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Abstract.  We report a study of the effects of hot-electron and hot-
phonon dynamics on the output characteristics of quantum cascade 
lasers (QCLs) using an equivalent circuit-level model. The model is 
developed from the energy balance equation to adopt the electron 
temperature in the active region levels, the heat transfer equation 
to include the lattice temperature, the nonequilibrium phonon rate to 
account for the hot phonon dynamics and simplified two-level rate 
equations to incorporate the carrier and photon dynamics in the active 
region. This technique simplifies the description of the electron – 
phonon interaction in QCLs far from the equilibrium condition. 
Using the presented model, the steady and transient responses of 
the QCLs for a wide range of sink temperatures (80 to 320 K) are 
investigated and analysed. The model enables us to explain the 
operating characteristics found in QCLs. This predictive model is 
expected to be applicable to all QCL material systems operating in 
pulsed and cw regimes. 

Keywords: quantum cascade lasers (QCLs), equivalent circuit model, 
hot electron, hot phonon.

1. Introduction

Quantum cascade lasers (QCLs) are electrically pumped semi-
conductor lasers based on optical and electronic intersub-
band transitions (ISTs) between quantised states within the 
conduction band [1]. The possibility of cascading active 
regions is a key advantage of QCLs, in which electrons are 
‘recycled’ from period to period as they cascade down the 
laser structure. 

Conventional mid-IR and resonant-phonon THz QCLs 
exploit the electron – phonon interaction to assist the fast 
depopulation of the lower lasing level and help to achieve 
population inversion between the upper and lower laser states. 
In QCLs, the emission of an optical phonon is the dominant 
process controlling the electron transport and ISTs in the active 
region levels [2]. Additionally, the transport in the active region 
is controlled by ultrafast ISTs and typically requires a bias of 
several hundred mV per stage at the lasing threshold. Under 
strong applied electric field, electrons in the active region will 
be accelerated and gain a large amount of kinetic energy, 
which leads to the population of hot electrons with an average 

energy higher than that of the thermal reservoir. Electrons 
release this excess kinetic energy by exciting other electrons 
and emitting photons or phonons. Typically, each injected 
electron generates several (6 – 10) phonons per cascade stage, 
where unbalance between phonon generation and decay rates 
accumulates optical phonons and may produce a nonequilib-
rium population of optical phonons (hot phonon) [3]. There
fore, the interaction of carriers and optical phonons in QCLs 
has to be modified substantially to allow for electron tem-
perature and hot-phonon effects. However, to gain a deeper 
understanding in the QCL designs, the development of a 
predictive system-level model that accounts for hot electrons 
and hot phonons is a necessary prerequisite.

In our previous works we have developed the model of 
Stark-effect roll-over in QCLs to extract the light – current 
and electric field – current characteristics of the device [4, 5]; 
however, hot-electron and hot-phonon effects have been 
neglected. This paper describes a circuit-level implementation 
of QCLs that includes hot-electron and hot-phonon effects. 
The total equivalent circuit model is composed of several 
interactive sub-circuits including an input subcircuit to adopt 
the current – voltage relationship in the device, an electron-
temperature sub-circuit to calculate the electron temperature 
in the upper and lower laser states, a lattice-temperature sub-
circuit to incorporate the self-heating effects in the device, a 
hot-phonon sub-circuit to model the effect of hot-phonon 
dynamics and an intrinsic sub-circuit to simulate the carrier 
and photon dynamics in the active region of the device. 

2. Physics and theory

A simplified schematic of the thermal processes and carrier 
movement occurring within the QCLs is illustrated in Fig. 1. 
As shown in the figure, electrons are injected electrically from 
the injector ground state g into laser upper states 3, and then, 
the injected electrons can make an optical transition to state 2, 
or follow other nonradiative scattering paths via phonon 
emission. In the model, we consider three different tempera-
tures TE , TL and TS , denoting the electron temperature in the 
active region levels, lattice temperature and heat sink tempera
ture, respectively. It is important to note that the electron 
temperature TE is created first in the core of the active region 
and then transferred to the thermal reservoir through the 
crystal lattice.

