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Abstract.  We have studied the regimes of deterministic single-atom 
Rydberg excitation in the conditions of Rydberg blockade and the 
methods of compensation for the dynamic phase of the wave func-
tion during the adiabatic passage. Using these methods, we have 
proposed schemes of single-qubit and two-qubit quantum states 
with mesoscopic atomic ensembles containing a random number of 
atoms, considred as quibits. The double adiabatic passage of the 
Förster resonance for two interacting atoms with a deterministic 
phase shift can be used for the implementation of two-qubit gates 
with reduced sensitivity of the gate fidelity to the fluctuations of the 
interatomic distance. 
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1. Introduction

The experimental realisation of quantum computing is one of 
the most interesting problems of modern physics [1]. A number 
of quantum systems can be considered as qubits. Recently, a 
considerable progress has been achieved in quantum informatics 
using superconducting qubits [2, 3] and ultracold ions [4, 5]. 
At the same time, the scaling of such systems to a large 
number of qubits (103 – 104) is a rather challenging problem. 
A promising alternative in this respect is to use optical lattices 
of ultracold neutral atoms that satisfy all DiVincenzo criteria 
for the qubits of a quantum computer [6 – 8]. As logical states 
of such qubits, the long-lived hyperfine sublevels of the ground 
state of alkali metal atoms are used [9, 10]. To obtain a quantum 
register of arbitrary scale, the atoms are captured in the arrays 
of optical dipole traps [11, 12]. To initialise the register, the 
optical pumping to one of the hyperfine sublevels is used. 
Single-qubit gates are implemented using the interaction of 

atoms with microwave or laser radiation with addressing to 
individual trapped atoms [13]. To implement the two-qubit 
gates, the atoms are excited for a short time to the Rydberg 
states, which allows the control of their interaction and the 
preparation of quantum entangled states of the qubits 
[10, 14, 15]. The atomic quantum state can be efficiently mea-
sured using the resonance fluorescence (for atoms in short-
lived low states) or selective field ionisation (for atoms in 
long-lived Rydberg states) [7, 16].

Recently, a significant progress has been made in the 
experimental realisation of quantum registers, comprising 
50 – 100 individual ultracold atoms captured in the array of 
optical dipole traps [11, 12]. As an alternative, one can con-
sider qubits based on arrays of atom ensembles (the so-called 
superatoms), an advantage of which is the smaller sensitivity 
to the loss of individual trapped atoms [7, 14]. Quantum reg-
isters with cold atoms are schematically illustrated in Fig. 1a. 
The two-qubit gates with ultracold atoms were successfully 
implemented in the experiment [15] using the dipole blockade 
effect [14]: the interaction of atoms with each other causes a 
shift of the collective energy levels of the system of two closely 
spaced atoms (Fig. 1b) and ‘withdraws’ such levels from the 
resonance with the exciting laser radiation. This determines 
the impossibility of exciting two closely spaced Rydberg 
atoms at once and allows the generation of the entangled 
states of two atoms. The dipole blockade effect can be used 
both for the implementation of two-qubit gates with single 
atoms, and for recording the quantum information in the col-
lective states of a mesoscopic atomic ensemble (Fig. 1c). In 
the dipole blockade regime such an ensemble is a two-level 
system, where the ground state corresponds to all atoms being 
at the lower level, while the excited state is a symmetric super-
position of all possible states, in which only one atom in the 
ensemble is excited to the Rydberg state. The frequency of 
the collective Rabi oscillations in this ensemble by N  times 
exceeds the Rabi frequency of the single-atom laser excitation 
(N is the number of atoms in the ensemble). This makes the 
accuracy of quantum operations sensitive to the fluctuations 
of the number of atoms in the ensemble.

The main obstacle for quantum computing implementa-
tion with neutral atoms is the low accuracy of two-qubit gates 
that does not exceed 0.73 [17]. In this connection, the systems 
of two-qubit operations with reduced sensitivity to the fluc-
tuation of parameters in the experiment are of great interest. 
We developed a number of systems of quantum gates with 
ultracold neutral atoms based on the double adiabatic pas-
sage with the conservation of the collective wave function 
phase [18 – 20]. In the present paper we consider the specific 
features of double adiabatic sequences in the case of single-
photon adiabatic rapid passage (ARP) and two-photon 
stimulated Raman adiabatic passage (STIRAP) of optical 
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resonances, corresponding to the excitation to Rydberg states, 
as well as the adiabatic passage of Förster resonances in the 
interacting Rydberg atoms [21 – 26].

