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Abstract.  A channel with weight coefficients of nonlinear finite 
memory is simulated numerically. Areas of the signal power are 
found where the capacity is higher than that of a regular Gaussian 
channel. It is shown that an increase in the number of accountable 
adjacent symbols has little effect on the channel capacity. The nume­
rical calculation reveals that the negative mean dispersion of the 
link reduces the interaction of neighbouring pulses.

Keywords: fibre-optic communication lines, capacity, channel with 
memory, nonlinear noise.

1. Introduction

The growing need for rate and volume of transmitted infor-
mation requires an increase in the capacity of communication 
lines. Coherent detection and new modulation formats pro-
vide an increase in the information capacity of optical com-
munication systems. The problem of estimating the through-
put of optical links is complex and urgent. The complexity of 
the problem is due to the presence of nonlinearity, which 
accompanies the propagation of pulses in fibre-optic systems. 
In communication lines without dispersion compensation, 
sets of transmitted symbols become overlapped, with the non-
linear interaction effect decreasing. In such systems, the com-
bined action of the Kerr nonlinearity and chromatic dis
persion manifests itself as additive Gaussian noise [1 – 4]. A 
number of papers published experimental results confirming 
the adequacy of the nonlinear Gaussian noise (GN) model 
[5 – 9].

In a regular GN model, the detected symbols are indepen-
dent on the receiving device and have a Gaussian distribution 
with the same variance. Unlike a linear channel, the nonlin-
earity limits the signal-to-noise ratio. This circumstance is 
often called the nonlinear Shannon limit.

In this paper we consider fibre links that transmit symbols 
of different power. In this case, the variances of the symbols 
are different, in contrast to the GN model. Examples of such 
optical systems include dispersion-compensating fibre links. 
In this paper, we numerically simulate signal propagation 
along the communication link with controlled dispersion. It is 
shown that from the point of view of the communication link 

capacity, the data transmission formats where the nonlinear 
self-interaction of the pulse prevails over the interaction with 
neighbouring pulses are more preferable. It is also found that 
an increase in the amount of the accountable memory from 
one nearest bit on the right and left to two adjacent bits on 
both sides has little effect on the information capacity of the 
optical system.

2. Channels with memory

The mutual information [10] of a discrete time-invariant 
channel with memory is given by the formula
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where (X1, …, XN) and (Y1, …, YN) are input and output 
sequences of symbols, respectively. The signal Xi for each 
number i is a random variable that takes values from a certain 
set of numbers; this set of numbers is called the input alpha-
bet. The signal values recorded at the end of the link are also 
the values of the random variable Yi and are called the output 
alphabet.

In Refs [1 – 9], the nonlinear interaction distorting the 
signal is considered to be Gaussian noise, which is cubic 
dependent on the signal power. Mathematically, this is writ-
ten as follows:

Yk = Xk + Zk, Zk = Z PASEk
2 3s m+u .	 (2)

Here, Xk is the symbol transmitted in the time slot with the 
number k; Yk is the value recorded at the receiver; Zku  is the 
zero-mean unit-variance Gaussian random variable; ASE

2s  
and μ (memory parameter) are the nonnegative constants; 
and P is the average signal power. The constant ASE

2s  corre-
sponds to the noise of spontaneous emission of amplifiers.

A model of a Gaussian channel with finite memory was 
proposed by Agrell et al. [11]. In this model, the average sig-
nal power P in (2) is replaced by the empirical power, i. e., by 
the average power of the symbol Xk

2  and of the 2L symbols 
around it:
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Formula (3) means that the symbols with the numbers k – L, ..., 
k + L contribute equally to the signal distortion. If we intro-
duce the weight coefficients ek – L, ek – L + 1, ..., ek + L, then for-
mula (3), with equality of all coefficients to the value (2L + 
1)–1, is a particular case of the expression
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The value of ei corresponds to the contribution of the symbol 
Xi to nonlinear noise.

We considered the following cases: (i) the same values of 
the weight coefficients ei, L = 1; (ii) the weight coefficient of 
the central bit is two times larger than the coefficients of the 
neighbouring bits, L = 1; (iii) the limiting case L = 0, when 
adjacent bits do not cause nonlinear distortion of the signal. 
In addition, we compared the channel capacity for L = 1 and 
L = 2, i. e., one symbol on the right and left and two adjacent 
symbols respectively in the case of the same weight coeffi-
cients were taken into account. Optical pulses are broadened 
and overlapped when propagating along the optical fibre, 
with the greatest distortion being caused by the interaction of 
neighbouring pulses. Therefore, the case L = 1 was mainly 
considered.

According to Shannon’s theorem, the capacity of a chan-
nel without memory is given by the formula

C = sup I(X; Y),	 (5)

where maximisation (5) is satisfied over all distributions pX of 
the input alphabet at a given level of the average signal power 
| | dx p xX

2y  = P.
The capacity of a regular channel (2) is given by the for-

mula

C = lg
P
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+
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in the case of a complex channel and complex Gaussian noise 
(the lg function here and below denotes the base-2 logarithm). 
If the Gaussian noise Zk in the channel and also the values of 
Xk are real, then

C = lg
P

P
2
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3. Lower bandwidth limit

To calculate the capacity of the communication link, we used 
the calculation method [12], which is a modification of the 
method presented in Ref. [13]. This method consists in calcu-
lating the capacity of an auxiliary channel, the bandwidth of 
which approximates the desired value from below with an 
accuracy of O( μ2 ).

