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Abstract.  The self-action of high-power femtosecond laser beams 
with a radiation wavelength of 800 nm (formed by superposition 
of  Gaussian and annular beams) in air is theoretically modelled. 
A detailed analysis of self-focusing and filamentation of this radia-
tion is performed based on the numerical solution of the spectral 
equation of the unidirectional propagation of a wave packet with 
allowance for the nonlinearity of the medium, and by tracing 
averaged diffraction-optical rays. It is shown that, in terms of the 
diffraction-beam optics, the outer annulus forms a waveguide, 
which facilitates self-trapping of the central part of the combined 
beam, supplying the light energy to the filament. The spatial stability 
of this waveguide depends on the energy stored in the annulus and 
on the distance from the latter to the beam axis.

Keywords: femtosecond filamentation, Gaussian annular laser beams, 
diffraction-beam optics.

1. Introduction 

The phenomenon of light self-focusing in optical media has 
been actively investigated since the first half of the 1960s 
[1 – 4]. The great interest in this problem is due to the fact that 
self-focusing of laser beams is a striking manifestation of non-
linear-physics effects, which is of great practical importance 
for atmospheric optics [5, 6]. The essence of this phenomenon 
is as follows: at a peak pulse power exceeding some critical 
level, a self-induced collecting aberration lens is formed on 
the propagation path due to the optical Kerr effect; this lens 
focuses the radiation. As a result of this nonlinear focusing, a 
narrow high-intensity light channel or a group of channels, 
referred to as filaments, is formed within the beam.

An interesting issue in the study of self-focusing and fila-
mentation of light pulses is the use of shaped beams with 
a  transverse intensity distribution differing from Gaussian. 
Examples are annular (tubular) [7] and super-Gaussian [8] 
beams, quasi-diffraction-free Bessel – Gaussian beams [9, 10], 
Airy beams [11], Mathieu beams [12], and a combination of a 
Gaussian beam (GB) with an annular beam [13]. The practical 
importance of shaped beams is related to the specific features 
of their linear diffraction, which, in turn, opens ways for addi-
tional monitoring of the nonlinear propagation (filamentation) 
zone.

A combined beam, which will be considered below, is 
formed by coherent superposition of the light fields of 
Gaussian and tubular beams. The transverse intensity distri-
bution in this beam has an isolated central maximum and an 
annulus around it, which is generally of much lower intensity. 
Concerning the spatial form of this beam, it is close to one 
of the low-order radially symmetric modes of the Laguerre – 
Gauss distribution [14]. In the studies devoted to the filamen-
tation of laser beams, this distribution is referred to as a 
‘dressed beam’ (DB) [13], where the outer annulus plays the 
role of ‘dressing’ light. Within the model of a filament as a 
robust structure, which is dynamically supplied with energy 
from an external reservoir (at the beam periphery) to com
pensate for the loss on multiphoton ionisation and generation 
of a plasma channel in the medium [15, 16], specifically this 
outer annulus can be considered as an energy source feeding 
the filament formed by the central part of the beam. Due to 
this, as was shown in [13, 17], it becomes possible to multiply 
increase the filamentation length in a DB in comparison with 
that for a GB of the same radius and power. It was found 
that the degree of manifestation of this effect increases with 
increasing energy of the outer annulus and depends on the 
conditions of its focusing [18].

At the same time, the concept of an energy reservoir that 
is used to describe the nonlinear DB propagation, although 
being intuitively clear, does not give a full idea of the fila-
mentation of beams with a complex spatial profile. In this 
situation, the influence of the linear diffraction effect may be 
determining for both the evolution of the beam as a whole 
and for maintaining or terminating the filament existence. 
Here, the nonlinear evolution of shaped beams with allowance 
for the complex amplitude – phase interaction between dif
ferent spatial regions of the beam should be considered in more 
detail. It is necessary to understand the physical mechanism 
according to which the axial filament is maintained.

