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Abstract.  The possibility of experimental observation of chaotic 
motion of cold atoms in a one-dimensional rigid optical lattice 
without any modulation of its parameters and additional impact is 
demonstrated theoretically and numerically. This effect of deter-
ministic chaos arises near the optical resonance due to the nonlinear 
coupling of electronic and mechanical degrees of freedom in the 
atom. In a certain range of resonance detunings, at each crossing 
of the lattice-forming standing wave node by the atom, the atomic 
dipole moment changes pseudorandomly in a step-like manner, 
accompanied by an appropriate change in the atom momentum. 
This leads to the effect of chaotic wandering of atoms, possessing 
the properties of the classical deterministic chaos, namely, to the 
exponential sensitivity of atomic trajectories to small variations of 
the initial conditions and/or the control parameters. With time, part 
of atoms from the initial cloud changes the direction of their motion 
to the opposite one, which can be detected in a real experiment. 
Numerical experiments with lithium atoms with the spontaneous 
emission taken into account show that by varying the laser radiation 
intensity (normalised detuning of resonance) in the rigid optical 
lattice, one can implement the transition from the regular regime 
of the atomic motion to the chaotic wandering in a real experiment. 

Keywords: cold atoms, rigid optical lattices, chaotic wandering.

1. Introduction

One-, two-, and three-dimensional optical lattices (OLs) are 
produced using counterpropagating laser beams. In such lat-
tice, neutral atoms are subject to the action of the dissipative 
force arising due to the absorption and emission of photons, 
and the gradient force caused by the interaction of the atomic 
electric dipole moment with a spatially nonuniform field of 
the standing light wave (SLW) [1, 2]. The gradient force is 
zero in the plane travelling wave and at exact optical reso-
nance, when the frequency of the atomic transition wa is 
exactly equal to that of the SLW wf . In contrast to the dis
sipative force, it is not saturated with an increase in the Rabi 
frequency. The sufficiently cold atoms are concentrated in 
the optical potential minima of the OL, resembling a crystal 
lattice. As long ago as in 1962, Askaryan [3] showed that 
under the ‘blue’ detuning, wf – wa > 0, the gradient force acts 
towards a decrease in the field strength and pushes the atoms 

to the SLW nodes. Under the ‘red’ detuning, wf – wa < 0, this 
force acts towards an increase in the field strength and pushes 
the atoms to the SLW antinodes. Thus, sufficiently cold atoms 
are trapped by the optical potential and oscillate near the 
nodes or antinode of the SLW [4]. 

Cold atoms in OLs are a convenient object for studying 
many fundamental quantum phenomena, e.g., the Bose – 
Einstein condensation, quantum entanglement, quantum com-
puting, quantum chaos, dynamic localisation and tunnelling, 
Bloch oscillations, etc. Among different practical applications, 
we would like to mention the atomic clock, atom lasers and 
interferometers, nanolithography, etc. As to the manifesta-
tions of quantum chaos of cold atoms in OLs, the most part 
of experiments [5 – 8] were carried out in the OLs with ampli-
tude or frequency modulation of the parameters. To suppress 
spontaneous emission (SE) of atoms, the SLW frequency was 
tuned far from the frequency of the working atomic transition. 
Under such conditions the atoms can be modelled by quan-
tum ‘rotors’ with periodic delta-like perturbations [9].

New possibilities appear when working near the optical 
resonance, where one has to take into account the variation of 
electronic (internal) degrees of freedom in the atom. Various 
dynamic effects have been analytically described and numeri-
cally found both in the semiclassical approximation and using 
the completely quantum description. Among these effects, we 
would like to mention such manifestations of Hamiltonian 
chaos, as chaotic Rabi oscillations [10 – 13], dynamic fractals 
[14 – 16], Lévy flights and anomalous diffusion [14, 16 – 18], pro-
liferation of atomic wave packets at SLW nodes [19], quantum-
classical correspondence [20], atomic chaos in 2D and 3D lat-
tices [21, 22], and dissipative chaos with cold atoms [23, 24]. 