2. Deterministic excitation of single atoms  
in the regime of dipole blockade and double 
adiabatic sequences of controlling pulses

Although the dipole blockade effect forbids the excitation of 
more than one Rydberg atom in a mesoscopic ensemble, the 
fluctuations of the number of atoms, initially trapped in the 
optical dipole trap make it impossible to choose the exciting 

single-pulse ‘area’, necessary for coherent excitation of one 
Rydberg atom with the probability close to unity (the laser 
p-pulse). In our paper [27] it was shown that in a mesoscopic 
ensemble of strongly coupled Rydberg atoms in the dipole 
blockade regime, the deterministic adiabatic excitation of a 
single Rydberg atom, independent of the number of atoms in 
the ensemble, can be implemented. For this purpose, we con-
sidered the single-photon and two-photon adiabatic passage of 
the optical resonance. The relevant energy level diagrams are 
shown in Fig. 1d. In the case of a single-photon ARP the used 
pulses possess such a frequency chirp that during the laser 
pulse action the resonance detuning d(t) changes the sign. In 
a STIRAP two partially overlapping laser pulses are used, act-
ing in the inverse sequence on the transitions | eñ ® | rñ and | gñ ® 
| eñ [28], where | gñ is the ground state, | eñ is the intermediate 
excited state, and | rñ stands for the Rydberg states. The radia-
tion frequencies of two lasers must be tuned exactly to the 
two-photon resonance and have constant detuning d from 
the intermediate excited state. 

To implement quantum gates with atomic ensembles, we 
propose to use double adiabatic sequences of pulses, sche-
matically shown in Fig. 1e. This allows the compensation of 
undesired dynamic phase shift of the collective states, accu-
mulated after the first adiabatic sequence. In the two-photon 
adiabatic passage between two sequences the sign of the 
detuning is switched from +d to –d, and in the single-photon 
adiabatic passage for the second pulse the sign of the Rabi 
frequency is changed, which corresponds to a phase shift of 
the laser pulse by p.

We have found that depending on the value of the detun-
ing from the intermediate state d, the regime of two-photon 
adiabatic passage in mesoscopic atomic ensembles essentially 
changes. In particular, when d = 0 the interaction of a single 
atom with the laser radiation leads to the excitation of the atom 
to the Rydberg state | rñ. For the ensemble of two interacting 
atoms in the dipole blockade regime the situation cardinally 
changes: after the end of the adiabatic passage, no atoms stay 
in the Rydberg state [29]. To explain this effect let us consider 
the interaction of the ensemble of atoms with laser radiation 
in the dipole blockade regime.

First, we consider a single atom with the energy levels 
| gñ, | eñ, and | rñ (Fig. 1d). Let WP(t) be the Rabi frequency for 
the transition | gñ ® | eñ, and WS(t) – the Rabi frequency for the 
transition | eñ ® | rñ. Under the conditions of exact two-photon 
resonance, the Hamiltonian for the three-level system can be 
written in the form [29, 30]:
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Its eigenvalues are wd = 0 and wa,b = ±( /2' ) [d2(t) + W2
P(t) + 

W2
S(t)]1/2. The eigenvalue wd = 0 corresponds to the ‘dark’ state 

| D ñ = cos q(t) | gñ – sin q(t) | rñ, where q(t) is the mixing angle 
[tan q(t) = WP(t) /WS(t)], from where one can find that cos q(t) = 
( ) / ( ) ( )t t tS S P

2 2W W W+  and sin q(t) = ( ) / ( ) ( )t t tP S P
2 2W W W+ .

Consider the state population dynamics during the time 
interval (–T, T  ), where T = 5 ms, for Gaussian laser pulses 
(Figs 2a – 2d) with the Rabi frequencies

WS(t) = W0 exp[(t – t1)2/(2w2)],	
(2)

