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Abstract.  The methods for increasing the coupling efficiency of a 
prism with spheroidal microcavities, aimed at exciting whispering-
gallery modes, have been analytically investigated. Optimal angles 
of incidence and incident beam parameters are obtained for a sphe-
roidal cavity. The cavity eigenfrequency shift caused by the pres-
ence of a prism and the introduced loss by it is calculated.

Keywords: whispering-gallery-mode microcavities, prism coupling, 
coupling optimisation.

1. Introduction 

Optical whispering-gallery-mode (WGM) cavities [1, 2] are 
widely used in optics. Their Q factor can be as high as ~1011 
[3], which makes them promising for stabilising lasers [4]; 
designing detectors and sensors [5], optical filters [6], and 
modulators [7]; and generating optical combs [8]; they have 
also a great potential for quantum optomechanics [9].

Most of the methods used to implement coupling with 
these microcavities are based on the effect of an evanescent 
field: under conditions of total internal reflection in a cavity 
or a coupling element, there is a field outside, whose strength 
exponentially decreases when moving away from the reflect-
ing surface. In this case, the longitudinal wave velocity is 
determined by the angle of incidence and can be varied to 
implement phase matching. The best cavity coupling (maxi-
mum extraction of incident power at the resonance frequency) 
was obtained using a tapered fibre; it reached 99.97 % [10]. 
However, a stretched fibre is highly sensitive to mechanical 
vibrations and can easily be damaged. This problem can par-
tially be solved by mounting a cavity with a fibre into a pro-
tected housing; however, the coupling efficiency of this 
scheme did not exceed 81 % [11]. There are some other meth-
ods of coupling with WGM cavities, which are based on the 
application of polished fibres (coupling efficiency of about 
10 % [12]), fibres with a rubbed end face (pigtail fibres) [13] 
(coupling efficiency of ~60 %), or different diffraction grat-
ings (with a coupling efficiency up to 50 % for gratings formed 
on the fibre end face [14] and up to 60 % for gratings with a 
large period [15]). Historically, the use of a prism was the first 
method proposed for coupling with WGM cavities [16]. This 

method remains the simplest one; it provides a coupling effi-
ciency up to 75 % [17].

A prism is also used in many experiments [18 – 23] to imple-
ment coupling with cavities whose shape differs from spherical. 
The shape of these cavities can be approximated by a spheroid 
(ellipsoid of revolution), which, on the one hand, is a good 
approximation for describing the cavity shape in the light prop-
agation region and, on the other hand, provides a high accu-
racy analytical approximation for eigenfrequencies [24].

In this study, we described the coupling between a prism 
and a cavity using an approach similar to that developed in 
[25]; it is based on calculating the diffraction in the far-field 
zone of the falling-out cavity field, tunnelling into the prism. 
The beam parameters in the prism that provide optimal cou-
pling were investigated. The shift of the cavity eigenfrequen-
cies was determined using an adiabatic invariant.

2. Mode field distribution outside the cavity

Necessary conditions for implementing coupling of radiation 
with a cavity through a prism are as follows: (i) the radiation 
must be focused on the inner surface of the prism at an angle 
exceeding the total internal reflection angle and (ii) the cavity 
must be located close to the focus [at a distance of ~l/(2p), 
where l is the light wavelength] [25]. As in the previous study 
[25], we chose a spherical coordinate system ( r, q, j) with a 
centre coinciding with the cavity centre and a Cartesian coor-
dinate system (x, y, z) with a centre located at the focus 
(Fig. 1). The angle between the z axis and the field wave vec-
tor in the prism and the angle between the x axis and the pro-
jection of the wave vector on the xy plane will be denoted as 
Q and F, respectively.