The aim of the present paper is to show the possibility of 
observing experimentally the chaotic motion of cold atoms in 
a one-dimensional rigid optical lattice without any modula-
tion of its parameters and additional impact on the atoms. 
Based on the standard Hamiltonian of interaction between 
a  two-level atom and a single-mode plane one-dimensional 
SLW, we derive the equations of motion in the semiclassical 
approximation for the coordinate and momentum of a point 
atom and for the Bloch vector components. The obtained system 
of nonlinear ordinary differential equations is analysed and 
solved numerically with the spontaneous emission taken into 
account using the stochastic wave function method. As a 
result, it is shown numerically that the histograms of the 
atomic coordinate and momentum distributions essentially 
differ from each other for different regimes of the motion. 
Varying the laser radiation intensity and, thus, varying the 
normalised resonance detuning in a rigid OL, it is possible to 
implement the transition from the regular regime of the 
atomic motion to the chaotic wandering in a real experiment. 
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2. Results

For definiteness, we consider the transition 22S1/2 – 22P3/2 
with  the wavelength la = 671 nm and the frequency wa = 
2p 4.47 ́  1014 rad s–1 in lithium-6 atoms with the mass ma = 
1.15 ́  10–23 g. The lifetime of the excited level is Tsp = 2.7 ́  10–8 s, 
the photon emission recoil velocity is ur = 8.87 cm s–1, and the 
corresponding recoil frequency is nr = 63 kHz.

The one-dimensional OL is formed by counterpropagating 
beams of laser radiation having the wavelength lf and the 
wavenumber kf . The Hamiltonian of the two-level atom in 
the reference frame, rotating at the laser frequency wf , has the 
standard form
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where ,zs!t  are the Pauli operators for the electronic degree of 
freedom of the atom; X and P are the atom coordinate and 
momentum; W is the amplitude value of the Rabi frequency; 
and G =1/Tsp is the relaxation coefficient. The motion of not 
too cold atoms can be considered in the semiclassical approxi-
mation, in which the electronic degree of freedom is described 
quantum mechanically, and the translational motion is treated 
as classical.

The wave function of the electronic degree of freedom 
has the form |Y(t)ñ = a(t) |2ñ + b(t) |1ñ, where a º A + ia and 
b º B + ib are complex-valued amplitudes of the probability 
to detect the atom in the excited (|2ñ) and the ground (|1ñ) 
state. The equations of motion for the real and imaginary 
parts of these amplitudes, the coordinate and the momentum 
of the point atom have the form:
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where x º kfX; p º P/ kf' ; and the differentiation is carried out 
with respect to the dimensionless time t º Wt. Equations (2) 
comprise several normalised control parameters, namely, the 
atomic recoil frequency, wr º /( )k mf a

2' W ; the detuning from 
the resonance, D º (wf – wa)/W; and the decay rate of the 
atomic excited level, g = G /W.

Two conditions should be satisfied to make the semiclas-
sical approximation valid. First, the atom recoil energy should 
be much smaller than the atom kinetic energy and the energy 
of the atom – field interaction, which for Eqns (2) has the form 
of a simple condition wr << 1. Second, the atom momentum 
should be much larger than that of the photon, i.e., p >> 1. 
Choosing the amplitude value of the Rabi frequency to be 
W0 /2p = 125 ́  106 Hz, we arrive at the normalised recoil fre-
quency of the atom, wr = 10–3 << 1, and the normalised decay 
rate of the excited level, g = 5 ́  10–2.

As a result of SE recoil, the momentum of the atom changes 
by a certain random value lying in the interval | Dp | £ 1. 

Besides that, the quantity 2 (AB + ab) sin x varies as the atom 
moves through the lattice. The variations are caused not only 
by the SLW field gradient, but also by the behaviour of the 
component of the atom electric dipole moment u º 2 (AB + ab).

The initial cloud of N noninteracting cold atoms has the 
Gaussian coordinate and momentum distribution
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where we put x0 = 0, p0 = –10 and sx = sp =2. All atoms are in 
the ground state: A(0) = a(0) = b(0) = 0, B(0) = 1. The laser is 
switched on at a time t = 0. The coordinates and the momenta 
of atoms are calculated at a certain fixed moment of time. 
Note that the mean value of the normalised momentum in the 
atomic cloud, p0 = –10, is greater than the momentum of a pho-
ton by an order of magnitude and has a negative value, i.e., all 
atoms initially fly along the negative OL semiaxis.

