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Abstract.  The influence of limited detection time on the form of the 
autocorrelation function (ACF) has been analysed for measure-
ments in low-concentration suspensions by dynamic light scattering 
with allowance for the spatial distribution of the laser beam inten-
sity. The general view of the ACF of the scattered light intensity is 
obtained for a Gaussian beam and a finite measurement time. The 
results of the theoretical analysis are compared with the experimen-
tal data and the results obtained by computer simulation of the 
scattering from an ensemble of particles involved in Brownian 
motion in a Gaussian beam. It is shown that, in the case of low 
suspension concentrations, the ACF distortions related to finite 
detection time lead to underestimation of the particle sizes and 
occurrence of an artefact peak in the distribution of the scattered 
light intensity over scatterer sizes. An empirical dependence of the 
measured size of particles on their number in the scattering volume 
is found.

Keywords: dynamic light scattering, photon correlation spectros-
copy, detection of nanoparticles, non-Gaussian fluctuations.

1. Introduction 

Currently, dynamic light scattering (DLS) is widely used for 
contactless and rapid (measurement time of 10 – 100 s) deter-
mination of the sizes of nanoparticles and macromolecules in 
liquids [1 – 4].

The accuracy of the results obtained by this method 
depends on a number of factors, which include correct selec-
tion of the scattering volume for detecting spatially coherent 
scattered light, the possibility of interaction between nanopar-
ticles and the dependence of the diffusion coefficient on their 
concentration, the validity of single-scattering condition, and 
the presence of foreign sources of scattered light (for example, 
large impurity particles). Among the factors affecting the 
DLS data, we should note the inhomogeneous illumination of 
the scattering volume (which is related to the spatial distribu-
tion of laser beam intensity) and violation of the Gaussian 
field statistics at a small number of particles in this volume 
[5 – 7]. These factors were considered as a source of the arte-
fact peak in the distribution of the scattered light intensity 
over scattering-particle sizes in highly diluted samples [5 – 7]. 
This feature becomes important when the object of study is 
low-concentration and polydisperse suspensions. When ana-
lysing the aforementioned factors, it is of key importance to 
take into account the finiteness of measurement time. In this 
paper, we report the results of studying the influence of this 
finiteness on the form of the autocorrelation function (ACF) 
for low-concentration suspensions.

2. Theory 

At low scatterer concentrations, when the number of particles 
in the scattering volume ranges from one to ten, the statistics 
of scattered-light-field fluctuations significantly differs from 
Gaussian [8, 9]. The motion of each particle becomes impor-
tant, and the effect of particle ‘input – output’ from the scat-
tering volume manifests itself and contributes to the ACF of 
the scattered light intensity measured by the DLS method. In 
the case of a limited scattering region, the time dependence of 
the ACF is determined by two mechanisms, whose contribu-
tions are generally characterised by significantly different cor-
relation times. The smaller time scale is related to the change 
in the phase of the field scattered by a moving Brownian par-
ticle, while the larger scale is determined by the fluctuations of 
the number of Brownian particles in the effective scattering 
volume [8]. In addition, the limited signal detection time leads 
to additional distortions when processing DLS data. Below 
we will consider the influence of the detection time finiteness 
on the intensity ACF obtained by the DLS method with 
allowance for the limited effective scattering volume; the con-
sideration will be performed within the model of Gaussian 
distribution of the probe light intensity in space, which is con-
venient for analytical calculations.