Since the Helmholtz equation cannot be solved explicitly 
in the spheroidal geometry, we used the approximation [24] 
for the field distribution in the cavity. For the fundamental 
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Figure 1.  (a) Spherical coordinate system with an origin at the cavity 
centre and (b) Cartesian system with an origin at the focus.
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cavity mode, the angular field distribution on the cavity sur-
face near the equator can be written as 

( , , ) ( /2) ( )exp exp iE c mll ll
2r a q j q j= = - u .	 (1)

For the high-order modes with l – m >> 1, the field distribu-
tion can be written in the form

( , , )El r a q j=m
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m is the azimuthal mode index; l is the angular mode index; nr 
is the cavity refractive index; P = 1 and P = 1/nr2 for TE and 
TM modes, respectively; p = l – m is the meridional mode 
index; a and b are semiaxes of the spheroid, whose compres-
sion is defined as є = (a – b)/a; k is the wave propagation con-
stant in vacuum; and cll and clm are normalisation constants. 
When calculating the effective geometric parameters of the 
spheroid, we disregarded the influence of the field falling out 
from the cavity, because the corresponding corrections are 
small in comparison with the initial parameters of the spher-
oid (on the order of m 

–2/3); thus, it was assumed that au  » a 
and bu  » b.

Foreman et al. [26] studied the prism coupling using some-
what different field approximations, which were obtained in 
[27] based on the approximate solution of the scalar Helmholtz 
equation near the spheroid surface. However, we should note 
that the same expressions were previously obtained (using the 
same method) in monograph [2, p. 174], which was possibly 
unknown to the authors of [27]. The asymptotic equivalence 
of the distributions reported in [27] and [24] can easily be 
demonstrated using a simple coordinate transformation.

The method described in [27] and [2, p. 174] uses an 
orthogonal coordinate system, where the derivatives of the 
Lame coefficients are small and can be neglected; due to this, 
the Helmholtz equation can be simplified, and the solutions 
for the radial and angular parts can be written in terms of 
Airy and Hermite – Gauss functions, respectively. At the same 
time, an approximation for the radial part in terms of cylin-
drical Bessel functions was used in [24]. Since high-order 
Bessel functions can be approximated in terms of Airy func-
tions, both approaches are asymptotically identical. When 
studying coupling, only angular distributions are of impor-
tance, and modes of very high orders are considered; there-
fore, the differences in the radial distribution approximations 
are insignificant. On the assumption that the spheroidal coor-
dinates z and h correspond to the coordinates u (the distance 
from the point under consideration to the surface) and q (the 
polar angle), the angular and radial parts of the field distribu-
tion can be presented as

( , ) ( )exp exp iE c H m
2

ll
m m
2

2
q j

q
q

q
q j= -Q e co m ,	

(4)
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where H is a Hermite – Gauss function, Ai is an Airy function, 
and qm and d are field distribution parameters in the cavity. It 
can easily be shown that the angular distribution for the fun-
damental and high-order modes can be obtained from (4) at 
p = 0 and p >> 1, respectively.

The field outside the cavity decreases exponentially with 
a characteristic decay distance r* [25]. The field decay out-
side a flattened cavity can be presented as exp[–z2/(2azr*) – 
y2/(2ayr*)], where az  and ay  are the radii of curvature of the 
cavity surface in the horizontal and meridional planes, respec-
tively. In the case of an axisymmetric spheroidal cavity, the 
radius of curvature in the equatorial plane is az = a. In the 
meridional plane, the dependence of curvature on the angle q 
is disregarded, and the radius is assumed to be equal to the 
radius of curvature at q = 0; correspondingly, ay  = b2/a. 
Having multiplied the expressions for the field on the cavity 
surface, (1) and (2), with the derived expression for the field 
decay, one can obtain the field distribution on the prism sur-
face. A Fresnel integral is used to pass from the field distribu-
tion on the prism surface to the field distribution within the 
prism. The field distribution is multiplied by exp[i(kz z + ky y)] 
and integrated over the prism plane facing the cavity. The 
sizes of the region where the field penetrating from the cavity 
into the prism is not small are much smaller than the prism 
sizes; therefore, the integration can be performed in infinite 
limits. Under the assumption that /k k kz z=u  and ky =u ky /k, 
the integration result can be written as
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After the integration, one can find the kz0u  and ky0u  values 
determining the optimal angle of light incidence on the inter-
nal prism boundary and the characteristic widths of the 
ranges of optimal angles, kz