In this study, we consider the filamentation of high-power 
femtosecond laser DBs with a centre wavelength l0 = 800 nm 
in air. The single (axial) filamentation of this radiation is 
theoretically modelled, and the influence of the outer-annulus 
parameters on the characteristics of the region of maximum 
laser pulse intensity is investigated. To this end, we apply 
visualisation of the light wave propagation by tracing diffrac-
tion-optical rays [19], i.e., construct trajectories the tangent to 
which coincides with the Poynting vector direction [20]. Note 
that a similar approach was previously successfully applied 
when studying the regularities of the unimodal-beam fila-
mentation [19, 21] and the evolution of radiation in the post-
filamentation propagation stage [22]. An analysis of the ray 
patterns allowed us to put forward a hypothesis explaining 
the elongation of the axial filament in a DB by not only the 
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energy transfer from the outer annulus but also (to a greater 
extent) the self-channelling of the filamented part of the beam 
in a peculiar ‘waveguide channel’ formed during the outer 
annulus propagation.

2. Nonlinear optical model of air and numerical 
simulation method 

Below, we will discuss the results of the numerical simulation 
of the propagation of high-power femtosecond Ti : sapphire 
laser pulses with l0 = 800 nm in air. The evolution equation 
for the optical field of laser pulse in a nonlinear medium is 
taken to be the equation of unidirectional propagation of the 
complex field, Ekw = E(kx, ky, z; w), in the spatial – temporal 
frequency domain [23]:
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modulus of the wave-vector transverse component; k(w) = 
wn(w) /c is the wave number, which depends on the circular 
radiation frequency w and the dispersion of the real part of 
the refractive index of the medium, n(w); e0 is the permittiv-
ity of vacuum; c is the speed of light in vacuum; and Pkw is 
the nonlinear polarisation of the medium. This equation is 
written in the moving (with a group velocity ug) coordinate 
system, the origin of which is related to the moving pulse.

Within the nonlinear optical model of the medium in 
which ultrashort laser pulses propagate, several physical pro-
cesses whose effect on the light field is decisive are selected. 
These are the light-induced change in the refractive index of 
air, n = n(|E|2), which is taken into account by the instanta-
neous and inertial components of the optical Kerr effect; the 
photoionisation of the medium; and the plasma formation. 
Specific expressions for the physical effects contributing to 
the nonlinear polarisation can be found, for example, in [24].

Equation (1) is supplemented by the kinetic equation for 
the density of free electrons, re, of the laser plasma in the 
medium:
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where WI is the photoionisation rate; acas is the impact 
(cascade) ionisation coefficient; nr is the three-body recombi-
nation rate of free electrons, which is characteristic of gases 
and liquids [25]; I is the optical field intensity; and rnt is the 
concentration of neutral molecules (atoms) in the medium. The 
first term on the right-hand side of this equation takes into 
account the field type of the ionisation of the medium (multi-
photon/tunnel ionisation), while the second term describes 
the cascade ionisation.

The photoionisation rate WI was calculated according 
to the Perelomov – Popov – Terent’ev model [26], which was 
applied for an air mixture of the composition O2 : N2 = 
20 % : 80 % with a total concentration of neutral molecules 
rnt = 2.5 ́  1019 cm–3. The values of other parameters in Eqns (1) 
and (2) were taken from our previous study [22]. The critical 
power Pcr of self-focusing in air at the wavelength l0 = 800 nm 
was 3.2 GW. To set the functional dependence n(w), we used 
the Cauchy dispersion formula [27]. Air was assumed to be 
nonabsorbing.

In the numerical calculations, the initial profile of the 
transverse amplitude distribution of the laser field with a 
plane phase front in the coordinates r̂  º  (x, y) was set as 
a sum of two Gaussian functions:
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where R0 and Rr are, respectively, the radius of the central 
lobe and the annulus width (at the intensity level of 1/e), rr is 
the radius vector of the annular region with a relative ampli-
tude ar, e2 /( )E I cn0 0 0 0= , n0 is the refractive index of the 
medium, I0 is the pulse peak intensity, and tp is the pulse 
duration. For definiteness, all calculations were performed 
for beams with an initial radius R0 = 2 mm at a pulse duration 
tp = 100 fs. The relative thickness Rr /R0 of the DB annulus was 
fixed (0.2), whereas parameters ar and rr could be varied. The 
numerical grid had the following sizes: R^ = 20R0 (along the 
spatial coordinate) and T = 16tp (along the temporal coordi-
nate), with steps of 10 mm and 2 fs, respectively.