The light incident on a dispersed system can be presented 
as a plane wave propagating along the z axis, whose ampli-
tude decreases with increasing distance in the transverse 

Influence of low concentrations of scatterers and signal detection time 
on the results of their measurements using dynamic light scattering

N.F. Bunkin, A.V. Shkirin, N.V. Suyazov, L.L. Chaikov,  
S.N. Chirikov, M.N. Kirichenko, S.D. Nikiforov, S.I. Tymper 

LIGHT SCATTERING https://doi.org/10.1070/QEL16408

N.F. Bunkin A.M. Prokhorov General Physics Institute, Russian 
Academy of Sciences, ul. Vavilova 38, 119991 Moscow, Russia; 
N.E.  Bauman Moscow State Technical University, Vtoraya 
Baumanskaya ul. 5, 105005 Moscow, Russia;  
e-mail: nbunkin@kapella.gpi.ru;	
A.V. Shkirin A.M. Prokhorov General Physics Institute, Russian 
Academy of Sciences, ul. Vavilova 38, 119991 Moscow, Russia; 
National Research Nuclear University ‘MEPhI’, Kashirskoe sh. 31, 
115409 Moscow, Russia; e-mail: avshkirin@mephi.ru;	
N.V. Suyazov A.M. Prokhorov General Physics Institute, Russian 
Academy of Sciences, ul. Vavilova 38, 119991 Moscow, Russia; 	
e-mail: nvsnvs@list.ru	
L.L. Chaikov P.N. Lebedev Physical Institute, Russian Academy of 
Sciences, Leninsky prosp. 53, 119991 Moscow, Russia; National 
Research Nuclear University ‘MEPhI’, Kashirskoe sh. 31, 115409 
Moscow, Russia; e-mail: chaik@sci.lebedev.ru;	
S.N. Chirikov, S.D. Nikiforov, S.I. Tymper National Research Nuclear 
University ‘MEPhI’, Kashirskoe sh. 31, 115409 Moscow, Russia; 
e-mail: snchirikov@mephi.ru, sitymper@mephi.ru;	
M.N. Kirichenko P.N. Lebedev Physical Institute, Russian Academy 
of Sciences, Leninsky prosp. 53, 119991 Moscow, Russia; 	
e-mail: kirmari@sci.lebedev.ru	

Received 20 April 2017; revision received 14 July 2017	
Kvantovaya Elektronika  47 (10) 949 – 955 (2017)	
Translated by Yu.P. Sin’kov



	 N.F. Bunkin, A.V. Shkirin, N.V. Suyazov,  et al.950

direction according to the Gaussian law with a parameter a 
(approximate model of the field in the Gaussian beam waist):

( , , ) exp i iE x y z A t kz
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We assume that the limitation of the scattering region size 
along the z axis, which is determined by the detecting system 
aperture and the waist length, can be modelled by a Gaussian 
dependence exp(–z2/b2) with a parameter b.

Then, at a large distance r from the centre of the scattering 
region (r >> kb2, ka2, b, a), the field Ej (t) scattered by the jth 
particle, located at the point rj (t) = [xj (t), yj (t), zj (t)] at an 
instant t, can be written as

Ej (t) = Fj (t) exp(iwt – ikr) + Fj
*

 (t) exp(–iwt + ikr).	 (2)

In this relation, 

f
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where q = [qx, qy, qz] is the scattering vector and 
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is the dimensionless amplitude of the wave exciting scattering 
at the jth-particle location point. Let the detecting system be 
placed in the xz plane and accept light scattered at an angle q 
with respect to the incident beam direction; then, the scatter-
ing vector has only two nonzero components: qx = ksinq and 
qz = k(cosq – 1). The quantity f(q) in (3) is the scattering ampli-
tude, which is related to the differential scattering cross sec-
tion s(q) (scattering cross section into unit solid angle) as fol-
lows: s(q) = | f(q)|2. The field scattered by N particles has the 
form 