2.1. Generation of hot electrons and hot phonons in QCLs 

It is known that the active region of QCLs operates under a 
strong electrical bias. When a voltage is applied to the device, 
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electrons in the active region will be accelerated and hence gain 
a large amount of kinetic energy. These energetic electrons 
are often referred to as hot electrons because the characteristic 
temperature of these electrons will be much higher than that 
of the surrounding crystal lattice [6, 7].

The kinetic energy of two-dimensional electrons can be 
characterised by an effective temperature TE, which is the 
same in both the upper and lower laser states [8]. It is worth 
noting that we should also consistently take into account the 
dependence of the carrier cooling rate on the effective tem-
perature due to the stimulated photon emission. Therefore, a 
gain or loss of the total energy of the two-dimensional elec-
trons in the active region can be modelled via a simple rate 
equation as in our previous work [9]:

( )
d
dn k
t
T

eA
I E 22D B

E T
LO32 'T w= +  

	 ,n k T T G N
A

N
D B

E L P P

E
2

'
Tt

w
-

-
- 	 (1)

where IT is the total current flowing through the device, A is the 
device area, e is the electron charge, n2D is the surface doping 
concentration per stage, kB is the Boltzmann constant, DE32 is 
the energy difference between the upper and lower laser states, 
2 LO'w  is the energy difference between the lower laser state 
and injector ground state of the next stage, TL is the lattice 
temperature, tE = 0.22 – 0.25 ps is the energy loss lifetime 
between the electron and lattice temperature [7], G is the opti-
cal gain, DN = N3 – N2 is the population inversion difference, 
NP is the photon number and 'wP = DE32 is the photon 
energy. 

On the other hand, heat extraction from QCLs is difficult 
due to the following reasons: large amount of electrical power 
P dissipated in the device active regions, poor thermal coupling 
between the active region and the heat sink caused by the 
waveguide and mounting configurations and, most impor-
tantly, low heat conductivity of the QCL active regions due 
to  theirs superlattice-like nature [10]. Therefore, to model 
thermal transient processed caused by self-heating and changes 

in ambient sink temperature, we use the lattice thermal rate 
equation from our previous work [4]:
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where RTH is the thermal resistance, which relates the change 
in the active region temperature to the power dissipated as 
heat; tTH = 1 ms is the thermal time constant determining the 
heat initially escaping from the active region into the wave-
guide cladding and isolation layers; Pout is the output optical 
power; s is the pulse duty cycle; and V is the voltage across the 
device. 

In the following, we still require a correct description 
for the phonon dynamics inside the device active region. As 
mentioned above, the imbalance in temperature between the 
electrons and the lattice necessarily results in the fact that 
electrons lose some of their kinetic energy to the crystal lat-
tice, thereby creating phonons. Due to the requirement of 
conservation of energy and momentum during the hot-electron 
relaxation process, phonons created in this way will have 
a  certain distribution in the momentum space. Therefore, 
phonons of different wave vectors may have different occu-
pancies; these phonons are not in thermal equilibrium, so 
they are often called hot phonons or nonequilibrium phonons 
[6]. For the QCL, where there are many thin layers of hetero-
structure materials, the dynamical evolution of the electron – 
phonon system can be described by the coupled Boltzmann 
equations [2, 11]. However, this is apparently impossible to do 
numerically. Transport simulations of QCLs generally assume 
electrons interacting with dispersionless bulk phonons of the 
well material due to simplicity of the scattering rate calcula-
tion under this approximation [12 – 18]. Furthermore, Williams 
and Hu [19] showed that the total phonon scattering rates 
including confinement in one cascade stage (with three quantum 
wells) of two GaAs /Al0.3Ga0.7As QCLs are very close to those 
obtained using GaAs-bulk phonons. In view of the setup of 
our model, this is a reasonable approximation. In this case, the 
dynamics of the nonequilibrium phonon occupation number 
and the changing rate of the excess optical phonons with the 
phonon wave vector q (|q| = q » 0.1 – 0.3 nm–1) can be found 
from energy conservation condition [6]:
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where Nq is the phonon distribution function; fk is the electron 
distribution function with the wave vector k; LO'w  is the 
longitudinal optical (LO) phonon energy; d(x) is the delta 
function; 
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is the square of the modulus of bulk GaAs electron – LO 
phonon (Frohlich) interaction matrix element; VL is the volume 
of one cascade stage; and e¥ and e0 are the high-frequency 
and static dielectric constant, respectively. If we assume that 
the electrons are at quasi-equilibrium obeying a Boltzmann 
distribution with temperature TE and that fk is much smaller 
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Figure 1.  Simplified scheme of the carrier and thermal dynamics within 
the QCLs. 
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than unity, the excess LO-phonon distribution function Nq 
generated by hot electron relaxation can be simplified and 
takes the form [6]:
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where Nq
0 = {exp['wLO /(kBTL)] – 1}–1 is the Bose – Einstein 

