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Abstract.  We report a theoretical investigation of a control scheme 
of a single-L system in pump – probe feedback spectroscopy. The 
feedback controls the phase of one of the fields, and its action is 
triggered by a nontrivial unraveling of the quantum operation of 
detection of spontaneous photons emitted by an atom. Within the 
framework of Markovian master equations, it is shown that the 
shape and width of the ‘dark’ resonance of coherent population 
trapping can be controlled within very wide limits. In addition, 
sharp resonant-like structures in the field’s work dependence on the 
Rabi frequencies are revealed and explained. 

Keywords: coherent population trapping, ‘dark’ resonances, quan-
tum feedback. 

1. Introduction 

Nonlinear spectroscopy as part of nonlinear optics arose in 
the early 1960s [1] with the advent of lasers that made it pos-
sible to obtain sufficiently high-power and coherent light 
fields for observing nonlinear effects in various media. One of 
them is the effect of coherent population trapping (CPT) 
[2,  3], which plays an important role in spectroscopy of three-
level systems with the L-configuration of energy levels [4]. 

Quantum control theory is a relatively new and rapidly 
developing field [5, 6], many applications of which have 
been stimulated by the development of technologies allow-
ing experiments with single quantum objects, such as atoms 
or ions [7, 8]. Control of simple quantum-optical systems 
based on quantum feedback makes it possible to achieve 
such interesting effects as, for example, control of the steady 
state of a dissipative two-level system [9], enhancement of 
the squeezing of the fluorescence light emitted by a two-level 
atom [10] or stabilisation of a selected measurement out-
come in a quantum system [11]. In systems of elementary 
radiators, i.e. atoms or molecules interacting with electro-
magnetic fields, the most natural type of feedback is the 
feedback based on photodetection, i.e., the control action is 
chosen based on the results of detecting the radiation emit-
ted by the system. In our previous papers [12 – 15], we 
showed that the control of the field phase based on detected 

photoemission can substantially modify the spectrum and 
statistics of the resonant fluorescence of both a single atom 
and a pair of two-level atoms. 

In this paper, we investigate a similar feedback system 
applied to the two-field spectroscopy scheme. The phase of 
one of the classical fields interacting with the system under-
goes switching, depending on the type of registered spontane-
ous photons. Mainly we will be interested in the modification 
of the CPT phenomenon (the conditions of its emergence, as 
well as the width and shape of the ‘dark’ resonance) as a func-
tion of the choice of the type of events initiating the feedback 
action.

The concept of feedback spectroscopy was previously 
introduced in [16], but the idea proposed by its authors dif-
fered from that considered by us. Yudin et al. [16] put forward 
the idea of using feedback to stabilise the response of the sys-
tem (as applied to the L-system, it was suggested to stabilise 
the level of resonance fluorescence) and to investigate the 
dependence of the controlled parameters on the frequencies 
of the fields interacting with the system. 

2. Model 

We consider a three-level system of L-configuration interact-
ing with two classical electromagnetic fields (Fig. 1), with the 
energy level |0ñ set at zero. The feedback is organised in a 
fairly simple way: the phase of the field on one of the transi-
tions (for definiteness the transition 0 – 1 is selected) is changed 
by p. The phase switching is initiated by detecting photoemis-
sion of a certain type, which allows the system to control its 
own evolution. Let us first consider the case without feed-
back. In its absence, the evolution of the density matrix of the 
system, rt , is given by the master equation: 
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tott i i i i
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r r r r=- + -+ +
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gi is the rate of spontaneous emission from level |0ñ to level |iñ; 
Di  and Wi are the detunings and Rabi frequencies of the cor-
responding transitions; and L ,1 2

t  are the operators describing 
the spontaneous decay into levels |1ñ and |2ñ. The Hamiltonian 
is written in the rotating wave approximation. The CPT phe-
nomenon consists in the fact that at equal detunings (D1 = D2) 
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the system turns to be in the so-called dark state |Ydarkñ, which 
does not interact with the field and is a certain superposition 
of the ground states. By analogy, we also introduce a ‘bright’ 
superposition of ground states |Ybrightñ, orthogonal to |Ydarkñ, 
from which the system is most rapidly excited to state |0ñ. 
These states in the basis {|iñ}i = 0, 1, 2 have the form: 

|
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dark
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2 1H H H
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W W
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- ,	
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Suppose now that instead of the operators { }L ,i i 1 2=
t , new 

operators are used, obtained by the transformation: 

