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Abstract.  We propose to control the interatomic interaction in a 
Bose condensate by using optical beams forming an atomic trap. It 
is shown that for a Bose condensate in a double-well optical poten-
tial the nonresonant quantized radiation simulates a change in the 
interatomic interaction in the well. The magnitude and sign of this 
change can be effectively controlled by varying the frequency of the 
radiation source forming the trap. 

Keywords: interatomic interaction, Bose condensate, atomic trap, 
atomic mode, photon mode. 

1. Introduction 

The application of an atomic Bose condensate in future quan-
tum technologies implies the use of two of its most important 
properties, namely, the macroscopic quantum coherence of 
the condensate and the presence of a substantial interatomic 
interaction [1]. The development of the arsenal of the means 
for controlling the interatomic interaction is very important. 
Currently, two methods of such control are used. The first 
method is based on the reconstruction of the shape of the trap 
potential, which changes the density of the condensate and, 
consequently, the average distance between the atoms. The 
second widespread and universal means for controlling the 
interatomic interaction is the Feshbach resonance [2]. This 
effect allows one to change, with the use of a constant mag-
netic field, the scattering length, which determines the inter-
atomic interaction in the condensate. 

In this paper, it is proposed to use optical beams forming 
an atomic trap to control the interatomic interaction in the 
condensate. As an example, a condensate in a double-well 
potential is used. The two-mode model of the atomic conden-
sate corresponding to this form of the potential is intensively 
studied experimentally and theoretically [3 – 7]. We have 
shown that forming one of the wells by the field of the optical 
mode of the resonator can modify the parameter responsible 
for the interatomic interaction in this well. It is important to 
note that this control of the interatomic interaction is not 
related to the simple change in the shape of the potential men-
tioned above, and, as a consequence, the density of atoms. 

The closest analogue of the new phenomenon is the known 
‘optical spring’ effect [8,  9]. 

2. Model 

The quantum kinetic equation for the statistical operator of a 
two-mode atomic condensate and a photon mode excited by 
an external harmonic source (see Fig. 1) can be written in a 
general form:

[ , ] [ ]
d
d i
t

H ( )
at ph
0r r rL=- +t t tt ,	 (1)

where the atomic Hamiltonian H ( )
at
0t  and the photon 

Liouvillian   phL  are introduced, which include both dynamic 
and dissipative terms. As shown in the figure, the first of the 
two atomic modes is formed in the waist of a conventional 
light beam of a travelling wave, and the second one – in the 
waist of a cavity mode beam. The Hamiltonian
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for two bosonic modes, ( )b b1 1
@t t  and ( )b b2 2

@t t , i.e. atoms in wells 
1 and 2, contains terms linear in the atomic number operators  
n b bk k k=

@t t t  (k = 1, 2) in the wells (wk are the depths of the wells) 
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Figure 1.  Scheme for the observation of optical control of the inter-
atomic interaction in a Bose – Einstein condensate (BEC). Two parts of 
the Bose condensate are in the waist of the photon mode of the resona-
tor and the free wave of approximately the same intensity and configu-
ration. The curved arrows symbolise the tunnelling between two parts 
of the BEC.
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and quadratic terms proportional to xk, responsible for the 
interatomic interactions in the wells; the parameter c specifies 
the tunnelling rate between the wells. The interaction between 
the atoms from different wells is neglected. 

An essential point is the spatial configuration of the sec-
ond atomic mode. The interatomic interaction parameter 
defined in this configuration for the second well, x2, and the 
position of the lower vibrational level w2 are calculated for 
some average number of photons, nph , in the cavity mode. 
We will obtain below an equation for the average number of 
photons. For subsequent consideration, it is convenient to 
explicitly introduce into the Hamiltonian the product of nph  
by the parameter g, which determines the interaction effi-
ciency of the atomic and photon modes. This parameter, on 
the one hand, determines the contribution of a single photon 
to the trap potential for mode 2, and on the other hand, a shift 
of the eigenfrequency of the photon mode ( )a a @t t  introduced 
by one atom. The latter circumstance is reflected in the struc-
ture of the photonic Liouvillian 

[ ] [ , ] [ , ] [ , ]i ia a g a an a aph 2r r r rL D W=- - + -
@ @ @t t t tt t t tt t t

	 +  (2 )a a a a a ag r r r- -
@ @ @tt t t tt t t t .	 (3)

Here, the explicit harmonic time dependence of the field 
of a classical external source with the amplitude W exciting 
the mode is excluded; D is the frequency detuning of the mode 
and the external source; the second term describes the above-
mentioned frequency shift of the mode due to the nonreso-
nance interaction with atoms from well 2; and the last three 
terms are responsible for the irreversible escape of photons 
from the cavity (g is the escape rate). It should be noted that 
the term ( )gn nph2 2w - t  in the Hamiltonian H ( )

at
0t  in combina-

tion with the second term of the Liouvillian ensures the one-
time account for the interaction of the atoms and the field, as 
well as the possibility of studying the effects of quantum fluc-
tuations of the photon mode. 