distribution of the equilibrium optical phonons; c is the 
velocity of light in the vacuum; m* is the electron effective 
mass, 
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and Eq = '2q 2/(2m*). Finally, the distribution function of the 
LO-phonon occupation number, including the equilibrium 
and nonequilibrium terms, can be expressed as [20]:
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where tq (~2 – 3 ps) is the optical phonon lifetime.

2.2. Current – voltage (I – V) characteristic in QCLs 

Electronic transport in QCLs takes place by tunnelling 
between the injector ground state and the upper state of the 
lasing transition in adjacent quantum wells. An analytical 
expression for the tunnelling current between these two states 
coupled via an injection barrier was derived by describing the 
system in a tight-binding approach using the density matrix 
formalism [21]:
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where 'D = Eg – E3 » ed (F – Fr) is the energy difference 
between the injector ground state g and the laser upper state 3; 
Fr is the electric field which brings the states g and 3 in reso-
nance; F is the average electric field applied over the distance 
d (length of one period); and 'W = 2 meV is the coupling 
energy between the states g and 3. The time constant t3 repre-
sents the LO-phonon scattering lifetime of an electron in the 
state 3 and t̂  is the relaxation time for the momentum in the 
plane of the layer, responsible for the loss of phase between 
the states involved in resonant tunnelling. An estimate for t̂  
in the 10 – 300 K range is 100 – 50 fs [21]. Unfortunately, in the 
literature the original derivation for the bias dependence of 
the injection current expressed by Eqn (8) neglects stimulated 
emission and is even more valid for below the laser threshold. 
Therefore, this expression cannot predict the actual device 
current. To adopt the actual current – voltage relationship of 
the device for above the threshold, in accordance with con-
ventional interband diode lasers and with a good approxima-
tion for QCLs, we assume a linear relation between the device 
voltage and the device current, as [22]: 

V = Vth + RdI  for  V ³ Vth,	 (9)

where Vth denotes the device threshold voltage and Rd is the 
differential resistance. Using the differential series resistance 
¶V/¶J = 0.00142N + 0.0675 mW cm2, the voltage drop in each 
period DVP = e–1(E32 + E21) and the threshold current density 
Jth, the voltage at the laser threshold can be estimated as 
[23, 24]: 
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where the voltage VS = 0.33 V is due to the series resistance 
caused by the non-alloyed contacts, graded-gap regions and 
ungraded-gap regions; E32 + E21 denotes the energy drop per 
stage; N is the number of cascade stages. Then, the threshold 
current density Jth can be estimated using the gain coefficient g, 
the total losses (sum of the mirror loss and waveguide loss: 
am + aw) and the confinement factor G = GPN = 0.33 (GP is the 
overlap factor between the optical mode and one period of 
the structure) [24, 25]:
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Knowing the values of the LO-phonon lifetimes t3, t2 and 
t32, the cascade stage length LP, the optical transition matrix 
element z32, and the full-width at half-maximum (FWHM) of 
the luminescence spectrum 2g32, we calculate the gain coeffi-
cient g as [25]: 
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where neff is the effective refractive index of the lasing mode, 
l  is the laser emission wavelength, and e0 is the dielectric 
constant of the vacuum. After putting d(F – Fr) » (V – Vth)/N 
into (8), we can estimate the total current flowing through the 
device:

IT = I0 + I.	 (13)

This approximation enables us to estimate the value of the 
device current as a function of applied voltage for below and 
above the laser threshold. 

2.3. Carrier and photon dynamics within the QCL active 
region 

Our physical model describing the carrier and photon dynamics 
in the QCL active region is based on a two-level classical 
scheme with three equations: two for electrons on the upper 
and lower levels involved in the laser transition, and one for 
the photons in the laser cavity. For a QCL with N cascade 
stages, simplified rate equations for the electron – photon system 
have the form [4, 26]:
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where b and tSP are the spontaneous emission coupling coef-
ficient and the spontaneous relaxation time between levels 3 
and 2, respectively; tP is the photon lifetime; 
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Va = NWLLP is the cavity volume; and W and L are the 
width  and length of the cavity, respectively. Furthermore, 
the FWHM temperature dependence can be included as [27]:

2g32(T ) = 2g32(0) (2Nq
n + 1) ,	 (18)

where 2g32(0) = 10 meV. In mid-IR QCLs, where the energy 
distance between the upper and lower laser states is much 
bigger than the LO-phonon energy, the LO-phonon scattering 
rates dominate over the electron--electron and other non
radiative scattering processes. Therefore, we assume that the 
emission and absorption times of a phonon by an electron 
undergoing a transition between the upper and lower states 
3  and 2 are assumed comparable. In this case, the thermal 
dependence of t3 and t32 are approximated as [27, 28]:

t3–1(T ) = t3–1(0) (2Nq
n + 1) ,	 (19)

t32
–1(T ) = t32

–1(0) (2Nq
n + 1) .	 (20)

Due to the design strategies in mid-IR QCLs, in which the 
energy distance between the lower laser state and the ground 
state in the active region has been chosen equal to an LO- 
phonon energy, the emission process dominates over the 
absorption mechanism. In this approximation we obtain: 

t2–1(T ) = t2–1(0) (Nq
n + 1) .	 (21)

3. Circuit-level implementation 

Since our goal is to construct a QCL model that addresses the 
device behaviour by the circuit-level simulation of optoelec-
tronic systems, we try to implement this model in SPICE-like 
simulators such as HSPICE. The development of our circuit 
model has several main parts. As shown in Fig. 2, the first 
part is the input sub-circuit including a general diode, a non-
linear voltage dependent current source, a current dependent 
voltage source, and a series resistance, which implement the 
QCL current – voltage characteristic defined in Eqn (9). The 
input sub-circuit receives the bias voltage V as an input and 
produces the current IT flowing through the device as an 
output. 

The second part, which originates from the heat transfer 
equation defined in Eqn (2), is a lattice-temperature sub-circuit 
that receives the sink-temperature as an input and produces 
the lattice-temperature as an output. In the lattice-tempera-
ture sub-circuit, VTL is the terminal which models the heat 
transfer equation via the resistance RL = RTH, the capacitor 
CL = tTH /RTH, and a nonlinear current source as:
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In the following, to improve the convergence properties of 
the model, we introduce some transformation for the photon 

number NP and the carrier number Ni (i = 2, 3) using the 
equations [29]:
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where zn and k are the arbitrary constants. 
The third part, which is the electron-temperature sub-

circuit, can be obtained by substituting Eqns (23) and (24) 
into Eqn (1). In the electron-temperature sub-circuit, VTE is 
the terminal whose node voltage models the electron tempera-
ture TE via the capacitor CE = tE, the resistance RE = 1, and 
the nonlinear current sources GI and GS, as
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Figure 2.  Complete QCL circuit model, including elements for modelling 
current – voltage characteristics, lattice temperature, electronic tempe
rature, hot-phonon effects and the intrinsic QCL behaviour.
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The fourth part is the hot-phonon sub-circuit that is sup-
ported by the balance equation [Eqn (5)]. In the hot-phonon 
sub-circuit, VH is the terminal whose node voltage models the 
hot-phonon dynamics via the capacitor CH = 1, the resistance 
RH = Nq