L L L1 2a b= ++
t t t ,  L L L*

1 2b a=- +-
*t t t ,  |a|2 + | b|2 = 1.	(4)

Such a transformation is sometimes called an alternative 
unraveling of the photodetection operation [17], since it cor-
responds to a different (nonstandard) photodetection pro-
cess. As is known, experimentally investigated L-systems are 
always part of a more complex system of levels, for example, 
the transition J = 1 ® J = 1, so that states |0ñ and |1ñ belong to 
different systems of magnetic sublevels. In this case, sponta-
neous photons emitted from the transitions 0 – 1 and 0 – 2 in 
the direction of the wave vectors of the external fields have 
orthogonal circular polarisations. The realisation of alterna-
tive unraveling can be accomplished by detecting two orthog-
onal elliptic polarisations. In the case of emission along the 
wave vector, a correctly rotated polarisation beam splitter 
mounted on the radiation path is sufficient; therefore, in what 
follows we will keep in mind the one-dimensional case. In the 
experiment, the effective one-dimensional geometry may be 
realised by a so-called holey fibres [18 – 20], suitable for chan-
nelling atoms [21 – 25]. 

It is easy to verify that equation (1) is invariant with 
respect to the choice of unraveling (4). However, as will be 
shown below, introducing a feedback of certain type makes 
the system sensitive to this choice. 

In our works [12 – 15], we investigated phase switching 
feedback of the fields in two-level systems. A similar scheme 
is considered in this work: a photodetection event of type ‘+’, 
described by the operator L+

t  [i.e., performing a transforma-
tion on the density matrix "rt / ( )TrL L L Lr r+ +

+
+ +

+t t t t t t ], sets the 

phase of the field interacting with the 0 – 1 transition equal to 
0 (‘+’ state of the feedback loop); and the event of type ‘–’, 
described the operator L-

t  sets the phase of the field equal to 
p. A system with a similar feedback type based on the switch-
ing of the classical parameter may be described in the frame-
work of the formalism of hybrid systems developed in [26]. 
According to this approach, instead of the density matrix, a 
set of statistical operators with an index indicating a fixed 
state of the classical subsystem is introduced, i.e. the feedback 
loop: { , }( ) ( )

"r r r+ -t t t . The Hamiltonian of the system also 
depends on the position of the feedback loop: 

H H V V( )
tot 1 2!= +
!

L
t t t t .	 (5)

Instead of a single master equation, a set of new statistical 
operators obeys the following system of master equations (a 
detailed derivation of this kind of equations through the for-
mal quantisation of the classical subsystem can be found in 
[26]): 
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3. Results and discussion

The steady-state solution of equations (6) can in general be 
obtained analytically, but we do not present it here due to its 
complexity. Instead, we consider a situation of almost equal 
detunings D1 ® D2 (the case of mathematically exact reso-
nance requires a separate consideration, but it is not feasible 
in the experiment). Since in the presence of feedback there are 
two possible values of the phase of the field on the 0 – 1 transi-
tion, there exist also two possible types of ‘dark’ and ‘bright’ 
states, 
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with the steady state of the system being their incoherent 
admixture (hereafter, without loss of generality we set 
, R,1 2 !a W ): 
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Figure 1.  Scheme of two-field spectroscopy of the L-system. The phase 
of the field interacting with the 0 – 1 transition is controlled by feedback. 
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Note that expression (8) is valid only for the case 1 2!D D . 
From a more detailed analysis of the analytical solution, it 
follows that there exist certain values of the system parame-
ters at which the feedback loop ceases to act, i.e., the phase of 
the field ‘freezes’ in one of two positions. This occurs at the 
following parameters: 

Y: 0,( ) ( ) ( ) ( )
dark dark
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1 2
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= = =+ - - -Yt t ,	