To prove that an abrupt pseudorandom change in the 
atomic dipole moment u at the time of crossing the SLW 
node by the atom is the key cause of its chaotic wandering in 
the rigid OL, we first perform a numerical experiment in the 
absence of SE, i.e., we put g = 0 in Eqn (2). Let us introduce 
the Bloch vector components

u º 2Re(ab*),   u º –2Im(ab*),   z º |a |2 – |b |2,	 (3)

where u and u are the components of the atomic dipole 
moment; and z is the population inversion of the atomic level. 
The equations of motion in the absence of dissipation can be 
written in the form
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These equations have two integrals of motion, namely, the 
total energy

H º cosp u x z
2 2
r 2w D
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and the Bloch vector length u2 + u2 + z2 = 1.
Under condition of exact resonance, we have u(t) = 

const = u(0) = 0. Therefore, the optical potential is absent, 
and p = const = p(0) for every atom. Thus, the cloud of atoms 
flies in the negative direction of the x axis, conserving its 
initial shape. This is confirmed by the histogram of the coor-
dinate distribution of 104 atoms in Fig. 1a, calculated at a 
fixed moment of time t = 104.

In the presence of detuning from the resonance, the atomic 
motion is not so trivial, but also regular. For the system of 
equations (4) it was shown in Ref. [20], that the maximal 
Lyapunov exponent (the quantitative measure of determinis-
tic chaos) differs from zero in the interval of detunings |D | < 
0.8, i.e., at relatively large absolute values of the detuning the 
motion is regular. The histogram of the coordinate distribu-
tion at a time moment t = 104 is shown in Fig. 1b for D = 1. 
For such values of detuning, the majority of atoms appear to 
be trapped in the optical potential wells, nearest to the centre 
of the atomic cloud. Only a small part of atoms with the ini-
tial momenta exceeding the potential barrier, are able to fly 
through a significant distance in the negative direction of 
the x axis. Moreover, far from resonance the efficiency of the 
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atom excitation by the laser field falls. We emphasise that 
both for exact resonance and far enough from it all atoms of 
the initial cloud at the time moment t = 104 have negative 
values of the coordinate. 

At relatively small detunings, the atomic motion dramati-
cally changes. From the histograms of Fig. 2, it follows that a 
significant part of atoms for D = 0.15 have changed their 
direction of motion. At a fixed time moment t = 104 the 
atoms of the cloud have a nearly Gaussian coordinate distri-
bution in the interval from –150 to 100, and with respect to 
the momenta in the interval from –50 to 45. The reason for a 
change in the atomic motion direction is the chaotic wander-
ing of atoms, which, in turn, is caused by a stepwise change in 
the component of the atomic electric dipole moment u at the 
time of crossing the SLW nodes by the atom. As shown in 
Ref. [16], the value of u experiences pseudorandom changes 
in the range [–1, 1] when crossing each node. From the equa-
tions of motion (4) it follows that these changes cause an 
appropriate pseudorandom change in the atomic momentum 

at crossing each node. As a result, with time part of atoms 
acquire positive values of the momenta, and the atomic cloud 
splits.

The direct calculation of the maximal Lyapunov exponent 
using the method of Ref. [25] yields the value 0.03 for D = 0.15, 
confirming quantitatively the fact of chaotic motion of atoms 
in the sense of exponential sensitivity to the small changes in 
the initial conditions. In other words, two atoms with a very 
small initial difference of their positions in the cloud can begin 
with time to move in opposite directions. On average, the 
velocity of their separation is close to exponential.

From the expression of the normalised atomic energy (5), 
one can deduce the condition, at which the atom will change 
the sign of p after crossing the mth node of the SLW. The 
result depends on the parity of the number m of crossings. 
The atom will continue moving in the same direction, if 
(–1) m + 1um < H, and will change the direction for the oppo-
site one, if (–1)m + 1um > H. In the case of exact equality, 
(–1) m + 1um = H, the motion is separatrix-like. The chaotic 
wandering is possible, if the energy of the atom lies in the 
interval 0 < H < 1. At H < 0 the atoms do not reach even the 
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Figure 1.  Histograms of atomic coordinate distributions at a fixed time 
moment without SE taken into account: (a) the ballistic flight of atoms 
through the SLW at exact resonance (D = 0); (b) the trapping of a part 
of the atomic cloud in the optical potential wells and the ballistic flight 
of the other part of the cloud through the SLW at D = 1.