2D u  and   ky
2D u , in the xz and xy 

planes, respectively. For p = 0,

cosk 0z0 Q= =u ,	 (5)
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and, for p >> 1, 

cosk
bn k
bm

a
l m2

p
z0 !Q= = -u

	 » 
( )

b
a
n
n

l
m l m

2
p

r!
- ,	 (9)



745Optimisation of the prismatic coupling with optical whispering-gallery-mode microcavities

sink
n k b r
a

p
z
2 2 2

2 2 2D D QH= =u  » 1
n b l

a n n

p

r r
2 2

2 2
- ,	 (10)

sin sink
n ka
m
p

y0 F Q= =u  » 
ln
mn
p

r ,	 (11)

cos sink
n k ar
1

p
y
2 2 2 2

2 2D DF F Q= =u  » 
n l

n n 1

p

r r
2

2
- ,	 (12)

where np is the refractive index of the prism.
It can be seen that the contraction of the spheroid deter-

mines the field characteristics in the prism. One of the most 
important relations, np  > nr, which follows from the total 
internal reflection condition on the prism face and limits the 
choice of possible materials for the prism and cavity, can be 
obtained from (7) and (11). This condition does not change 
significantly with a change in b/a  because of the rather weak 
dependence of the eigenfrequencies on the degree of cavity 
contraction [24]. The main difference from the case of an ideal 
sphere is the different field distribution in the vertical plane. 
For fundamental modes, the characteristic width of the field 
distribution in the prism increases with increasing degree of 
cavity contraction because of the reduction of the characteris-
tic distribution width for the field penetrating from the cavity 
into the prism. For high-order modes (with p >> 1), the 
dependence of the characteristic width on the degree of con-
traction is similar; it is determined mainly by the precession 
angle, which, in turn, depends on m/l [25]. Note that the field 
distributions near the cavity for the fundamental mode are 
described well by two-dimensional Gaussians; hence, the 
overlap integrals can easily be calculated in infinite limits.

The light propagation angles in the prism (Fig. 2) can be 
obtained from geometric optics formulas:

Y = F – a,

b = arcsin[np sin(F – a)],
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3. Optimisation of the degree of coupling

Under the assumption that the beam El (y, z) incident on a 
prism face has a Gaussian transverse field distribution and 
the angles in the prism are optimally fitted, one can obtain the 
degree of cavity contraction providing the highest degree cou-

pling. We assume that the beam incident on the prism is 
focused on its surface and that the beam transverse sizes in the 
y and z directions near the focus are wy and w, respectively; 
the wy /w ratio depends on the angle of beam incidence.

To optimise the degree of coupling, we will maximise the 
overlap integral on the prism surface [28] between the cavity 
field Er(y, z) penetrating the prism and the radiation field:
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For the fundamental mode, the integral can be calculated and 
the result can be differentiated with respect to b/a to search 
for an extremum:
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In the case of the fundamental mode, one can find analyti-
cally the root b/a of the equation, which is an extremum for 
the overlap integral. To make sure that this extremum is a 
maximum, we will take the second derivative of Ics at this 
point. The expression for the second derivative at the extre-
mum point is rather cumbersome; however, one can easily 
check that it is smaller than zero; this is an indication that the 
point under consideration is a maximum. The dependence of 
the optimal degree of contraction on the beam size w is pre-
sented in Fig. 3.