3. Simulation results and discussion

Let us now analyse the results of the numerical calculations of 
the single filamentation of a laser DB. The influence of the 
outer annulus on the structure of the filamentation zone is 
illustrated in Fig. 1, which shows the pulse energy density 
distribution 
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(normalised to the initial value w0 º w (r̂  =  0, z = 0)) for beams 
of two types: Gaussian and ‘dressed’. The initial peak inten-
sity I0 was the same in both cases and equals 0.13 TW cm–2, 
which provided a fivefold excess in the pulse peak power 
P0 = 16 GW above the critical power Pcr for the GB.

As follows from the presented profiles, the GB (Fig. 1a) 
forms three successive nonlinear focusing zones, beginning 
with a distance of z » 10 m and ending with a distance of 
z » 22 m, at which the maximum energy density is attained. 
The length of the GB filamentation zone, calculated from the 
trace profile of the peak free-electron density in the beam 
channel (at a level of 1014 cm–3), is ~7 m in this case.
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Figure 1.  (Colour online) Distribution of the pulse energy density along 
the path in the cases of the (a) GB and (b) DB filamentation.
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Due to the presence of outer annulus, the DB power was 
approximately twice as large (28 GW); therefore, the first non-
linear focus (and, correspondingly, the filamentation starting 
point) corresponds to z = 8 m (Fig. 1b). Then several more 
nonlinear beam focusings are implemented, which can arbi-
trarily be divided into two groups, spaced by ~30 m. The 
filamentation end corresponds to a distance of z = 65 m, 
which is much larger than that for the GB.

Note that the effect of filament elongation in the DB 
cannot be explained by only the increase in its initial power 
with respect to the GB power. Our calculations (omitted in 
this paper) show that, even when the GB has the same value 
of P0 as the annular beam (Fig. 1b), the filament length, 
despite the elevated power, is only 14 m. This is twice as large 
as the filamentation length in Fig. 1a but several times smaller 
than the filamentation length for the DB. Obviously, the 
reason for the filamentation zone elongation is the peculiar 
DB profile (specifically, the presence of an outer annulus).

Indeed, the annular region contains a part of the light 
beam energy and can serve as an additional energy source for 
central filaments [13]. This possibility is illustrated by Fig. 2, 
which shows the trace dependences of the maximal achieved 
(during the pulse) free-electron density re(z) and the maxi-
mum intensity Imax(z) on the DB axis at different ratios of the 
energies of the annulus (Er) and central lobe (Ec): b = Er /Ec. 
The relative (reduced) peak power h = P0 /Pcr in the central 
part of the beam was fixed (h = 5), and the variation in the 
energy within the annulus was controlled by the amplitude 
coefficient ar.

It can be seen that the increase in energy in the annular 
region of the beam with respect to the energy in its central 
maximum, with conservation of the geometric shape and 
position of the annulus, is accompanied by an elongation of 
the domain of existence of an enhanced light intensity and 
plasma electron density. Similar to Fig. 1, this elongation 
occurs not uniformly along the propagation range but step-
wise, in the form of successive beam refocusings. Note that 
the effect of annulus manifests itself even at a small energy 

addition to the energy of the beam central lobe ( b = 33 %), 
immediately doubling the filamentation length due to the 
occurrence of an additional region of local beam focusing at 
a distance close to z = 45 m.

A further increase in the annulus energy Er (to b = 66 %) 
leads to only a relatively small elongation of the filamenta-
tion region, which is due to the displacement of the second 
refocusing coordinate by approximately 6 m from the begin-
ning of the path. However, at an energy in the annulus 
exceeding the energy in the central maximum ( b = 120 %), the 
structure of the filamentation zone sharply changes again. 
Two more regions of beam refocusing arise at distances of 
z » 30 and 65 m. Now all intensity peaks are located in a 
filament about 70 m long, almost equidistantly with a step 
of  20 m. Numerical calculations show that, with a further 
increase in the annulus energy with respect to the energy 
of  the central part, no further significant elongation of the 
filament is observed. At the same time, the previously formed 
refocusing regions undergo spatial expansion, and the gaps 
between them are filled with plasma bunches characterised 
by a high electron density.