WP(t) = W0 exp[(t – t2)2/(2w2)].
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Figure 1.  (a) Schematic of a quantum register based on the array of 
optical dipole traps with single atoms (top) or atom ensembles (bottom) 
in each node, (b) collective energy levels of two interacting atoms, (c) meso-
scopic ensemble of N atoms, interacting with laser radiation in the dipole 
blockade regime, considered as a two-level system with the frequency of 
collective Rabi oscillations depending on the number of atoms, (d) energy 
level diagram for two-photon (STIRAP) and one-photon (ARP) adiabatic 
passage of resonances and (e) the double adiabatic sequence of laser 
pulses conserving the phase for the two-photon (top) and one-photon 
(bottom) adiabatic passage.
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Here t1 = –1 ms; t2 = 1 ms; and W0 /(2p) = 10 MHz (these values 
correspond to the typical ones for experiments with Rydberg 
atoms). Initially cos q (t = –T ) = 1, sin q (t = –T ) = 0, and the 
ground state | gñ coincides with the dark state | Dñ. During 
the adiabatic passage of the resonance, the system stays in the 
dark state. However, after the end of the passage, the mixing 
angle changes: cos q (t = T ) = 0, sin q (t = T ) = 1, which corre-
sponds to the transition of the atom to the state | rñ.

Now let us consider the Hamiltonian for two three-level 
atoms in the dipole blockade regime, which is written for eight 
collective states | ggñ, | geñ, | grñ, | egñ, | eeñ, | erñ, | rgñ, and | reñ of 
the quasi-molecule consisting of two interacting atoms:
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Here we took into account the dipole blockade effect, exclud-
ing from the consideration the collective state | rrñ, which cor-
responds to two simultaneously excited Rydberg atoms. The 
numerically calculated eigenvalues of Hamiltonian (3) for the 
laser pulses described by Eqn (2) are presented in Figs 2e – 3h 
for four values of the detuning from the intermediate state: 
d/(2p) = 0, 4, 5, and 10 MHz. The numerically calculated 
time  dependences for the population of the ground state 
and the collective state with one Rydberg atom are presented 
in Figs  2i – 2l. If the detuning from the intermediate state  
d/(2p) = 0, than the dark state exists that corresponds to 
the  zero eigenvalue of energy (Fig. 2e). After the end of the 
adiabatic passage, the systems stays in the dark state, and the 
probability to find any of the atoms in the Rydberg state is zero 
(Fig. 2i). Such states are thoroughly considered in Ref. [29]. In 
Ref. [31] it was shown that in the absence of phase shifts between 
the laser pulses in the STIRAP, the geometric phase is zero. Thus, it 
is sufficient to study the effect of the dynamic phase. 

For the nonzero detuning from the intermediate state, 
there are no eigenstates with zero energy. The transition to 
the excitation of a single Rydberg atom occurs in the vicinity 
of d/(2p) = 5 MHz (Figs 2j and 2k). For d/(2p) = 10 MHz the 
deterministic single-atom excitation is observed (Fig. 2l).

The absence of the dark state in Fig. 2h leads to the accu-
mulation of the dynamic phase during the time of the adia-
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Figure 2.  (a – d) STIRAP time sequences of laser pulses, (e – h) eigenvalues of the Hamiltonian for the system of two atoms interacting with laser 
radiation in the regime of dipole blockade and (i – l) numerically calculated probabilities Pgg to find two atoms in the ground state and the probabil-
ity P1 of the excitation of one Rydberg atom in the dipole blockade regime for different values of the detuning from the intermediate state d/(2p).
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batic passage. This phase is sensitive to the Rabi frequencies 
and the number of atoms in the ensemble, which is undesir-
able for quantum informatics with mesoscopic atom ensem-
bles. In our previous papers we have found that the switching 
of the detuning sign from the resonance with the intermediate 
state between two adiabatic sequences allows the elimination 
of this undesirable phase incursion [18 – 20]. This can be 
explained in  the following way: let us consider the double 
adiabatic sequence of pulses in the interval (–T, T' ) at 
T  =  10  ms (Figs 3a and 3b) with the Rabi frequencies 

WS(t) = W0exp[(t – t1)2/(2w2)] + W0exp[(t + t1)2/(2w2)],

WP(t) = W0exp[(t – t2)2/(2w2)] + W0exp[(t + t2)2/(2w2)],	
(4)

where W0 /(2p) = 10 MHz; t1 = –6 ms; and t2 = –4 ms. The 
detuning from the intermediate excited state d(t)/(2p) is constant 
for the left-hand column in Fig. 3 and amounts to 10 MHz. 
For the right-hand column in Fig. 3 the sign of the detuning is 
changed for the opposite between two sequences: d(t)/(2p) = 
10 MHz ´ sgn t. The numerically calculated energy eigenvalue 
E(t)/(2p') for Hamiltonian (1), corresponding to the initial 
state of the system | ggñ, is shown in Fig. 3c (the detuning is 

constant) and Fig. 3d (the detuning changes the sign). The 
numerically calculated time dependences of the phase of the 
ground state | ggñ and the phase in the adiabatic approxi
mation 
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are shown in Figs 3e and 3f. Good agreement with the adiabatic 
approximation is observed in the region, where the probability 
amplitude of populating the ground state is different from zero. 
The dynamics of populations, presented in Figs 3g and 3h, 
does not change with the switching of the detuning sign.