(9)
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To explain this effect, it is necessary to introduce the states  
| ( )
postHY s , in which the system emerges after different types of 

photoemissions: 
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Let us start with the analysis of the ‘dark’ and ‘bright’ states 
in the first formula in (9). After the photodetection of the ‘+’-
type event, the system is in the Y ( )

post
+  state, which coincides 

with the ‘bright’ state for the ‘+’ configuration of the feed-
back 

Y Y: ( ) ( )
post bright

2 1

1 2

b
a

g
g

W
W

= =
+ + ,	 (11)

from which the system is rapidly excited to state |0ñ, so that on 
average the system resides in the ‘+’ configuration for a short 
time. Similar simple arguments can be made for the second 
formula in (9): 

Y Y: ( ) ( )
post bright
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- - .	 (12)

It would seem that in order to freeze the feedback loop action 
it is sufficient that after the corresponding type of photodetec-
tion (for example, of ‘+’ type) the system is in the ‘dark’ state 
corresponding to a new position of the feedback loop (in this 
case, a positive sign of the Rabi frequency W1). This occurs for 
the following relations between the parameters a and b: 
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However, this type of unraveling does not show a significant 
difference between the stationary populations of the ‘dark’ 
states, p+

(st) and p–
(st), as follows from (8). The reason for this is 

the structure of the state of the system after photodetection, 
which in the first formula of (13) (for the second formula sim-

ilar arguments apply) has the form Y ( )
post
-  µ W1g1|1ñ + W2g2|2ñ. 

This state has a significant coherent admixture of   Y ( )
dark
- , so 

that the entire system can appear in it after any photodetec-
tion of the ‘–’-type event. 

In the experiment, the CPT effect manifests itself in the 
form of ‘dark’ resonances [2, 3], namely dips in the frequency 
dependences of the fields’ work observed in the vicinity of 
D1 = D2. The value of the field work at the bottom of the 
dip is zero, since the ‘dark’ states are completely excluded 
from the interaction with the field. In the absence of feed-
back, the field work performed per unit time is given by the 
expression [27] 

A ( )nf
i  ~ | |,iTr i i D E sti iHG r- t t^ h6 @  ~ Re(iWi  r0i),	 (14)

where r01 and r02 are the matrix elements of the steady-state 
solution (1); Ei are the amplitudes of the external fields; and 
Dit  = di |0ñái | + h.c. are the dipole moments of the 0 – i transi-
tions. In the presence of feedback, the situation changes sig-
nificantly due to phase switching: 

A1 ~ Re i ( ) ( )
1 01 01r rW -

+ -^ h6 @,

A2 ~ Re i ( ) ( )
2 02 02r rW +

+ -^ h6 @,	 (15)

A1/g1 = A2/g2.

The last relation follows from the form of the steady-state 
solution (6). Since the fields’ works are proportional, it is suf-
ficient to investigate only the normalised value A = A1/g1 = 
A2/g2. Its dependence on the detunings of the fields in com-
parison with the case without feedback is presented in Fig. 2. 
It is easy to see that the width and shape of the ‘dark’ reso-
nance can be effectively controlled by changing the unravel-
ing parameters of the photodetection operation. In addition, 
after a detailed study of the steady-state solution, it was found 
that when the relations between the parameters of the prob-
lem

1
2 1

1 2

g
g

W
W

= ,    
2
1a b= = 	 (16)

are fulfilled, the ‘dark’ resonance completely disappears in 
the case of an exact equality of detunings, D1 = D2, or 
becomes infinitely narrow in the case of D1 ® D2. The stages 
of this narrowing are shown in Fig. 2. At the last stage, the 
equality Y Y( ) ( )

post bright=
! !  is met and therefore CPT is impos-

sible in this situation, and in a small neighbourhood (16) 
Y ( )
post

!  contains only a small admixture Y ( )
dark

!  which makes 
the ‘dark’ resonance narrower than in the absence of feed-
back. 