Note that the restructuring of the DB filamentation region 
and the occurrence of new intensity bursts in this case are in 
no way related to the filamentation of the annulus field, which 
occurs, for example, during the self-focusing of femtosecond 
tubular beams [7, 28]. Although the energy (and power) in the 
DB annular region can formally be considered as sufficient 
for implementing its filamentation, especially at b > 50 %, the 
annulus is not filamented in reality. This is confirmed by our 
calculations (omitted in this paper) of the nonlinear propagation 
of a DB without a central maximum, i. e., an isolated annulus 
with a peak power up to 30 GW ( b » 150 %). Obviously, the 
physical reason for the absence of nonlinear dynamics for an 
annular beam is the much higher threshold power necessary 
for its self-focusing as a whole [7]. According to the estimates, 
the collapse of an isolated annular beam with the same param-
eters as in Fig. 1 occurs only at P0 > 50 GW, which is more 
than an order of magnitude larger than the Pcr value for GB.

This rather nontrivial dynamics of the DB self-focusing at 
a change in the annular region parameters indicates that the 
outer annulus not only supplies energy to the filament but also 
affects in a certain way the filamentation of the beam central 
region due to the specificity of the diffraction of a light beam 
with the multimodal profile under consideration. This beam 
initially contains isolated light wave structures (central lobe and 
annulus), whose fields interfere when propagating in the medium 
and thus affect the entire process of radiation self-action.

Note that, during the GB filamentation, one can also 
observe peculiar ring-type energy structures, which are sponta-
neously organised and can be interpreted within the Fresnel 
diffraction of unimodal radiation from a self-formed plasma 
bunch [1]. However, in the case of a DB or, e. g., a Bessel – 
Gaussian beam [9], these energy rings are present in the ini-
tial beam. Their power is generally insufficient for implement-
ing independent filamentation, due to which their influence 
on self-focusing of the beam central regions can be considered 
as quasi-linear. Nevertheless, as will be shown below, this 
effect may radically change the pattern of the beam self-action 
as a whole.

4. Waveguide analogy of light beam filamentation 

Let us consider the transformation of the amplitude – phase 
profile of a light beam as a result of the interference of the 
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Figure 2.  (Colour online) (a) Free-electron density on the axis and (b) 
peak intensity during the propagation of DBs with different percentages 
of energy ( b ) in the annulus.



725Regularities of femtosecond filamentation in the case of superposition

annulus and filamented centre optical fields, based on the 
analysis of the evolution of the light wave phase. In geometric 
optics, phase fronts are generally visualised using the tech-
nique of tracing geometric-optics rays [27], which are straight 
lines (in a homogeneous medium), tangential to the phase-
front normal at each point. For a light beam of finite size, a 
case where the eikonal approximation is violated and the dif-
fraction effects become pronounced during the beam propa-
gation in the medium, the geometric ray should be replaced 
with the so-called diffraction ray (DR) [19]. In the general 
case, each DR is a curvilinear trajectory (an integral curve of 
the spatial component of the light field Poynting vector). 
DRs are not intersected in accordance with their definition.

Previously we showed [19, 21, 22] that the formalism used 
in the description of the DRs and related diffraction-ray tubes 
is adequate for qualitative representation of the data on 
nonlinear self-action of light beams. This approach makes it 
possible to visualise a number of peculiar aspects of interaction 
of the light field with a nonlinear medium, which are related 
specifically to the transformations of wave phase profile and 
are not traced in the conventional ‘amplitude’ representation 
of the light pulse evolution. Below we will use the diffraction-
ray description to analyse the DB filamentation.

According to [22], let us write the governing relations of 
diffraction-ray optics. The equation for the transverse DR 
coordinate Rd has the form
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Here, eeff is the so-called effective permittivity of the medium 
[29], which can be written as the sum

eeff = e0 + enl + ed ,	 (5)

where e0 = n0
2 is the unperturbed permittivity; enl is the non

linear component, taking into account the refraction action of 
the Kerr effect and the self-induced electron plasma; ed = 
D^A/(k0

2A) is the diffraction component; А is the real ampli-
tude of the light field; and k0 = 2p/l0 is the wave number in 
vacuum.