Interaction between atoms and radiation generates corre-
lations (quantum entanglement) between the state of the pho-
tonic subsystem and the state of the system of atoms. Since 
the interaction is proportional to the number of atoms in well 
2, in the Fock basis 3{| }n n2 02H =  for a given mode, the statisti-
cal operator of the whole system has the form 
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t t t/ .	 (4)

Here, there are operators )( ,n nph 2 2r lt  of the photon subsys-
tem, which explicitly reflect the presence of the mentioned 
correlations. The operator )( ,n n1 2 2r lt  acts in the state space of 
the condensate mode 1. 

We will assume that the photon subsystem is fast and its 
evolution adiabatically obeys the evolution of the slower sub-
system of the atomic condensate. This means that the fast 
stage of evolution is described by the Liouvillian phL  and ter-
minates with the formation of a ‘subordinate’ photon state. 
To establish its form, we consider the action of the Liouvillian. 
Because it affects only the photon and the second atomic 
modes, it is sufficient to apply it to fragments of the terms 
from sum (4): 

2 2| )][| ( ,n n n nph ph2 27HG rL l lt =

	 =  22|| ( , ) [ ( , )]n n n n n nph ph2 2 2 27HG rLl l lt .	 (5)

The action of the [introduced in (5)] superoperator )( , ,n nph 2 2L l  
which refers only to the photon subsystem, follows in an obvi-
ous way from structure (3). For a certain number of atoms n2 
= n2' , evolution is completed by the Glauber coherent state:

( , ) [| ( ) ( ) |] 0n n n nph 2 2 2 2HGa aL = .	 (6)

Here
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Since this is a pure quantum state, the above-mentioned 
entanglement between the atomic and the photonic subsys-
tems makes it natural to consider the action 2)( ,n nph 2L l  at n2 
¹ n'2 on the photon operators 2) || ( ) (n n2 HGa a l , pretending to 
the place of

) ) |( , | ( ) (n n n nph 2 2 2 2HGr a a=l lt

in (4). They turn out to be eigenoperators for 2)( ,n nph 2L l : 
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The eigenvalue is a function of the numbers n2 and n'2 and 
vanishes, as expected, for n2 = n'2. 

In the limit gn2, gn’2 << |g + iD| we have
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Transforming the terms from the right-hand side to the oper-
ator form, we obtain the quantum kinetic equation for the 
state of the atomic subsystem: 
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Here we introduce the statistical operator of atoms 

2 2 2

2

( , ) ( ) | ( ) | |Tr n n n n n n
,

at ph
n n

1 2 2 2

2

7G H HGr r r a a= = l l l
l

t t t/ ; 

Hatt  is the Hamiltonian describing the change in the depth of 
well 2 and containing the interaction parameter of atoms in 
this well: 
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g

n n n( )
at at

0
2 2

2

2 2 2 2 2d d
g

x x
D
W

= +
+

+ + -t t t t te o ,	 (11)

where

/( )g2
2 2 2 2 2dx gW D D=- + .



465Optical control of interatomic interaction in a Bose condensate

The resulting correction to the interatomic interaction in 
well 2 changes the sign along with the detuning D of the fre-
quency of the photon mode and the frequency of the external 
source. The three-term Lindblad structure in (10) describes 
the destruction of the coherence between the states with dif-
ferent atomic numbers in well 2 and, consequently, phase 
relations between atomic modes 1 and 2. The reason is the 
quantum entanglement between atoms and photons. Since 
the photon subsystem exchanges information with the envi-
ronment through the channel of irreversible loss of quanta, 
there is a potential possibility for spectral measurements of 
emitted radiation. The spectral shift depends on the number 
of atoms in the beam, and so there is a natural process of 
measuring the number of atoms in well 2, which is reflected in 
(10) as dephasing. The rate of dephasing is 

/( )g2 2 2 2 2n g gW D= + .

The dephasing effect accompanies any scenario of optical 
probing of atomic ensembles in individual minima of the trap 
potential [10].