( ) ( )E t tj
j

N

1

=
=

E/ ,

and the correlation function of the light intensity scattered by 
all these particles can be written as 
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where the angle brackets denote averaging over an ensemble 
of particles. Let us substitute expression (2) into sum (4) and 
reject all rapidly oscillating (with optical frequency w and fre-
quencies multiple of it) terms:
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Let scattering particles with a radius R undergo indepen-
dently Brownian motion with a diffusion coefficient D. The 
joint probability density for a particle to be at point rj (t) at the 

instant t and at point rj (t + t) at the instant t + t can be writ-
ten as (see, e.g., [10 – 12])
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where t > 0; p1 is the single-point probability density for a 
particle to occupy a specified point with coordinates r, which 
is independent of time and coordinates rj ( p1 = const) in the 
case of stationary Brownian motion. Using the statistical 
independence of the Brownian motion of individual particles, 
one can write the probability density for N particles as the 
product of N probabilities in form (6). Now, with allowance 
for the Gaussian description of the scattering region (3), the 
averaging for calculating correlation function (5) can be per-
formed explicitly. In a typical experimental situation, when 
the scattering region sizes are sufficiently large in comparison 
with the light wavelength [aqx, bqz >> 1, (lnh)1/2], the expres-
sion derived for G (2)(t) can be simplified by rejecting expo-
nentially small terms (h is the average number of particles in 
the scattering region). We assume also that the total number 
of particles in the system under consideration (the cell with a 
sample) is N >> 1. Then the intensity correlation function can 
be written as
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where 2 | |I A0 0
2

=  is the incident wave intensity at the beam 
centre;

h = nVs;	 (8)

Vs = (p/2)3/2a2b is the effective volume of scattering region and 
n = Np1 is the average particle concentration. Under typical 
conditions of the DLS experiment, the second term in the 
braces in (7) is not vanishingly small in comparison with unity 
only when the following strong inequality is satisfied: D|t| << 
a2, b2. In this case, the ACF of the recorded intensity can be 
simplified and written in the form
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where ( / )sinq q q k2 2z x
2 2 q= + = .

Without the last (third) term in the braces, formula (9) 
describes the conventional ACF for infinite scattering region 
and independence of the incident plane wave amplitude on 
coordinates: U(rk) º 1. In this case, the expression in the 
braces takes a well-known form:
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1 + exp(–2q2D|t|).	 (10) 

Note that the necessity of taking into account the spatial 
coherence of the scattered light in experiments [13] lead to the 
occurrence of a constant (spatial coherence) factor g before 
exp(–2q2D|t|) in expression (10), which is determined by the 
optical system geometry.

The third term in the braces in formula (9), related to the 
limited size of the scattering region, is important when the 
number of particles in the scattering volume is small. It is pro-
portional to the ACF of fluctuations of the number of 
Brownian particles present in the scattering region [14, 15].

Relation (9) can also be generalised to the case of scatter-
ing by particles with different sizes, and therefore, different 
diffusion coefficients and scattering cross sections:
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where hl = Vs nl; nl is the average concentration of particles 
with a diffusion coefficient Dl and differential cross section 
sl(q).

The detection time T in measurements should satisfy the 
condition T >> (2q2D)–1, where (2q2D)–1 is the correlation 
time, determined by the Brownian diffusion. With an increase 
in t, the second term in (9) decreases to values close to the 
third term. Therefore, G (2)(t) at low particle concentrations in 
a finite scattering region differs from the G (2)(t) value for an 
infinite scattering region; this circumstance affects the results 
of reconstructing the particle-size distribution.

Note that the limited detection time may lead to distor-
tions of G (2)(t) for the following reason. When processing 
DLS data, the G (2)(t) value is found by averaging the scatter-
ing intensity over the experimental realisation time on a finite 
interval of duration T. In this case,
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is the so-called baseline, where I(t) is the recorded scattered 
light intensity. The experimentally found ACF intensity has 
the form
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It should be emphasised that ( )G ( )
exp
2 t  theoretically corre-

sponds to ( ) ( )G G( ) ( )2 2 3t -  rather than to ( )G ( )2 t . In order to 
relate the experimental correlation function ( )G ( )