For convenience, we describe the auxiliary channel. Consider 
a fixed bit slot with the number k. The value transmitted in 
this bit slot is a random value, just like the value being 
recorded. Let qi denote the probability of an event Xk = xi. In 
the finite-memory model (4), the detection probability Yk = yj 
depends on the nearest L bits on the left, Xk – L, …, Xk – 1, and L 
bits on the right, Xk + 1, …, Xk + L.

We denote by pji ( , ..., , , ...,x x x xt t t tk Lk L k k1 1 +- - +
) the probabi

lity of the event Yk = yj, Xk = xi, Xk – L = xtk L-
, …, Xk+L = xtk L+

.
Then the conditional probability Qji of the detection Yk = yj 

at the transmitted value Xk = xi is defined by the formula
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Consider the function
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which specifies the mutual information in the auxiliary chan-
nel. As shown in [12], the mutual information in the finite-
memory channel (4) coincides with an accuracy of O( μ2) with 
F (q1, ..., qn).

4. Numerical experiment

To verify the applicability of models (2) and (4), we have per-
formed a numerical simulation of the signal propagation 
along a 1000-km-long dispersion-controlled link. We have 
considered an optical communication link consisting of 25 
spans with a configuration 

SMF(L1) + EDFA + DCF(L2) + EDFA.

Here, SMF is a standard single-mode fibre, and DCF is a 
dispersion-compensating fibre. Erbium-doped fibre amplifi-
ers EDFAs had a noise figure of 4.5 dB and completely com-
pensated for the attenuation of the signal in the fibre span 
between the amplifiers. The lengths of the SMF and DCF 
spans are denoted by L1 and L2, respectively. In numerical 
simulation, it was assumed that L1 = 40 km and L2 = 6.8 or 
7.18 km. Thus, the average dispersion of the span is zero (at 
L2 = 6.8 km) or – 0.8 ps nm–1 km–1 (at L2 = 7.18 km). Gaussian 
pulses with a width of 6.67 ps at half-maximum peak power 
propagated along the optical link. The average power in the 
bit slot varied from 0.3 to 1 mW. The simulation was per-
formed for the on/off keying (OOK) format. The probabili-
ties of unit and zero bits were 1/2. To describe the dynamics of 
optical pulses, the nonlinear Schrödinger equation was used. 
The calculated complex function A(z, t) depends on the time t 
and the distance z. At the receiving device (at z = 1000 km), 
the function A(z, t) was averaged over a 3/4 bit slot in the cen-
tral part.

The values of zero and unit bits obtained in numerical 
simulation form samples of random variables. We denote by 
0
2s  and 1

2s  the variances of the detected zero and unit bits, 
respectively. The results of numerical simulation show that 
these variances differ significantly, with the dispersion of unit 
bits being greater. This is not consistent with model (2), in 
which the variances are the same for all transmitted symbols. 

Let us consider model (4) under the assumption of equal 
probability of zeros and ones. We denote ek – 1 = b. Since in the 
nonlinear Schrödinger equation the time t can be replaced by 
–t, then ek – 1 = ek + 1 = a. Simple calculations show that the 
equalities
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are fulfilled, where P is the power of units. The parameter b is 
given by the relation b = 1 – 2a. Thus, the variances of zero 
and unit bits are cubically increasing with increasing P, while 
the unit variance demonstrates a greater growth. A similar 
behaviour is observed in the statistics of units and zeros in the 
numerical experiment. Figure 1 shows the dependence of m 
and a on the power of the original unit bits. The accumulated 
noise of the amplifier is ASE

2s  = 3.66 ́  10–3 mW. It can be 
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seen that the coefficients m and a vary only slightly in the 
power range 0.6 – 1.6 mW, especially weakly in the case of 
nonzero dispersion. In addition, it is seen that in the presence 
of an average negative dispersion, the coefficient a can be 
reduced.

Next, we estimate model (4) from the point of view of the 
capacity in the framework of information theory.

5. Information capacity of the channel

To calculate the information capacity of communication 
lines, it is convenient to pass to dimensionless quantities. In 
formulas (2) – (4), the amplifiers’ noise ASE

2s  is measured in 
power units. Let Ai correspond to the transmitted symbol 
with the number i and the set {Ai} be the alphabet of the opti-
cal system. We replace Ai by xi = Ai /sASE; then, the average 
dimensionless signal power is given by expression

S = | |p A1 2

ASE
i i

i
2s
/ ,

the dimensionless gain noise is equal to 1, and the nonlinear 
memory coefficient is ASE

4ms . For numerical simulation, we 
assume that ASE

4ms  » 9.4 ́  10–7, all quantities are dimension-
less and ASE

2s  = 1. We have considered the cases when m = 
6.75 ́  10–3 and 2.7 ́  10–8, that is, the values of m differ by 
several orders of magnitude.

