dipole – dipole interaction, which is proportional to the 
Legendre polynomial P2(cosq), as is evident in Fig. 2. 

4. Irreducible components of van der Waals 
constant and dependence of C6 
on the interatomic axis orientation 

Each coefficient in expansion (8) depends on the orientations 
of the total angular momentum (on magnetic quantum num-
bers) and the interatomic axis. These dependences may be 
expressed with the use of irreducible components defined only 
by the states of interacting particles. In particular, the van der 
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Figure 2.  Factor ( )Z ;
( )
J J
JM
1 2 q  as a function of the angle q = arccos(na) for 

the resonance interaction of two atoms in the state |1ñ = ár1|nD5/2 Mñ ´ 
ár2|nD5/2 Mñ with magnetic quantum numbers M = ( 1 ) 1/2, ( 2 ) 3/2 and 
( 3 ) 5/2 in conditions of resonance for the diatomic states |2(3)ñ = 
ár1(r2)|n1P3/2ñár2(r1)|n2F7/2ñ.
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Waals constant for similar atoms in identical states, |nAlAJA-
MAñ = |nBlBJBMBñ º |nlJMñ, may be represented as a function 
of magnetic quantum numbers and angle q between the unit 
vectors of the interatomic axis n and quantisation axis a:

( ) ( ) (3 2)cosC C R
J
M R
12

( )
ss aa6 6

2
2

2
2q q q= = - -

	
( )

( )
(3 1)cos

J J
M J J

R
2 2 1

3 1
sT

2
2q+

-

- +
-

( )
( )

(9 8 1)cos cos
J J

M J J
R

2
3

2 2 1
3 1

TT

2 2
4 2q q+

-

- +
- += G .	 (21)

In this expansion the irreducible components Rss, Raa, RsT = 
RTs, and RTT of tensor C6 may be represented as linear combi-
nations of second-order diatomic radial matrix elements 

A B| | | |nlJ nlJ r r g r r nlJ nlJ, ; , , ; ,A Bl J l J l J l J1 1 2 2 1 1 2 2G G H Hr = l l ,

where g , ; ,l J l J1 1 2 2  is the radial part of Green’s function (7). The 
coefficients in these combinations are integrals over the angu-
lar variables of Rydberg electrons. 

For the states with J = |M| (the orbit is in the plane per-
pendicular to the quantisation axis), a factor sin2q appears at 
some of radial matrix elements in expression (21). For this 
reason, in particular, the contribution of the radial matrix ele-
ments rl – 1, J – 1; l – 1, J – 1 and rl – 1, J – 1; l  ± 1, J to C6 vanishes for q = 0 
and expression for C6 becomes significantly simpler. For 
instance, 

| (2 11C
81
2

| | / , , ; , , ; ,J M l J l J l J l J6 1 2 0 1 1 1 1 1 1r r= +! !q= = = + + + +

	 14 , ; ,l J l J1 1 1r+ ! + + ).

The results of numerical calculations of the van der Waals 
constants for diatomic states with similarly excited Rb atoms 
in the states nD5/2 M with n = 42, 43, and 44 are given in Fig. 3 
as functions of angle q for magnetic quantum numbers |M| = 
1/2 and 5/2.

5. Conclusions

The long-range dispersion interaction of identical atoms in 
the same states with the existence of energetically close dipole-
coupled diatomic states may lead to a transition from the van 
der Waals interaction (C6 /R6) to a dipole one (C3 /R3). This 
rule holds true in the interatomic distance region in which the 
distance-dependent splitting of the close levels is much smaller 
than the non-diagonal matrix element of the dipole--dipole 
interaction. Along with dipole-coupled states, multipole-cou-
pled states may also change their distance dependences if their 
energy separation is far less than the energy separation of 
dipole-coupled states. Calculations performed in our work 
suggest that the interatomic distance domain in which the 
dipole interaction type related to approximate relation (17) is 
realised depends significantly on the energy difference d. This 
region may be characterised by the Förster radius RF, which 

tends to infinity for d ® 0. In particular, two Rb atoms in the 
same 43D5/2 state may interact by the DEd – d = C3 /R3 law in 
the 2-to-10 mm interatomic distance domain owing to the 
proximity of their energies to the atomic energies in the states 
45P3/2 and 41F7/2. In this case, the interaction energy depends 
significantly on the orientation of interatomic axis (on the 
angle q) relative to the quantisation axis of the total atomic 
angular momenta. 

The dependences of the van der Waals constant on the 
interatomic axis direction are described with the use of irre-
ducible components calculated in a single-electron approxi-
mation employing the spectral decomposition of diatomic 
Green’s function.
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