exp
2 t , found 

above by averaging over time, with the ACF ( )G ( )2 t  obtained 
by averaging over the ensemble, we will apply averaging over 
the ensemble to equality (13). Based on the suggested ergodic-
ity of the scattered field (and the interpretation of averaging 
over an ensemble as averaging over different realisations of 
particle arrangement, which is often used in practice), one can 
conclude that, for sufficiently large averaging intervals T – t, 
the ensemble-averaged function ( )G ( )

exp
2 t  will not signifi-

cantly differ from the function ( )G ( )
exp
2 t  calculated based on 

the experimental data. Having denoted the ( )G ( )
exp
2 t  value 

obtained by averaging formula (13) over an ensemble as  

( )G ( )
th
2 t , we arrive at the following expression for the ACF at 

a finite measurement time T:
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is the theoretical estimate of the baseline [ ( )G ( )2 3 ] with allow-
ance for the finite measurement time. The ‘distortions’ of the 
experimentally found ACF intensity, related to the limited 
detection time, are described by the second term in (14). These 
distortions depend on the ACF form. Having substituted (9) 
into (14), one can obtain an explicit analytical expression for 
approximating the experimentally found intensity ACF:
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where 

Dq2D
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are, respectively, the normalised values of the correlation 
function argument, the detection time, and the scattering 
region sizes.

In two characteristic limiting cases of the size ratio for the 
scattering region, when b = a (the longitudinal size of this 
region, determined by the detecting system aperture, is equal 
to the beam width) and b >> a, formula (15) takes the form
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To verify the above-formulated theoretical model, which 
takes into account the correction to the finite detection time, 
we performed a computer simulation of the motion dynamics 
for a finite number of Brownian particles obeying the 
Smoluchowski – Einstein statistics and numerically calculated 
the time dependence of scattered light intensity on the interval 
[0, T ], along with its ACF. The simulation was performed 
within the MatLab environment. During the simulation, a set 
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of random realisations, corresponding to a specified number 
N of particles and their initial positions in space, was gener-
ated. The initial positions of particles were set as random and 
uniformly distributed. The recorded intensity of the scattered 
light, accurate to the time-independent factor, was found 
from the equality

I(t) ~ EE *	 (19)

j j j x j z j
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2
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=
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where ( )x tj , ( )y tj , and ( )z tj  are time-dependent coordinates 
of the jth Brownian particle. The function 
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which describes the excitation-wave form, in fact modelled 
the region of recorded scattering. The Gaussian parameters of 
the scattering volume, ах, ау, and az, were determined by both 
the beam sizes and the geometry of the detecting optical sys-
tem. We considered the case where, as well as in formulas (7) 
and (9), ах = ау = a and az = b (i.e., this region is limited in the 
transverse directions by the Gaussian beam width a). The 
limitation in the longitudinal direction (along the z axis) is 
modelled by a Gaussian dependence with a parameter b; for 
the effective size of detection aperture b0 and scattering at an 
angle q, this parameter can be estimated from the relation b = 
b0/sinq.

Within the MatLab environment, the intensity ACF K(t) 
is determined by averaging the product of increments DI(t) ´ 
DI(t + t) over time on the interval [0, T ]:

( ) ( ) ( )dK T I t T I t t1 1 TT

00
t = -
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As in derivation of (14), we will apply averaging over an 
ensemble to equality (21):
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The ACF K(t), obtained by numerical simulation, is approxi-
mately equal to Kth(t) on the assumption of the scattered field 
ergodicity. 

The distortions of the intensity ACF in (22) that are due 
to the limited detection time are described mainly by the sec-
ond and third terms. Having substituted the function G(2)(t) 
from (9) into (22), one can obtain an explicit expression for 
Kth(t), similar to formula (15). Being rather cumbersome, it is 
omitted here.

A comparison of the calculation results shows that, at 
t << T, the Kth(t) and G(2)(t) values practically coincide; 
therefore, formula (15) can also be used for estimated approx-
imation of numerical simulation data. The ACF obtained as 
a result of numerical simulation at t > Dq2 is also fairly close 
to that calculated from formula (15).