Using the representation of a complex field in terms of 
real (slowly varying) amplitude and phase, E = Aexp(ij), 
in the steady-state case, one can relate the effective permit-
tivity of the medium, eeff, to the optical-wave phase j as 
follows:
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Then, instead of (4), one can write the following DR equa-
tion, which is more convenient for calculations:
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This equation indicates a direct relationship between the DR 
and the path of the  light energy flux, described by the trans-
verse component of Poynting vector S^:
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Below, we will consider the DRs averaged over the pulse 
time, whose trajectories are calculated from formula (7) with 
an averaged gradient of the field phase
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Figure 3.  (Colour online) (a, c) Trajectories of averaged DRs and (b, d) the relative light energy density on the beam axis for DBs with different 
initial powers h.
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Let us now analyse the beam trajectories obtained as a 
result of the joint solution of Eqns (1), (2), and (7) for a DB. 
The DR path is shown by individual sets of curves in Fig. 3 
for beams with different initial powers. The symmetry of the 
ray pattern with respect to the beam axis makes it possible 
to  construct DRs for only half of the pattern. The corre-
sponding energy density profile wmax /w0 on the beam axis is 
given directly under each plot with DR trajectories.

First we will consider the ray pattern describing the linear 
propagation of an annular GB with a subcritical reduced 
power h = 0.1 (Fig. 3a). The multimodal intensity profile of 
the DB can arbitrarily be divided into several structures: the 
most intense central part, a low-intensity intermediate periph-
ery, and a narrow outer annulus centred at rr /R0 = 2.5. For 
convenience of analysis, the DRs corresponding to these 
structures are shown in Figs 3a and 3c by lines of different 
types.

Beginning with the starting point, the outer annulus, which 
has a smaller transverse size than the axial maximum, under-
goes the most significant diffraction broadening. Some of the 
rays, which form the annulus, tend to the beam axis and begin 
to affect the peripheral DRs, ‘pressing’ them to the axis. As a 
result, the light rays of the central region also undergo crowd-
ing, which leads, as a result, to the formation of a diffraction 
focus at z = 15.2 m. This focus corresponds to the main maxi-
mum in the axial energy density distribution (Fig. 3b).

Central DRs, emerging from the focal waist, acquire the 
highest angular divergence and begin to press the neigh
bouring rays from the low-intensity periphery (which have 
a lower divergence), which, in turn, affect similarly the rays 
of  the outer annulus. As a result, the annulus rays, initially 
converging to the axis, are first slewed and then become 
stably divergent from the axis.

Crowding of the peripheral rays occurs also in the rota-
tion zone of annular DRs, due to which the divergence of the 
central DRs from the axis decreases. As a result, a spatial 
layer with a thickness on the order of the initial radius of the 
central part of the beam, R0, arises inside the beam; the DRs 
in this layer propagate almost parallel to the axis at a distance 
exceeding the beam Rayleigh length. As for external manifesta-
tions, this behaviour of the rays is similar to the propagation 
of a light beam in a conventional waveguide. However, in 
contrast to conventional refraction waveguides, whose prin-
ciple of operation is based on the guidance of light due to its 
refraction and reflection from boundaries with air, the self-
organised waveguide layer in Fig. 3a does not have physical 
boundaries. In this case, the ‘walls’ are the caustic surfaces 
formed by the crowding of the peripheral DRs. When describ-
ing below similar structures, we will use for convenience the 
term ‘diffraction waveguide’ (DW), taking into account its field 
nature. It is noteworthy that this waveguide layer is formed 
during linear DB propagation (only due to the confining 
effect of the outer annulus).

Let us now turn to Figs 3c and 3d, which show the ray 
trajectories and the energy density for a DB of supercritical 
power (h = 7). Having compared this pattern with the linear 
case, one can see that, from the propagation starting point 
and practically to the diffraction focus, the beam evolution is 
similar to that in the linear and nonlinear cases. However, 
then differences arise in the DR trajectories, which are related 
to the enhancing Kerr self-focusing of the beam central 
regions; in sum, this leads to the occurrence of the first local 
nonlinear focus at z = 13.7 m.

Since the radial coordinate of rays in the nonlinear-focus 
region is much smaller (the beam is more strongly com-
pressed) than in the linear waist, the DRs emerge from focus 
at larger angles. The collisions with the peripheral rays of the 
beam, which are pressed from above by the annular DRs, 
stop the tendency of the latter to shift to the axis. Sharp 
bendings (folds) are formed in the diffraction pattern, which 
correspond to the conical emission annuli [30] arising in the 
energy density distribution (Fig. 1b) due to the interference 
of  counterpropagating waves from the nonlinear focus and 
the beam periphery.