The excitation of modes with p >> 1, which call for a 
Gaussian beam incident at some angle with respect to the xy 
plane [25], is not considered here. The optimal parameters do 
not depend simultaneously on wy and w, because a cavity con-
traction changes significantly the field distribution only in the 
vertical plane. As can be seen in Fig. 4, the dependence of the 
degree of coupling on the cavity contraction is fairly weak. 
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Figure 2.  Ray trajectories in the prism.
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Figure 3.  Parameters of a spheroid corresponding to its optimal shape 
at nr = 1.4.
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For typical experimental values, the overlap integral changes 
only by 10 % with a change in the degree of contraction 
by 30 %.

The value of optimal cavity contraction found by us dif-
fers from that reported in [29], where it was suggested that the 
optimal coupling is obtained at equal ratios of the transverse 
beam sizes in the directions of the z and y axes for the initial 
laser beam and for the beam in the cavity on the prism face. 
The method proposed here is methodologically more correct, 
because the solution of coupled-mode equations [28] yields 
overlap integrals for the coupling coefficients; specifically 
these integrals are maximised in this study.

4. Loading Q factor 

The presence of a coupling element (prism) results in the emis-
sion of energy from the cavity through this element. The 
energy loss on the emission through the prism can be charac-
terised by the inverse value, which will be referred to as the 
loading Q factor. The cavity contraction also affects this 
parameter. It can be found from the formula relating the 
energy E accumulated in the cavity and the power P emitted 
through the prism:

Q P
Ew

= .

To find the power emitted into the prism, which is located at 
a distance d, we can integrate the energy density emerging 
from the cavity (here, as in the previous calculations, the 
prism surface is considered to be infinite). Thus, the loading Q 
factor has the form
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This expression coincides with that for the Q factor of a 
sphere [25] at a = b and changes with a change in the degree of 
cavity contraction (Fig. 5), which is related to the change in 
the shape of the area on the prism surface into which the field 

from the cavity efficiently penetrates. The loading Q factor, as 
in the case of a sphere, depends exponentially on the distance 
between the cavity and prism. Hence, one can easily imple-
ment optimal loading by choosing the necessary distance d.

5. Influence of the prism on the eigenfrequency 
shift and Q factor

Since the prism is located in the region where the cavity field 
rapidly decays with distance, its presence affects the cavity 
eigenfrequencies. The corresponding small frequency shift 
can easily be obtained using an adiabatic invariant as in [30]:

E
A

w
wD D

= .

Since the prism is sufficiently large, it can be considered as 
half-space. To find the work spent on the displacement of the 
prism from infinity to distance d, we will consider the differ-
ence in the energies in the presence of a prism at a distance d 
and in its absence. Under the assumption that the emerging 
cavity field Er depends on only the distance d, we obtain
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In the presence of loss in the prism material, some part of 
energy from the cavity will be absorbed in it. Let us determine 
the contribution of this loss to the microcavity Q factor. To 
this end, we will substitute the complex refractive index of the 
prism material, np = npr + inpi, into the expression for the Q 
factor:
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Figure 4.  Dependences of the overlap integral on parameter b/a for fun-
damental modes at a = 100 mm, nr = 1.4, w = 1.41 mm and wy = 2.83 mm.
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1.5 and d = 0; k = a/l.
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Let Q be equal to Q = Q0 /np, where Q0 is independent of np; 
then the imaginary part takes the form

1

1
Im ImE
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Substituting this expression for the imaginary part into the 
expression for the Q factor, we obtain

Q Q n n
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n n

n n
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2 2
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= -
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+
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6. Conclusions

We have considered the influence of the contraction of a cav-
ity on its coupling with a prism and on its loading Q factor. It 
was shown that the field distribution in the prism changes sig-
nificantly with an increase in the degree of cavity contraction 
only along the contraction direction. Changing the cavity 
shape, one can make the requirements to the angle of inclina-
tion of the cavity with respect to the prism plane less strin-
gent. The loading Q factor of a flattened cavity by a prism is 
found to depend weakly on the contraction. It is also shown 
that, having chosen the optimal parameters of the incident 
light, one can increase the degree of coupling between the cav-
ity and prism by few percent.
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