3. Correlation functions

In experimental measurements, the scattering region geome-
try depends on the light detection scheme; therefore, the func-
tions determining the scattering region boundaries may differ 
from Gaussian (20). According to the data of [15], a replace-
ment of a Gaussian dependence with a rectangular profile 
along one of the coordinates (z) does not lead to any qualita-
tive changes in the time dependence of the ACF and is equiva-
lent to the replacement of factor 23/2 with 2 in the third term 
in (9); this circumstance gives grounds to interpret the experi-
mental data on regions of a more complex shape within the 
theoretical model of the ‘Gaussian’ scattering region under 
consideration.

Figure 1 shows experimental correlation functions 
( ) / ( )G B T( )

exp exp
2 t , where

( ) ( )dB T T I t t1
exp

T

0

2

= c my . 

Experimental data were obtained for a monodisperse suspen-
sion of latex particles (with a radius of 375 nm) in water, using 
a system conventional for the DLS method [16], which makes 
it possible to measure the ACF of the light scattered at a spec-
ified angle. The light source was a 0.633-mm laser; the scatter-
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Figure 1.  ACFs of the intensity of the light scattered at an angle q = 40° 
for a monodisperse latex suspension (R = 375 nm) in water (measure-
ment time T = 100 s): (filled circles) experimental ACFs measured at 
average numbers of particles in the scattering volume hexp = (a) 11 and 
(b) 36 and (open circles) ACFs calculated from the results of simulating 
an ensemble of Brownian particles in a Gaussian scattering volume with 
sizes a = 150 mm and b = 90 mm for h = (a) 0.25 and (b) 1.1. The solid 
lines are the theoretical ACFs calculated from formula (15) for the 
aforementioned beam parameters a and b and the average numbers of 
particles hth = (a) 0.25 and (b) 1.1.



953Influence of low concentrations of scatterers and signal detection time on the results

ing angle was taken to be q = 40°. The scattering region was 
formed by intersection of a Gaussian laser beam with the 
parameter а = 150 mm and a cylinder of radius b0 = 90 mm (a 
round diaphragm installed before a photoelectron multiplier 
limited the scattering volume, whose image was projected by 
an objective onto the photoelectron multiplier cathode). The 
measurement time T was 100 s. Suspensions were prepared in 
carefully de-dusted cells of different geometries. The experi-
mental results presented in Figs. 1a and 1b differ by the aver-
age number of particles, hexp, in the scattering volume. 
Estimation of hexp from the scattering intensity yields values 
of 11 and 36, respectively. Figure 1 shows also the results of 
calculating the intensity correlation functions ( ) / ( )G G 0( ) ( )

th th
2 2g t  

in correspondence with formula (9) at a = 150 mm and b = 
90  mm, along with the correlation functions K(t)/K(0), 
obtained by computer simulation of the motion of an ensem-
ble of a finite number of Brownian particles in a Gaussian 
beam having parameters ах = ау = 150 mm and az = 90 mm, 
with variation in the number Np of particles (with radius R = 
375 nm) in a modelled volume V, whose linear sizes were set 
to be Lx = Ly = 10a and Lz = 10b. These Lx, y, z values made it 
possible to use the model in a wide range of variation in 
parameters, proceeding from the condition of practical nulli-
fication of light beam intensity on the boundary of the simu-
lation domain and from the condition of conserving (during 
simulation time T ) the average particle concentration n in the 
scattering volume Vs; at long times, the concentration 
decreases as a result of particle diffusion beyond the simu
lation domain V. This condition can be formulated as 

/2L DT a8,x y
2

+  >> 1. In the numerical calculations pre-
sented here, the duration of scattered light signals was limited 
to T = 100 s. For comparison with experimental data, the cal-
culated correlation functions were multiplied by a factor 
g ~ 0.3, which was controlled by the experimental conditions.