After the first nonlinear focus, the central DRs pass to the 
channelling regime, in which their radial coordinate is limited 
by the low-intensity peripheral rays. Some of the DRs, as in 
the linear case, propagate parallel to the optical axis, and 
sinusoidal trajectories are observed in the more intense part 
of the beam; these trajectories are characteristic of a peculiar 
class of refraction gradient waveguides known as selfocs [31].

In comparison with the ray filamentation picture of a 
GB (see, for example, [22]), where one can also observe the 
formation of a selfoc, the diffraction channelling of paraxial 
DRs in a DB is a property inherent in the latter, which, as was 
shown above, manifests itself even in the case of conventional 
linear propagation. With an increase in the DB power, the 
Kerr self-focusing manifests itself not only in the central max-
imum but also in the outer annulus, although to a  much 
smaller extent. This effect partially compensates for the dif-
fraction of the annulus field (the annular DRs have a smaller 
spread in the initial stage) and reduces the divergence of the 
beam shell of the self-induced diffraction waveguide. Due to 
this, the high-intensity DB light channel has a larger total 
length than the GB channel; at the same time, it is charac
terised by a significantly different intensity distribution.

Using the definition of the effective permittivity of the 
medium eeff, one can make a direct analogy between the beam 
propagation in a real waveguide and in a self-induced DW. 
The formation of a DW by an annular beam can clearly 
be observed in Fig. 4, which shows the radial profile of the 
relative change in the effective permittivity of the medium 
Deeff = (k0R0)2(eeff /e0 – 1) along the beam propagation direc-
tion. The laser parameters correspond to those in Fig. 3; the 
calculation was performed using formula (6). Recall that the 
effective permittivity eeff differs from the material value 
e0 (which is determined by only the physical structure of the 
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medium) by the presence of a field contribution, related to 
the change in the amplitude and phase of optical wave during 
its propagation.

It can be seen that Deeff along the path may take both 
positive and negative values, due to which a peculiar pattern 
of effective permittivity is formed in the beam. The diffraction 
rays, as well as conventional geometric-optics rays, being 
refracted at a boundary between regions with different Deeff 
values, bend towards higher effective permittivities. The dif-
fraction waveguide is formed by the region with a weakly 
changing Deeff, surrounded by optically denser walls; the 
gradient of effective permittivity is negative at the external 
boundaries of these walls. Specifically this circumstance 
provides the radiation channelling in this light structure.

A light ray entering this DW will be held by optically 
dense walls at a certain distance. In contrast to a conventional 
refraction waveguide with a hollow core, where geometric-
optics rays are reflected from the external boundary, the DRs 
arriving at the DW wall are refracted towards larger Deeff 
values; i.e., tend to stay in the DW. A diffraction ray may 
leave this waveguide only at certain angle of incidence on the 
waveguide wall. This may occur either when a DR emerges 
from the focal region, where large |Ñ̂ eeff| values are imple-
mented and DRs are significantly bent, or when the wave-
guide walls are insufficiently dense (small |Ñ̂ eeff| values). 
The regions with these waveguide properties are indicated in 
Fig. 4; note that a DW is formed in both cases: upon linear 
propagation of DB and its filamentation. In the latter case, 
the DW has a smaller cross section and ‘higher’ walls (the 
Deeff values are larger).

Note that one of the first physical models of Gaussian 
laser pulse filamentation was the model of a hollow refraction 
waveguide [32] [where the term ed in (5) is disregarded], 
formed by radiation propagating in a medium as a result 

of  the competition of nonlinear Kerr effects and plasma 
defocusing. Indeed, as follows from our calculations (omitted 
in this paper), when considering the GB filamentation in 
terms of the effective permittivity of the medium, one can 
also trace the formation of a peculiar waveguide structure, 
similar to the above-described DW in a DB. However, in the 
case of GB, a DW is formed directly on the beam axis and, in 
contrast to the refraction waveguide [32], does not contain 
any hollow core with a low refractive index.