The presence of an irreversible process leads to the exis-
tence of a stationary solution ( )

at
strt  in Eqn (10). The average 

number of photons,

) ( )na(n2H a| |n n Tr n( )

,
ph at
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n n
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corresponds to this stationary solution. Since the parameters 
of equation (10) and the configuration of the second atomic 
mode are implicitly dependent on the choice of nph , formula 
(12) actually represents a complicated equation for the aver-
age number of photons. For small deviations of atrt  from ( )

at
strt , 

the solution of equation (12) can be used as the initial param-
eter in the kinetic equation. 

3. Discussion

The proposed mechanism of local optical modification of the 
parameter responsible for the interatomic interaction does 
not change the scattering length of the atoms. For this reason 
it is natural to talk about the simulation control of this inter-
action. An accompanying phenomenon and inevitable price is 
the emergence of a process that destroys the phase correla-
tions between atomic modes. It modifies the effect of interwell 
tunnelling and can in some cases turn out to be an undesirable 
phenomenon. Therefore, the proposed mechanism for con-
trolling the interatomic interaction should not be considered 
universal. 

Let us prove the direct relationship between the effective 
change in the interatomic interaction and the phenomenon of 
the ‘optical spring’ in optomechanics [8]. As is known, the 
basic optomechanical model explores the interaction of the 
oscillations of a movable mirror of the resonator and the pho-
ton mode through the dependence of the fundamental fre-
quency of the mode on the varying length of the resonator. In 
the case of a relatively small change in the length of the reso-
nator during the motion of the mirror, the corresponding 
term in the Hamiltonian has the form GQa a@t t t. Here G is a 
constant (in cm–1 s–1), and Qt  is the operator of the mirror 
coordinate. This operator appears in place of the number of 
atoms in well 2 in our model. The correction to the equation 
for the coordinate density matrix | |Q QmG Hr lt  of the moving 
mirror (in the limit of the adiabatic subordination of the fast 

photon evolution to the slow mechanical system) acquires, by 
analogy with the second term in parentheses in Eqn (9), a 
term proportional to ( )Q Q2 2D - l . This is equivalent to an 
effective change in the stiffness of the suspension of the mov-
able mirror, i.e. the ‘optical spring’. In reality, there is no 
change in the elastic properties of the suspension. In a similar 
way, the effect proposed in this work is not related to a real 
change in the nature of interatomic interactions. 

We estimate the change in the energy of the interatomic 
interaction of the 87Rb atoms, caused by the change in x2 
[Eqn  (11)]. Let the optical traps be produced by radiation 
with l = 0.96 mm and the waist radii equal to 10 mm. The ring 
resonator (10 cm perimeter) is formed by an input mirror with 
a transmission t = 0.01 (in intensity) and two dense mirrors. 
The rate of escape of photons from such a resonator is g = 
3 ́  107 s–1, and the optical potential of an atom with a single 
photon in the cavity is g = – 0.1 s–1. It is convenient to express 
the parameter W in terms of the number Nph of photons in the 
resonator: 

( )Nph
2 2 2gW D= + .	 (13)

Let the intensity of the input radiation be chosen so that 
the number of photons in the resonator is Nph = 108. The 87Rb 
atoms in the field of such an optical trap have radial and axial 
oscillation frequencies: 2.6 kHz and 47 Hz, respectively. If the 
Bose condensate contains 106 87Rb atoms, then the energy of 
the interatomic interaction without the ‘optical spring’ effects 
is 8 ́  104 s–1 per atom, according to the Thomas – Fermi 
model. Taking into account the ‘optical spring’ effects changes 
x2 according to Eqn (11). With an optimal detuning of the radi-
ation frequency from the resonator frequency, D = +g(– g), the 
effect of the ‘optical spring’ decreases (increases) the energy of 
the interatomic interaction by approximately 20 %. The rate 
of the condensate dephasing at these parameters is v » 
0.02 s–1. 

4. Conclusions 

The results of the work can be summarised as follows. Firstly, 
the emergence of quantum correlations (entanglement) is 
shown between the mode of the ring resonator, which forms a 
trap, and an atomic condensate localised in this trap. To do 
this requires to introduce into the considered model an explicit 
form of the source of mode photons and the mechanism of 
irreversible escape of photons from the resonator. Secondly, 
the arising correlations can effectively simulate the inter-
atomic interaction in a localised condensate and control its 
sign and magnitude by changing the frequency of the external 
radiation source. This phenomenon basically reveals a resem-
blance to the ‘optical spring’. The above estimates show a sig-
nificant variation of the effective interatomic interaction in 
comparison with the original one. In this case, inevitable 
dephasing, accompanying the appearance of the effective 
interaction, is sufficiently small in the scale of the duration of 
a typical experiment with a condensate. It is possible to make 
an address change of the effective interaction in one of the 
potential wells of the trap of complex configuration (as, for 
example, in the figure).
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