The data of Fig. 1 are indicative of satisfactory agreement 
between the results of computer simulation, calculation of the 
ACF from relation (15), and experimental measurements. 
For all these three groups of the results, the corresponding 
ratios of h values in Figs 1a and 1b are identical. Obviously, 
the difference of the absolute values of hexp from the h values 
providing coincidence of the experimentally found and simu-
lated ACFs may be due to the presence of a sharp boundary 
of the scattering region in the experiment, which is deter-
mined by the photodetector diaphragm. It can be seen that, 
for the number of particles in the modelled volume Np = 125, 
which corresponds to the average number of particles in the 
scattering region, h = 0.25, the ACF values for 0.1 < t < 3 s 
are an order of magnitude larger than for the h values exceed-
ing 1.1 (Np = 570); in this case, a descending portion arises in 
the range of 1 – 50 s in Fig. 1. In addition, for the theoretical 
curves calculated at hth = 0.25 and 1.1, one can select a 
descending portion in the range of 1 – 30 ms, which corre-
sponds to the correlation time t1 = 1 /(2Dq2). The values Np = 
125 and 570 correspond to volume particle concentrations of 
n =  Np /(LxLyLz) = 0.6 ´ 105  and 2.8 ´ 105 cm–3, respectively. 
For h ~ 0.1 – 1, the ACF distortions at t > 10/(2Dq2) are 
caused by both the ‘input – output’ effect, which consists in 
the intersection of scattering volume boundary by Brownian 
particles (leading to modulation of scattering intensity) and 
the limited measurement (simulation) time. Under typical 
experimental conditions, t2 = a2/(4D) is approximately an 
order of magnitude longer than the measurement time T; 
hence, at low particle concentrations in the suspension, for 
t << t2, the sum of the third and fourth terms in the braces in 

(15) is approximately constant and equal to ( ) ( / )T4 2 1
2h t- . 

As a result, the ( ) / ( )G G 0( ) ( )
th th
2 2t  and K(t)/K(0) values in the 

range 10/(2Dq2) < t << t2 are larger as compared with the 
case h >> 1 [note that the second term in the braces in (15) can 
be neglected in this case]. With a further increase in t, the 
effect of the particle ‘input – output’ from the scattering vol-
ume begins to manifest itself, and the third term in the braces 
in (15) decreases. The influence of these effects decreases with 
increasing particle concentration. The presence of two 
descending portions in the ACF should give rise to two modes 
in the reconstructed distributions of the scattered light inten-
sity over particle sizes. One of these modes corresponds to 
particles with sizes of ~375 nm and correlation time t1 ~ 
4 ms, while the other mode corresponds to virtual particles 
with sizes more than ~0.1 mm. This effect (formation of an 
additional mode in the distribution) may occur when two 
conditions are satisfied: the length scale for the boundary of 
the scattering volume (Gaussian beam in our case) does not 
exceed the characteristic displacement of particles during the 
measurement time (i.e., the boundary should be sufficiently 
sharp), and the total number of particles in the scattering vol-
ume is small.

The characteristic time t3, at which (in the case of low con-
centrations) the second descending portion of ACF is 
observed, depends on the measurement time Т and is deter-
mined by the time dependence of the sum of the third and 
fourth terms in the braces in (15). At the Т values satisfying 
the condition t1 << Т << t2, time t3 must be much shorter 
than t2, and, with an increase in the measurement time, the t3 
values should tend to a2/(4D). If t3 is defined as the time at 
which the sum of the third and fourth terms in the braces in 
(15) is a half of this sum at t = 0, at T shorter than t2 (by an 
order of magnitude or more),

t3 » 
T T
6
1

24
5

2t
+c m.	 (23) 

For example, at a = 90 mm and R = 375 nm, a2/(4D) = 2.8 ´ 
103 mm, and at T = 120 s, t3 » 20 s. In this case, the average 
‘particle radius’ of the artefact mode amounts to 0.18 mm.