The dependence of the width of the ‘dark’ resonance on 
the choice of the unraveling method is shown in Fig. 3 for 

/ .1 2a =  One can see that this width reaches a minimum at 
point a = b and a maximum at point a = – b. The calculations 
showed that these points also coincide with the points of max-
imum and minimum of ( ) ( )

post bright

2s sYY , which characterises 
the closeness of the state of the system after photodetection 
and the corresponding ‘bright’ state. This explains the behav-
iour of the function in Fig. 3: the closer the Y ( )

post
s  to  Y ( )

bright
s

, the narrower the ‘dark’ resonance. It is also seen that by 
varying the parameters a and b, one can control the reso-
nance width over a wide range of values. 
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The dependence of the ‘dark’ resonance width on the ratio 
between the Rabi frequencies W 1, 2 (see Fig. 2) leads to an 
unusual behaviour of the field work as a function of the Rabi 

frequencies (Fig. 4). The relation between the unraveling 
parameters is chosen in the form b = aexp(ip/6), and detun-
ings are such that the system can appear both outside and 
inside the ‘dark’ resonance (depending on its width). At a 
fixed frequency W1 and a small value of W2, the work is also 
small, but it increases with increasing W2. The sharpest growth 
of W2 is observed when the system is initially located outside 
of the ‘dark’ resonance. For W 2 > W1 /2 1g g  (the condition of 
the minimum resonance width), the difference in the detun-
ings D1 – D2 will be near the bottom of the broadening ‘dark’ 
resonance, so that the field work again decreases (Fig. 4c). A 
similar situation occurs for two other maxima: if we change 
the phase b to p, then the minimum resonance width will be 
observed for 1 2 2 1g gW W=- . The case a » ±b deserves a 
special consideration. Here, changing the parameters along 
the straight lines, 1 2 2 1!g gW W= , will no longer drive the 
state of the system away from the state corresponding to the 
minimum width condition. As a result, the dependences of the 
work of the fields on the Rabi frequencies have narrow and 
extended ‘walls’, the fore-runners of which are observed in 
Fig. 4d. 

A distinctive feature of the problem with feedback is the 
sharp asymmetry of the work values with positive and nega-
tive signs of the Rabi frequency. In addition, with sufficiently 
close field detunings, unusual narrow structures are observed 
that are fundamentally different from those in the case with-
out feedback. 
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Figure 2.  Field work per unit time with and without feedback (left and right, respectively) for a = b =1/ 2 , g1 = g2 and (a) W1 = 0.25g1, W2 = 0.67g1; 
(b) W1 = 0.25g1, W2 = 0.3g1; and (c) W1 = W2 = 0.25g1. 
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Figure 3.  Width of the ‘dark’ resonance as a function of the parameter 
b calculated for W1 = g1, W2 = 4g1, g2 = 2g1. A lighter colour corresponds 
to larger values of the function. 
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4. Conclusions 

We have theoretically investigated the feedback loop scheme 
applied to a three-level L-configuration system interacting 
with two classical electromagnetic fields. The spontaneous 
emission of the system has been detected, and the phase of 
one of the fields has been varied as a function of the type of 
the detected photoemission using a feedback loop. It has been 
shown that by choosing the appropriate types of photodetec-
tion events (i.e., realising a proper unraveling of the master 
equation) in a steady-state regime, it is possible to almost 
completely stop the phase switching. The possibility of con-
trolling the width and shape of the ‘dark’ CPT resonance over 
a wide range has been also demonstrated by a fairly simple 
modification of the photodetection equipment. In addition, 
the dependences of the work of the fields on the Rabi frequen-
cies exhibited narrow structures suitable for amplitude stabi-
lisation, which is similar to the known method of frequency 
stabilisation. 

The obtained results allow us to conclude that even rela-
tively simple types of feedback based on the phase switching 
of the fields interacting with single quantum systems can sig-
nificantly modify the properties of these systems and lead to 
the discovery of new effects. 
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Figure 4.  Field work per unit time as a function of the Rabi frequencies with (a) feedback and (b, c, d) without feedback for g2 = 4g1, D1 = 0, D2 = 
–g1/10 and (b) b = aexp(ip/6), (c) b = aexp(7ip/6) and (d) b = aexp(ip/20).