0

500

1000

N

–200 –100 0  100 x

0

200

400

600

800

N

–60 –30 0  30 p

a

b

Figure 2.  Chaotic wandering of atoms in the SLW near the resonance 
(D = 0.15) without SE taken into account. The histograms of (a) coor-
dinate and (b) momentum distributions of atoms.
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nearest node and are trapped by the optical potential well, 
while at H > 1 the values of u always correspond to the 
motion in the initial direction. Thus, if |u|  < H, then the 
atoms continue moving in the same direction, and when 
|u|  > H, then, depending on the sign of cos x within the 
considered time interval, they either continue moving in the 
same direction, or change it for the opposite one.

In reality, the coherent evolution of lithium atoms inter-
acting with the laser field near the resonance is interrupted by 
the SE events at random time moments. As a result of each 
event, the atomic momentum changes by a random value 
from the interval [–1, 1]. The numerical solution of Eqn (2) 
is  implemented using the stochastic wave function method 
(see, e.g., [26, 27]), i.e., the following algorithm. The integra-
tion time is partitioned into a large number of small intervals 
Dt = 10–5. The random number generator chooses the number 
e1 from the interval [0, 1]. At the end of the first time interval 
t = t1, the probability of the atom SE is calculated using the 
formula

s1 = gDt|at1|
2/(|at1|

2 + |bt1|
2 ).

Then, depending on the relation between the numbers e1 and 
s1, two cases are possible.

1. If s1 < e1, then the integration of equations (2) is con
tinued at the next time interval. Since the coherent evolution 
occurs with a decrease in the wave function norm, the state 
vector should be renormalised immediately after the end of 
the first interval at t = t1+:

at1
+ = at1 / | | | |a b2 2

1 1+t t ,   bt1
+ = bt1 / | | | |a b2 2

1 1+t t . 

This coherent evolution with the decreasing norm of the wave 
function describes the continuous relaxation of the atomic 
dipole moment.

2. If s1 ³ e1, then the SE occurs, and the atom finds itself 
in the ground state at the time moment t = t1: At1 = at1 = 
bt1 = 0, Bt1 = 1. The atomic momentum changes in a stepwise 
manner: pt1 = pt1– + l, where l is a random number from the 
interval [–1, 1], describing the change in the atomic momentum 
as a result of photon SE (recoil effect). The procedure is 
repeated at the next time intervals.

The main result of the numerical modelling with SE taken 
into account is that SE significantly facilitates the observation 
of the chaotic wandering effect in a real experiment. From the 
comparison of Fig. 2a (without SE) and Fig. 3a (with SE) it 
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Figure 3.  Chaotic wandering of atoms near the resonance (D = 0.15) 
with SE taken into account. The histograms of (a) coordinate and (b) 
momentum distributions of atoms.
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Figure 4.  The same as in Fig. 1 with SE taken into account.
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follows that in the latter case one can observe not simply an 
increase in the initial atomic cloud size, but also its splitting 
with an increase in atomic path lengths both in the positive 
and in the negative direction of the x axis. A fraction of the 
atomic cloud moves in the positive direction of the x axis, 
achieving the distance of x ~– 1000 at a time moment t = 104. 
At the chosen values of the parameters for lithium atoms, this 
corresponds to the shift by x = 100 mm during 10–5 s, which 
can be detected in a real experiment. The momentum distri-
bution of atoms with SE taken into account also has the 
double-humped shape (see Fig. 3b) with the momentum values 
greater by an order of magnitude than that in coherently 
evolving atoms (see Fig. 2b). For comparison, Fig. 4 shows 
the histograms of coordinate distributions of atoms with SE 
taken into account under the condition of exact resonance 
(Fig. 4a) and far from the resonance (Fig. 4b), where the coor-
dinates of all atoms are negative. The difference from Fig. 3a 
is apparent.

3. Conclusions

In the paper, a new effect is described that arises under the 
interaction of cold atoms with the laser beams, forming a SLW. 
It is shown theoretically and numerically that in a certain 
range of resonance detunings the atoms can wander chaotically 
in a rigid OL without any modulation of the optical lattice 
parameters or additional external action on the atoms. This 
effect of deterministic chaos arises near the optical resonance 
due to the nonlinear coupling of electronic and mechanical 
degrees of freedom of the atom, as a result of which each 
crossing of the SLW node by the atom is accompanied by a 
stepwise pseudorandom change in the atomic dipole moment 
with an appropriate change in the atomic momentum. Due to 
this effect, after some time a part of atoms from the initial 
cloud changes the direction of motion for the opposite one, 
which leads to the splitting of the atomic cloud that can be 
detected in a real experiment. The numerical experiments 
with lithium-6 atoms with SE taken into account have shown 
that by varying the laser radiation intensity in a real experiment 
one can provide different regimes of atomic motion in the OL, 
from ballistic flight to chaotic wandering.