The finiteness of T, as well as the small number of parti-
cles in the scattering volume, cause ACF distortions, which 
may lead to underestimation of the correlation time for the 
fundamental mode and corresponding changes in the particle 
sizes (reconstructed from the measured ACF). At relatively 
short measurement times, satisfying the condition

T
4 2
1

2h t  << 1,

the second term in (15), which is in essence a negative additive 
to the baseline, exceeds the sum of the third and fourth terms. 
When correlation function (15) is approximated by exponen-
tials, this additive will result in underestimation of the corre-
lation (decay) time of the fundamental mode. Using (15) and 
strong inequalities 

T
2 1t  << T

4 2
1

2h t  << 1,

which are valid in our case, one can estimate the measured 
particle radius:

Rmeas » 
. ( )

R
ab

a b DT
1

0 5 22 2 1

h+
+

-

e o .
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However, when carrying out a quantitative comparison with 
experimentally observed underestimations of particle radii, 
one must take into account that this estimate was obtained 
for the Gaussian model of the scattering region, which is 
characterised (in contrast to reality) by boundaries diffuse in 
all directions.

4. Particle size distributions

Figure 2 shows scattered light intensity distributions over 
particle sizes, obtained by expanding the ACF (see Fig. 1) in 
a sum of exponentials using a special computer programme 
DynaLS [17], which is based on histogram regularisation [18]. 
The occurrence of an artefact mode in the intensity distribu-
tion over particle sizes in DLS measurements is illustrated in 
Fig. 2a. The mode with a characteristic particle radius of 
375  nm corresponds to latex particles. The measurements 
were performed in the concentration range from 2 ´ 105 to 
2.9 ´ 106 cm–3 [6]; therefore, the average number of particles 
in a scattering volume of ~1.2 ´ 10–5 cm3 is 2.5 – 35; i.e., the 
condition for the Gaussian statistics of scattering intensity 
fluctuations is violated. In this case, an artefact mode (corre-
sponding to the particles with radii of 0.1 – 1 mm) arises; spe-
cifically this mode is observed experimentally (Fig. 2a). Note 
that the concentrations of particles and their number per scat-
tering volume presented in the figures of [6] are overestimated. 
In this study, the scale of hexp is refined based on the scattered 
light intensity. Note also that, in view of the incorrectness of 
the problem of reconstructing particle size distributions from 
measured ACFs, the experimental error in determining the 
baseline, and the smallness of ACF values at t1 < t << t2, the 
experimentally found sizes of the ‘particles’ corresponding to 
the artefact mode may differ significantly (by an order of 
magnitude or larger) from Rt3 /t1, where t3 is determined the-
oretically from (23). For comparison, Fig. 2b shows the scat-
tered light intensity distributions over particle sizes that were 

reconstructed from ACFs; the ACFs were obtained by com-
puter simulation of the motion dynamics for an ensemble of a 
finite number of Brownian particles. One can see in both fig-
ures that a decrease in the number of particles leads to broad-
ening of the main peak in the distribution, shift of its maxi-
mum to smaller sizes, and increase in the artefact-mode frac-
tion in the total intensity distribution over sizes. The latter 
two regularities were investigated experimentally by changing 
the suspension concentration.

Figure 3 shows the dependence of the artefact peak area 
A2 (characterising its ‘intensity’) on the number of particles 
hexp in the scattering volume Vs. In the series of experiments 
with solutions of different concentrations and constant scat-
tering volume Vs = 1.1 ´ 10–5 cm3, the peak area decreased 
proportionally to /1 exph .