Under the double fast adiabatic excitation using the 
chirped laser pulses (Fig. 4) we have found two regimes of 
deterministic accumulation of the dynamic phase. If the sign 
of the Rabi frequency is unchanged (the left-hand column of 
Fig. 4), then the phase shift is also deterministic and equals p. 
In the case of switching the Rabi frequency sign during the 
interval between the pulses (the right-hand column of Fig. 4), 
the dynamic phase is compensated for, as in the case of two-
photon fast adiabatic passage with the change of the detuning 
sign from resonance. We considered the phase dynamics of a 
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Figure 3.  (a, b) Sequences of laser pulses in the case of double adiabatic passage, (c, d) time dependences of the Hamiltonian eigenvalues for the 
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two-level system in Ref. [21]. The Hamiltonian of the two-
level atom interacting with the chirped laser pulse can be writ-
ten in the form [30, 32]:
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Its eigenvalues are
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and the eigenstates are the semiclassical ‘dressed’ states

| I(t)ñ = cos q(t) | gñ – sin q(t) | rñ,

| II(t)ñ = sin q(t) | gñ + cos q(t) | rñ.	
(6)

Here q(t) is the time-dependent mixing angle, for which 
the condition tan [2q(t)] = W0(t)/d(t) holds. The wave function 
of the atom in the basis of dressed states can be presented 
as  the superposition | yñ = c1u (t) | I(t)ñ  + c2u (t) | II(t)ñ, and the 
Hamiltonian has the diagonal form:
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Figure 4.  (a, b) Time dependences of the Rabi frequency W0 and detuning d, numerically calculated time dependences of (c, d) the population and 
(e, f) phase of the probability amplitude of the ground state | g ñ (solid curves) in comparison with the results of calculation in the adiabatic approxi-
mation (dashed curves), as well as the numerically calculated time dependences of (g, h) the population and (i, j) the phase of the probability ampli-
tude of the ground collective state of the system of two interacting atoms in the regime of dipole blockade | gg ñ (solid curves) in comparison with the 
results of calculation in the adiabatic approximation (dashed curves) at the phase shift, equal to p for the left-hand column and zero for the right-
hand column.
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Consider the double adiabatic sequence of pulses beginning 
at  t = 0. The initial positive detuning from the resonance 
d(t = 0) > 0 corresponds to q(t = 0) = 0. The system is initially 
in the state | gñ, which corresponds to the dressed state | I(t)ñ 
with the probability amplitude c1u (t = 0) = 1. After the first 
adiabatic passage we have d(T ) < 0 and q(T ) = p/2, and the 
atom is excited to the state – | rñ, the accumulated dynamic 
phase of the state | I(t)ñ being 

( )dt t
2
1 t

0
W- -y . 

For the second adiabatic sequence, let us use a prime with 
the mixing angle. The initial conditions for this sequence are 
such: the detuning from resonance is positive, d(t = T ) > 0 and, 
therefore, the mixing angle q' (T ) = 0. The system is initially 
in the state | 2ñ, which corresponds to the dressed state | II(t)ñ. 
After the second adiabatic sequence the mixing angle becomes 
q' (2T) = p/2. For the conditions of Fig. 3a the dynamic phase 
accumulated during both sequences is

( ) ( ) 0t dt t dt
2
1

0

2T

T

T
W W- + =+c my y .

Keeping in mind the sign of the state – | rñ, excited after the 
first adiabatic passage, we get the final state of the atom – | gñ. 
This corresponds to the return of the atom into the initial 
state with the accumulated phase shift p. 

Switching the sign of the Rabi frequency will correspond 
to such a mixing angle that tan [2q' (t)] = –W0(t)/d(t). At the 
end of the second pulse the mixing angle is q'(2T) = –p/2. 
Keeping in mind the sign of the state – | rñ excited after the first 
pulse, we obtain the final state of the system  | gñ. Thus, the 
atom returns to the initial state without a phase shift.