0/GH, and the nonlinear current source 
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Since we are mainly interested in the distribution function of 
phonons including the equilibrium and nonequilibrium dis-
tributions, as defined in Eqn (7), we use a voltage-controlled 
voltage source (Eeq = Nq

0 = {exp[ћwLO /(kBVTL)] – 1}–1) as well 
as the current-controlled voltage source (Enq = tq iCH) to model 
the phonon dynamics. 

The fifth part is the intrinsic QCL sub-circuit that models 
the carrier and photon rate equations. Substituting Eqns (23) 
and (24) into Eqns (14) – (16) and applying proper operations, 
we obtain new equations which can be mapped directly into 
the intrinsic QCL sub-circuit (by applying Kirchhoff’s current 
law to the sub-circuit nodes).

In the intrinsic QCL sub-circuit, V3 is the terminal whose 
node voltage models the electron number N3 via the capacitor 
C3 = ezn, the resistance R3 = t3 /(ezn), and the nonlinear current 
source 
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k
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In the same way, V2 is the terminal whose node voltage 
models the electron number N2 via the capacitor C2 = ezn, the 
resistance R2 = t2 /(ezn), the nonlinear current sources G2 = 
eznV3 /t32 and G32 = G3. Similarly, VP is the terminal whose 
node voltage models the photon number NP via the capacitor 
CP = 2tP, the resistance RP = 1, the nonlinear current sources 

GP = zn NGtP(V3 – V2) (VP + d) – d,	 (29)
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Finally, to calculate the output power Pout, we use the voltage-
controlled voltage source: 
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where hout is the output power coupling efficiency. 

4. Results and discussion 

While the proposed system-level model is quite general and 
applicable to different cascade structures, in simulations we 
consider a typical InP-based mid-IR QCL with the following 
geometrical and material parameters that are adjusted to 
describe experimental data [30, 31]: W = 24 mm, L = 2 mm, 

LP = 45 nm, N = 30, RTH = 15 K W–1, DE3,2 = 150 meV, tP = 
5 ps, neff = 3.27, t3(0) =1.5 ps, t2(0) = 0.2 ps, t32(0) = 2.5 ps, 
and z32 = 1.7 nm.

4.1. Steady-state analysis 

The light – current characteristic with a duty cycle of 40 % 
(Fig. 3) suggests that the model accurately predicts the degra-
dation of the output power due to the thermal roll-over. Also, 
one can see that the threshold current is affected by both the 
sink temperature and pulse duty cycles. Figure 4a demonstrates 
the thermal roll-over output power versus the total injected 
current for different duty cycles. One can see that in low duty 
cycles (less than 20 %), the output power dose not exhibit 
the  thermal roll-over for these range of the injected current 
because the electronic temperature is slightly higher than the 
lattice temperature that is approximately equal to the sink 
temperature. At higher duty cycles (above the 20 %), the out-
put power obviously illustrates the thermal roll-over because 
the characteristic temperature of the electrons in the active 
region will be much higher than that of the surrounding crystal 
lattice, which does not remain constant in the interval from 
the laser threshold to the output roll-over. Figure 4b shows 
the difference between the electronic temperature TE in the 
active region and the lattice temperature TL as a function 
of the total injected current IT. When the injected current is 
increased, the difference between the electronic temperature 
and the lattice temperature also increases, in agreement with 
experiment [7].