The more pronounced the artefact peak (Fig. 4), the 
stronger the main peak in the histogram of the intensity distri-
bution over particle sizes, which corresponds to the measured 
particle radius R1, shifts to smaller sizes.
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Figure 2.  (a) Experimental and (b) calculated (based on the results of 
simulating the dynamics of an ensemble of Brownian particles) histo-
grams of the distribution of the light intensity scattered by a suspension 
of latex particles with R = 375 nm in water at an angle q = 40° over 
particle sizes; the histograms were obtained from the ACFs presented in 
Fig. 1 for small (open columns) and large (filled columns) numbers of 
particles in the scattering volume.
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Figure 3.  Dependence of the artefact peak area A2 on the number of 
particles hexp in the scattering volume; latex particle radius R = 375 nm, 
q = 40°.
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Figure 4.  Dependence of the measured particle radius R1 on the num-
ber of particles hexp in the scattering volume; latex particle radius R = 
375 nm (dashed line), q = 40°. The variable size R0 (solid line) is com-
mented in the text.



955Influence of low concentrations of scatterers and signal detection time on the results

Early DLS studies with a small number of particles in the 
scattering volume revealed a change in the higher moments of 
the intensity distribution function [9, 19] or a distortion of the 
form of the correlation function (e.g., as a change in its base-
line [8]) and, consequently, a distortion of the spectrum [14]; 
however, the artefact mode was not found in view of the 
imperfect equipment. The possible occurrence of this effect 
(when the number of particles in the scattering volume h ~ 
10) is noted in the description of the Zeta-sizer (Malvern); 
there are also recommendations, according to which exact 
results can be obtained only when the number of particles h is 
no less than 500 [7]. Beginning with a certain concentration 
(individual for each particle size and each scattering angle), 
the dependence R1(hexp) tends to a constant value, close to the 
real particle size. This dependence was approximated by the 
formula R1(hexp) = c/hexp + R0, and the dependence A2(hexp) 
was approximated by the formula /A B exph+ . In the former 
case, the R0 value was a fitting parameter (Fig. 4, solid line). 
In the latter case, it was assumed to be the real radius of latex 
particles: 375 nm (Fig. 4, dashed line). The approximation 
results are listed in Table 1.

Apparently, these dependences can be explained as fol-
lows: the third term in the braces in expression (15) for 

( )G ( )
th
2 t  is proportional to h–1, while the particle distribution 

is calculated using the program DynaLS, based on the 
expansion in decaying exponentials of the field correlation 
function g(1)(t) = áE(t)E*(t + t)ñ/áI ñ on the assumption that 
it is related to ( ) ( ) / ( )g G B T( ) ( )

exp exp
2 2t t=  by the expression 

g(1(t) ~ ( )g ( )exp
2 t .

5. Conclusions

We have analysed the influence of the limited detection time 
and spatial distribution of laser beam intensity on the form of 
the intensity ACF for the light scattered by dispersed particles 
in a liquid. A computer simulation of the laser radiation scat-
tering by an ensemble of Brownian particles of the corre-
sponding size in dependence of their average number in the 
scattering volume has been performed to verify the theoretical 
relations derived for the ACF. The simulation results qualita-
tively confirm the conclusions of the theoretical analysis and 
are found to be consistent with the experimental data. It has 
been shown, both theoretically and experimentally, that the 
finiteness of the detection time at a small number of particles 
in the scattering volume leads to distortions of the correlation 
function, as a result of which the particle sizes reconstructed 
from the scattered-light intensity ACF are underestimated; 
the particle-size distribution becomes wider; and an artefact 
mode arises in the reconstructed distribution, which does not 
correspond to any particles that are actually present in sus-
pension. It has been demonstrated experimentally that the 
measured particle radius decreases with decreasing number of 
particles in the scattering volume inversely proportionally to 
the number of these particles, while the artefact peak area 
decreases inversely proportionally to the square root of this 
number.
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Table  1.  Results of approximating the dependences A2(hexp) and R1(hexp).

R0/nm A B c/nm R0/nm
375 – 0.058 ± 0.046 0.88 ± 0.14 – 512 ± 31 375

Variable value – – – 439 ± 31 361 ± 6