In numerical simulation, the realisation of infinite alpha-
bets is impossible. Consider the finite input alphabet

xi = Dx(i – 1) – Lx /2,    i = 1, ..., n,    Dx = Lx /(n – 1),

where Lx is some given interval. We set x0 = – ¥ and xn + 1 = ¥. 
The output alphabet is given by the formulas yj = Dy ( j – 1) – 
Ly /2, [ –Ly /2, Ly /2] is the region containing y1, …, ym, j = 
1, …, m, Dy = Ly /(m – 1), y0 = – ¥, ym + 1 = ¥. In this paper, the 

parameters were: n  = 15, m = 31, Lx = 7, Ly = 8 for m  = 
6.75 ́  10–3 and n  = 41, m = 41, Lx = 50, Ly = 50 for m = 
2.7 ́  10–8.

We calculated the capacity of the link for both the values 
of the memory parameter and the following triplets of weight 
coefficients:

1) ek – 1 = ek = ek + 1 = 1/3;
2) ek – 1 = ek + 1 = 0.25, ek = 0.5;
3) ek – 1 = ek + 1 = 0, ek = 1.
Figure 2 shows the dependence of the capacity on the sig-

nal power for these three variants. It is seen that with a smaller 
contribution of neighbouring bits to nonlinear noise com-
pared to the central bit (triplets 2 and 3), the capacity is 
greater. In addition, the optimal power area is shifted towards 
increasing the power and is wider in comparison with the case 
of the same weight coefficients. It also follows from Fig. 2 
that the qualitative behaviour of the curves is the same for 
both values of the coefficient m.

The model of a regular Gaussian channel (2) takes into 
account the averaged noise and is a model of a channel with-
out memory. Formula (6) specifying the capacity of an ideal 
Gaussian channel is valid if the real straight line is the domain 
of variation of Xk and Yk. Limiting the power of the input 
signal practically does not reduce the bandwidth at a rela-
tively low signal power. However, in the case of high power, 
the limitation reduces the information capacity of the chan-
nel. Figure 3 shows the graphs of the capacity of a regular 
Gaussian channel without power limitation [curve ( 1 )] and 
with power limitation [curve ( 2 )] at m = 6.75 ́  10 –3. It is seen 
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Figure 1.  Dependences of the nonlinear memory coefficients ( a ) a and 
(b) m on the power of the initial unit bits for zero dispersion ( 1 ) and 
dispersion equal to 0.8 ps nm–1 km–1 ( 2 ).

1.25

1.20

1.15

1.10

1.05

1.00

2.4

2.2

2.0

1.8

1.6

2 3 4 5 6 7

C
ap

ac
it

y
C

ap
ac

it
y

Power

Power
50 100 150

a

b

m = 6.75´10–3

m = 2.7´10–8
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that in the ideal case, without power limitations, the band-
width is higher. To clarify the influence of the power of the 
central bit on the bandwidth, we compared the capacity of an 
ideal Gaussian channel, a channel with a contribution of only 
the central bit and a nonideal Gaussian channel with a limited 
signal power. It follows from the figure that the channel, in 
which the noise is set by the noise of the amplifiers and the 
Kerr nonlinearity of only the transmitted bit, demonstrates a 
wider range of optimum powers. At high powers, the capacity 
in this channel is higher than that in the Gaussian channel. In 
addition, a greater signal power is required to achieve the 
maximum capacity. Thus, the communication link can be 
optimised by choosing the weight coefficients of nonlinear 
finite memory.

To calculate the channel capacity (see Fig. 3), the 
Arimoto – Blahut method was used [14]. For L = 1 and L = 2, 
that is, if one symbol is taken into account on the right and 
left and two symbols, respectively, the weight coefficients 
were assumed to be the same: ek – 1 = ek = ek + 1 = 1/3 for L = 1 
and ek – 2 = ek – 1 = ek = ek + 1 = ek + 2 = 1/5 for L = 2. Figure 4 
shows that an increase in the number of accountable symbols 
slightly changes the bandwidth, i.e. at L = 2 the information 
capacity is slightly larger than at L = 1.

6. Conclusions

We have calculated for the first time the channel capacity tak-
ing into account the pattern effect, i.e., a different contribu-
tion of the interaction of neighbouring pulses and self-interac-
tion to the nonlinear noise. The capacity of the channels with 
different variants of the weight coefficients of nonlinear finite 
memory has been compared. It has been shown that for large 
signal powers and with the same total noise, the design of an 
optical system limiting nonlinear interactions with neigh-
bouring bits is preferable. It has been found that an increase 
in the volume of accountable memory does not virtually affect 
the capacity of the channel with the same contribution of 
neighbouring symbols to nonlinear noise.

The results obtained can be useful in choosing the design 
of the communication line. The change in the dispersion of 
transmitted symbols with the help of various components of 
optical systems is an additional possibility of optimising the 
fibre link.
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Figure 3.  Capacity vs. signal power for ( 1 ) an ideal Gaussian channel, 
( 2 ) a Gaussian channel with power limitation and ( 3 ) a channel with 
only central bit noise. 
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