To illustrate the above model, we calculated numerically 
the time dependence of the probability amplitudes in the case 
of a two-level atom, interacting with two chirped laser pulses 
having the Rabi frequencies Wj (t) = W0 exp [–(t – tj )2/(2w2)] 
and the detunings dj (t) = s1(t – tj ), where j = 1, 2 (Fig. 4a). The 
peak Rabi frequency is W0 /(2p) = 20 MHZ, the detuning slope 
is s1/(2p) = –50 MHz ms–1, and the pulse width is w = 0.12 ms. 
The intensity maxima are achieved at the time moments t1 = 
0.5 ms and t2 = 1.5 ms. In Fig. 4b the conditions are similar, 
but the sign of the Rabi frequency is opposite. The time 
dependences of the probability P1 to find the atom in the 
state | gñ calculated numerically are shown in Figs 4c and 4d 
together with the adiabatic dependence of cos2 q(t). Figures 4e 
and 4f present the numerically calculated phases of the 
probability amplitudes of the state | gñ in comparison with 
the  adiabatic approximation. Good agreement of results is 
observed in the domain, where the probability amplitudes are 
nonzero.

Now let us proceed to the phase dynamics in the case of a 
fast adiabatic passage of the resonance in the ensemble of two 
interacting Rydberg atoms in the dipole blockade regime. The 
Hamiltonian for two two-level atoms interacting with the 
chirped laser pulse in the dipole blockade regime can be written 
in the form:

( ) ( )
( )

( )
( )

( )

( )
H t t

t

t
t

t

t
2

0
2
0

0
2

2chirp 0

0

0 0
' d

d
W
W

W W
=t f p.	 (9)

Here we consider the collective states | ggñ, | grñ, | rgñ, and 
exclude the state | rrñ due to the dipole blockade. The eigen-
values of such a Hamiltonian are

( ) ( ) ( )t t t
2

2 0
2 2!

' d dW +6 @ и ( ) .t'd

The initial state | ggñ corresponds to the eigenvalue

( ) ( ) ( )t t t
2

2 0
2 2' d dW- +6 @. 

Thus, the dynamics of collective states of two interacting atoms 
in the dipole blockade regime is reduced to the dynamics of a 
two-level system described above by the replacement W0(t) ® 
W0(t) 2 . The results of numerical calculation of the probability 
to find the system in the collective state | ggñ and the phase of 
the probability amplitude, as well as the results of calcula-
tions in the adiabatic approximation are presented in Fig. 4.

3. Quantum gates

The schemes of quantum gates based on the adiabatic passage 
of resonances with the conservation of phase were proposed 
and studied in our previous papers [18 – 21]. The quantum 
gates with qubits based on mesoscopic atom ensembles are 
schematically shown in Figs 5a and 5b. The collective states 
of the atom ensemble | 0r ñ = | 00...0ñ and

| 1r ñ = 
N
1

j

N

1=

/ | 00...1j ...0ñ 

are considered as the qubit logical levels, where the states 
| 0ñ and | 1ñ are the hyperfine sublevels of rubidium or caesium 
atoms, and N is the unknown number of atoms, randomly 
captured in the optical dipole trap. The ensemble is initially 
prepared in the state | 0r ñ. In the course of interaction with the 
laser radiation tuned to the transition | 0ñ ® | rñ in a single 
atom, only the symmetric collective state can be excited due to 
the dipole blockade with one Rydberg excitation

| rr ñ = 
N
1

j

N

1=

/ | 00...rj ...0ñ. 

Then the state | rr ñ can be transferred into the state | 1r ñ by one 
laser p pulse, acting on the transition | rñ ® | 1ñ.

The frequency of collective Rabi oscillations for the 
transition | 0r ñ ® | rr ñ in the regime of dipole blockade amounts 
to N1W , where W1 is the Rabi frequency of the transition 
| 0ñ ® | rñ in a single atom. If the number of atoms in the 
ensemble is not exactly known due to their random loading 
into the optical dipole traps, the frequency of the collective Rabi 
oscillations becomes indefinite and the exact quantum gates 
with atom ensembles cannot be implemented. We proposed 
to overcome this difficulty using the adiabatic passage in the 
regime of dipole blockade. The schematic diagram of a single-
qubit gate is presented in Fig. 5a. Two auxiliary Rydberg 
states | r0 ñ and | r1 ñ are used. The phase-conserving adiabatic 
sequences, providing the excitation and deexcitation of the 
collective state

| r0r ñ = 
N
1

j

N

1=

/ | 00...r0j ...0ñ

with switching the sign of the detuning from the intermediate 
state in the case of two-photon excitation or the sign of the 
Rabi frequency in the case of one-photon excitation, are 
denoted as p+ and p– sequences, where the sign ‘+’ or ‘–’ cor-