Acknowledgements.  The work was supported by the State 
Budget Programme of the Pacific Oceanological Institute of 
the Far Eastern Branch of the Russian Academy of Sciences 
(Project No. AAAA-A17-117030110034-7).

References
  1.	 Kazantsev A.P., Surdutovich G.I., Yakovlev V.P. Mechanical 

Action of Light on Atoms (Singapore, London: World Scientific, 
1990). 

  2.	 Minogin V.G., Letokhov V.S. Laser Light Pressure on Atoms 
(New York: Gordon and Breach, 1987).

  3.	 Askar’yan G.A. Sov. Phys. JETP, 15, 1088 (1962) [ Zh. Eksp. 
Teor. Fiz., 42, 1567 (1962)].

  4.	 Letokhov V.S. JETP Lett., 7, 272 (1968) [ Pis’ma Zh. Eksp. Teor. 
Fiz., 7, 348 (1968)].

  5.	 Moore F.L., Robinson J.C., Bharucha C., et al. Phys. Rev. Lett., 
73, 2974 (1994).

  6.	 Moore F.L., Robinson J.C., Bharucha C., et al. Phys. Rev. Lett., 
75, 4598 (1995).

  7.	 Steck D.A., Oskay W.H., Raizen M. Science, 293, 274 (2001).
  8.	 Hensinger W.K., Heckenberg N.R., Milburn G.J., 	

Rubinsztein-Dunlop H. J. Opt. B: Quantum Semiclass. Opt., 5, 83 
(2003).

  9.	 Graham R., Schlautmann M., Zoller P. Phys. Rev. A, 45, 19 
(1992).

10.	 Kon’kov L.E, Prants S.V. JETP Lett., 65, 833 (1997) [ Pis’ma 
Zh. Eksp. Teor. Fiz., 65, 801 (1997)].

11.	 Prants S.V. Phys. Lett. A, 33, 225 (1997). 
12.	 Prants S.V., Kon’kov L.E., Kiriluyk I. Phys. Rev. E, 60, 335 (1999).
13.	 Prants S.V., Sirotkin V.Yu. Phys. Rev. A, 64, 033412 (2001).
14.	 Argonov V.Yu., Prants S.V. J. Exp. Theor. Phys., 123 (5), 832 

(2003) [ Zh. Eksp. Teor. Fiz., 123 (5), 946 (2003)].
15.	 Prants S.V, Uleysky M.Yu., Argonov V.Yu. Phys. Rev. A, 73, 

023807 (2006).
16.	 Argonov V.Yu., Prants S.V. Phys. Rev. A, 75, 063428 (2007).
17.	 Prants S.V., Kon’kov L.E. JETP Lett., 73 (4), 180 (2001) [ Pis’ma 

Zh. Eksp. Teor. Fiz., 73 (4), 200 (2001)].
18.	 Argonov V.Yu., Prants S.V. J. Russ. Laser Res., 27, 360 (2006). 
19.	 Prants S.V. J. Exp. Theor. Phys., 109 (5), 751 (2009) [ Zh. Eksp. 

Teor. Fiz., 136 (5), 872 (2009)].
20.	 Prants S.V. Chaos, Solitons & Fractals, 43, 1 (2010).
21.	 Horsley E., Koppell S., Reichl L.E. Phys. Rev. E, 89, 012917 

(2014).
22.	 Boretz Y., Reichl L.E. Phys. Rev. E, 91, 042901 (2015).
23.	 Argonov V.Yu., Prants S.V. Phys. Rev. A, 71, 053408 (2005).
24.	 Argonov V.Yu., Prants S.V. Phys. Rev. A, 78, 043413 (2008).
25.	 Kon’kov L.E., Prants S.V. J. Math. Phys., 37, 1204 (1996).
26.	 Carmichael H. An Open Systems Approach to Quantum Optics 

(Berlin: Springer-Verlag, 1993).
27.	 Molmer K., Castin Y., Dalibard J. J. Opt. Soc. Am. B, 10, 524 

(1993).