Figure 5 shows how the distance between the outer annulus 
and the beam axis affects the stability and length of self-
induced DW. Here, DBs with the same power but different 
parameters rr are compared. It can be seen that, before the 
first nonlinear focus, the ray patterns of the central part of 
the beam do not exhibit any significant differences, and the 
self-focusing of the centre is not affected by the annulus. 
However, emerging from the focus, the DRs in a beam with 
an annulus of larger radius (Fig. 5a) meet the peripheral DRs, 
which have not been pressed sufficiently well by the outer 
annulus rays. Therefore, most of peripheral DRs move away 
(jointly with the annulus rays) from the axis, whereas the 
rest form a short waveguide channel. This channel degrades 
after three more refocusings of axial DRs, because it does 
not undergo a proper diffraction pressing by the peripheral 
rays.

Vice versa, when the annulus is located closer to the beam 
centre (Fig. 5c), it begins to affect earlier the central DRs, 
which manifests itself in the smaller coordinate of the non-
linear focus (z » 9 m) and in the formation of a DW with 
a narrower cross section than in the previous cases. In this 
situation, the ray trajectories are characterised by the most 
regular behaviour along the path, because the force of the 
diffraction pressing of annulus, fd, is lower in this case [19]: 
fd =  |Ñ̂ ed| µ rr /Rr

2. Nevertheless, a thinner DW (for a DB 
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Figure 5.  (Colour online) The same as in Fig. 3 but for DBs with different annulus positions, rr.



	 Yu.E. Geints, A.A. Zemlyanov728

with an annulus located at rr = 2.5R0) decomposes more 
rapidly and does not provide such a long filamentation as in 
the case of rr = 2.5R0. 

This fact indicates that the most optimal position of the 
outer annulus is that in which the effect of annulus rays is 
the  strongest at the instant when the central DRs emerge 
from  the nonlinear focus. Applying the relations for the 
GB diffraction optics [27] and the theory of aberration-free 
self‑focusing [20], one can easily derive an expression for the 
optimal position rr of the outer annulus:

rr » R0
2 /  1Rr h -*8 B , 

where h* is the effective reduced pulse power, i.e., the peak 
power corrected for the inertia of the Kerr effect. For exam-
ple, for the above-considered case of emission of a pulse with 
h = 7, this correction yields h* = 4.6, which leads to the opti-
mal position of an annulus with Rr /R0 = 0.2 at a distance of 
rr » 2.65R0.

Thus, when a DB is used to form an extended filamenta-
tion zone, important factors are not only the amount of 
energy in the outer annulus (see Fig. 2) but also the choice 
of  the annulus position in correspondence with the pulse 
power and the size parameters of the entire beam.

5. Conclusions

We considered one of the ways to control the length and 
structure of the filamentation zone with the aid of high-power 
ultrashort laser radiation by varying the shape of the light 
beam at the input of a nonlinear medium. Based on the 
numerical solution of the spectral equation of unidirectional 
propagation of light pulses, we theoretically investigated 
the  regularities of the self-action in air for femtosecond 
radiation with a combined intensity profile, composed of 
an  intense axial beam of maximum intensity, surrounded 
by  a low-intensity annulus of larger radius (DB [13]). The 
interference of the linear and nonlinear physical mechanisms 
during the self-focusing and filamentation of this radiation 
was analysed in detail by constructing time-averaged diffrac-
tion-ray patterns.

It was established that the most important advantage of 
the use of DBs in problems of laser beam propagation is the 
possibility of significant elongation of the filamentation zone 
in a medium, with energy consumption comparable with the 
GB energy. For example, for a DB of millimetre radius with a 
gigawatt pulsed power, the length of the filamentation zone 
may increase almost three times in comparison with that for a 
GB of the same energy. It was found that, during the pulse 
filamentation, the outer annulus does not only play the role of 
an  energy reservoir for maintaining the axial filament. An 
analysis of ray trajectories showed that a specific feature of 
the nonlinear DB propagation is the greater importance 
of the diffraction mechanisms, as well as the interference of 
the optical fields of central and annular regions during the 
pulse self-action. In this context, the presence of an outer 
annulus leads to the formation of a peculiar effective permit-
tivity profile near the beam (or DW) axis, facilitating the 
self-trapping of the central part of the beam and holding 
it within the longitudinal boundaries of the filament. The 
stability and length of this DW are affected (increased) by 
the energy in the annulus and its spatial position with respect 
to the beam axis.
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