461Adiabatic phase-conserving processes for executing quantum operations with ultracold atoms

responds to the sign of detuning or Rabi frequency. The area 
S and the phase j for the single-qubit rotation are determined 
by the parameters of the microwave transition between the 
auxiliary Rydberg states | r0 ñ and | r1 ñ. The laser p-pulses at 
the  transition | r1 ñ ¬® | 1 ñ are used to record the quantum 
information in the long-lived hyperfine sublevel of the ground 
state.

The two-qubit operation ‘controlled NOT’ (CNOT) is 
schematically presented in Fig. 5b. Two mesoscopic ensembles 
are separated by such a distance from each other that due to 
the dipole blockade the excitation of only one Rydberg atom 
in the entire system is possible. The sequence of pulses acting 

on the controlled qubit inverts its state, if in the controlling 
ensemble no Rydberg atoms have been excited. Otherwise, 
the excitation of Rydberg states in the controlled ensemble 
will be blocked and no inversion will occur.

Unlike the schemes using the dipole blockade effect, the 
quantum operations based on phase accumulation due to 
dipole – dipole interaction of Rydberg atoms do not require 
large interaction energies. At the same time, these schemes are 
sensitive to the fluctuations of interatomic separation that 
determines the interaction energy. We proposed a method to 
reduce this sensitivity essentially at the expense of the adiabatic 
passage of Förster resonances with Stark tuning for the inter-
acting Rydberg atoms. The schemes of two-qubit operations 
‘controlled phase shift’ (CZ) with single cold atoms are pre-
sented in Figs 5c and 5d. Two atoms are captured in the opti-
cal dipole traps separated from each other by the distance R. 
The atoms are simultaneously excited to the Rydberg state 
| r ñ by the laser p-pulse, denoted by figure 1. Due to the Stark 
effect, the time-dependent electric field shifts the collective 
energy levels so that the system passes twice the Förster reso-
nance ( | rr ñ ® | r' r''  ñ, the condition of resonance being the 
equality of energies of the collective levels | rr ñ and | r' r''  ñ, 
where | r'  ñ and | r''  ñ are the adjacent Rydberg states). Due to 
the resonance dipole – dipole interaction, the system transits 
from the state | rr ñ   to the state | r' r''  ñ. After the end of the 
Förster resonance adiabatic passage, the atoms are returned 
to the initial state by the laser p-pulse 2, having the phase shift 
p with respect to pulse 1. Due to the dipole – dipole interac-
tion, the system acquires the deterministic phase shift, but only 
in the case when both atoms were initially prepared in the state 
| 1 ñ and then excited to the Rydberg state. To implement the 
two-qubit CNOT gate, shown in Fig. 5d, we completed the 
scheme with two rotations of the controlled qubit through 
the angle p/2 about the y axis of the Bloch sphere in the opposite 
directions (which is implemented by means of the pulses 1 and 4 
in Fig. 5d). The sequence of pulses acting on the controlled 
qubit leaves its state unchanged, if the controlling qubit was 
not excited to the Rydberg state, and the dipole – dipole inter-
action did not lead to the phase shift. Otherwise, the state of 
the controlled qubit will be inverted, which is required to 
implement the CNOT gate.

4. Conclusions

Thus, we have studied double one-photon and two-photon adia-
batic sequences of controlling laser pulses, conserving the 
phase both for one atom, interacting with the laser radiation, 
and two Rydberg atoms in the regime of dipole blockade. It 
has been shown that the switching of the sign of the detuning 
from resonance with the intermediate state leads to the com-
pensation of the dynamical phase in the double two-photon 
adiabatic passage of the resonance because of the change in 
the Hamiltonian eigenvalues. We have also shown that the 
fast adiabatic passage of resonance under the conditions of 
dipole blockade in the ensemble of two interacting atoms can 
be reduced to the dynamic of one two-level system. The 
obtained results can be used to implement quantum computing 
with registers of qubits, represented by mesoscopic ensembles 
with unknown number of atoms, which arise in the process of 
loading optical dipole traps and lattices. 
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