Figure 5a plots the difference between the electronic tem-
perature TE and the lattice temperature TL as a function of 
applied voltage with a 40 % duty cycle for a wide range of sink 
temperatures. One can see that at a low applied bias below 
the laser threshold (less than 5.5 V), the electronic tempera-
ture is approximately equal to the lattice temperature at all 
sink temperatures. At higher applied voltages above the laser 
threshold, the difference TE – TL is increased, TE can be 
approximated as a linear function TE » TL + b0 IT, where 
IT  = V/Rd and the parameter b0 characterises the electron 
heating rate (in K A–1). As can be seen from Fig. 5a, with 
increasing sink temperature the slope d(TE – TL) /dV above 
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the laser threshold progressively increases, meaning that the 
electron cooling becomes less effective, which is in agreement 
with the experimental observations [7]. Consequently, the 
electron heating rate decreases indicating that the photon 
emission extracts a strong part of the input electrical power, 
efficiently cooling the electrons. This fact originates from the 
stimulated photon emission term in Eqn (1) which increases 
with decreasing sink temperature (see Fig. 3). In Fig. 5b, the 
total phonon occupation number based on Eqn (7) is shown 
as a function of the applied voltage for a wide range of sink 
temperatures. It can be seen that the phonon occupation 
number is dramatically increased with applied bias, which 
degrades the device performance.

4.2. Dynamic response 

To illustrate the other capabilities of the model, the equiva-
lent circuit is also studied under the transient and small-signal 
operations. In the transient regime, a pulse train of the rectan-

gular input voltage is chosen which changes from 8 V to 16 V 
with 1 ns rise and fall times. The pulse duration is 200 ns 
and their repetition rate is 2 MHz. Figure 6a shows the time 
dependences of the electron temperature in the active region and 
of the lattice temperature in the pulsed regime. It can be seen 
that at the end of the initial period, the lattice temperature has 
not regained the sink temperature and so the lattice tempera-
ture (and subsequently the electron temperature) increases 
further during the next period. This heat accumulation process 
(that originates from the input applied voltage for both the 
lattice and active region temperatures) causes the active 
region and its surrounding crystal lattice to progressively rise 
in temperature during each successive pulse until saturation 
occurs. These results are in agreement with the numerical 
calculations reported so far [32].

Figure 6b shows the temporary evolution of the phonon 
occupation number with and without the hot-phonon effect 
taken into account. The accumulation of the phonon occupa-
tion number can be understood from the change of electron 
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and lattice temperatures in response to the input voltage 
pulses. The results reveal that the induced nonequilibrium 
phonon emission must play an important role in the device 
dynamics, which is in agreement with the result calculated by 
the ensemble Monte Carlo technique [33]. 

Finally, Fig. 7 depicts the normalised modulation response 
of the output power versus the modulation frequency for dif-

ferent values of the heat sink temperature under the applied 
voltage of 8 V. It can be seen that the laser bandwidth is 
remarkably affected by the self-heating effect at the 40 % duty 
cycle. Another important aspect of the QCL is the nonreso-
nant behaviour of the device’s frequency response [29], which 
originates from the ultrafast ISTs in QCLs. Apparently, the 
proposed model predicts the nonoscillating behaviour of 
the modulating frequency response, and once again confirms 
the validity of the model.

5. Conclusions

Based on a simple equivalent-circuit model, we have presented 
a detailed theoretical study of hot-electron and hot-phonon 
effects on the output characteristics of QCLs. For a wide 
range of heat sink temperatures and under different duty 
cycles, our model accurately predicts the steady-state and 
dynamic operating characteristics found in QCLs such as the 
electronic temperature, the lattice temperature, the output 
power thermal roll-over and nonresonant behaviour of the 
modulating frequency response. The results reveal that this 
predictive model can be a valuable tool for the simulation of 
QCLs in an optoelectronic device simulator. Furthermore, 
the model is expected to be applicable to all quantum cascade 
structures when calculating the cw and pulsed operating 
characteristics. 
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