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Abstract.  The reflection of light beams with various widths of the 
angular spectrum from a chirped plane-layered dielectric structure 
is numerically studied. For wide beams, the total lateral shift of the 
reflected beam depends on the position of the photonic barrier 
inside the structure and the value of the Goos – Hänchen shift. For 
narrow beams, the region of the interaction with the structure 
increases, the profile broadens and the reflected beam wavefront 
becomes phase modulated. It is shown that the light reflected from 
a quasi-periodic structure with negative spatial dispersion under-
goes focusing.

Keywords: chirped periodic structure, reflected beams, wavefront 
modulation, focusing.

1. Introduction

There is a well-known analogy between the compression and 
stretching of light temporal pulses and the focusing and defo-
cusing of spatial beams in quasi-periodic dielectric structures 
[1, 2]. As an example, let us consider the reflection of a mono-
chromatic collimated beam from a plane-layered two-compo-
nent structure (Bragg mirror), in which the period d increases 
linearly along the z axis: d(z) = d0 + a(z – z0), where z0 is the 
coordinate of a certain point inside the structure (Fig. 1). In 
this case, the longitudinal components of the wave vectors of 
the plane waves forming the beam’s transverse profile satisfy 
the Bragg condition at various points of the structure: kz(z) = 
k0 + b(z – z0), where k0 = p/d0, b = –ap/(2n0d02), and n0 is the 
average refractive index.

A wide beam incident along the normal, with a central 
spectral component satisfying the condition  k(z0) » k0, basi-
cally preserves its transverse profile and the plane wavefront 
after reflection. The reflection of a narrow beam, in the spec-
trum of which the side components play an important role, is 
characterised by the profile broadening and phase front dis-
tortion. As shown in Fig. 1, the parameter a determines the 
phase modulation sign of the beam’s angular spectrum. For 
example, with the period d decreasing along z (a < 0), the 
chirped Bragg mirror behaves as a medium with negative spa-
tial dispersion, similar to a pair of diffraction gratings [3]. The 

beam is focused when propagating after reflection in a 
medium with positive diffraction.

Note that in the plane wave approximation, pulse reflec-
tion from a chirped Bragg mirror is characterised by the fact 
that different frequency spectrum components acquire differ-
ent delay times [4]. As a result, the pulse duration increases 
and a linear frequency modulation appears. The sign of a, 
which determines an increase or a decrease in the instanta-
neous frequency inside the pulse, is equivalent to the sign of 
the phase front steepness of a spatial beam.

If for temporal pulses the compression – stretching mecha-
nism is the same both for normal and oblique incidence onto 
a chirped periodic structure, for a beam with oblique reflec-
tion, a lateral shift and a more complex deformation of the 
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Figure 1.  Reflection of various spectral components of a light beam 
from chirped periodic gratings for (a) a > 0 and (b) a < 0. The dashed 
and dash-dotted lines show the phase-front profiles of incident and re-
flected beams in the z = 0 plane, respectively.
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phase front arise. This case is studied in detail in the present 
paper using numerical methods. We have calculated the total 
field using the finite difference time domain method [5], while 
the spectral characteristics of the structure have been deter-
mined by means of the transfer matrix method [6].

One of practical applications of quasi-periodic structures is 
their use in amplification of short light pulses [7 – 9]. In this case, 
a preliminary stretching of the pulse takes place, which allows 
one to avoid nonlinear distortions during the amplification 
stage. Then the same structure, but with the opposite sign of the 
parameter a, is used to restore the previous shape and pulse 
duration. The transition in this scheme from the waveguide to 
volume samples requires consideration of diffraction effects.

A study of the transformation of the beam profile reflected 
from a quasi-periodic dielectric structure is of independent 
interest since such structures exhibit the properties of meta-
materials [10].

2. Reflection of wide beams. 
The Goos – Hänchen shift

A feature of a chirped dielectric structure is the existence of 
local forbidden bands not only in the frequency and angular 
spectra of incident radiation, but also along the longitudinal 
coordinate z.

Let a plane wave for which the Bragg condition is satisfied 
at point z0 be incident at an angle q0 onto a quasi-periodic 
structure of length L. In the case of a small dielectric contrast 
of the structure, when the permittivity is approximated as [4]

( ) cos ( )z
d
z z z2

2
1

0
0

0
2pe e e bD= + + -; E,	 (1)

it is possible to estimate the size of the local spatial forbidden 
band – the photonic barrier (PB). The barrier boundaries are 
determined from the condition d = ± k, where the Bragg reso-
nance detuning is /cosk d0 0 0 0pd e q= -  + b(z – z0), the 
Bragg coupling is /( )k 40 0k e eD= , e0 = n02, De » (e1 – e2)/2,  
and De/e0 << 1 is the dielectric constant. The photonic barrier 
size is defined as lpb = 2k/| b|. For chirped periodic structures 
used in practice, the parameter b ~ 108 – 109 rad m–2, and the 
photonic barrier width may constitute hundreds or thousands 
of periods.

We have investigated two-component quasi-periodic struc-
tures of different lengths, consisting of quarter-wavelength lay-
ers with refractive indices n1 = 1.6 and n2 = 1.4 at the parameter 
a = 2 ́  10–3. The angular forbidden band of the structure was 
located between the incidence angles q1 = 27° and q2 = 33°.

The light beam envelope has the form A(x) = exp[– (x – 
x0)2/2a2 ] (here a is the beam aperture), the wavelength is l = 
1 mm, and the angle of incidence is q0 = 30° (which corre-
sponds to exact Bragg resonance at point z0 = L/2). We have 
considered the reflection of light beams with wide (Dkx, b << 
Dkx, bg) and narrow (Dkx, b G Dkx, bg ) apertures, where Dkx, b is 
the width of the beam angular spectrum, and Dkx, bg is the 
bandgap width of the quasi-periodic structure.

Figure 2 shows the reflection of a weakly diverging 
beam (a/l = 15) under the conditions when the photonic 
barrier with lpb = 8 mm is located in the L/2 vicinity (in this 
and other Figures the shaded area shows the location and 
size of the quasi-periodic structure). There is virtually no 
profile distortion and phase modulation of the light beam. 
The total lateral shift (segment CD = 35 mm) of the reflected 
beam at the boundary z = 0 is composed of a shift due to 

the beam propagation in the transparency region of the 
chirped structure and a shift at the photonic barrier surface 
(segment AB = 2  mm), or the Goos – Hänchen shift (the 
G – H shift [11]).

Let us consider in more detail the G – H shift using the 
geometric approach proposed in the monograph [12] to 
describe the beam shift at the boundary of two homogeneous 
dielectrics with the refractive indices n1 and n2 under the con-
ditions of total internal reflection (n1 > n2). We may assume 
that the reflection occurs not from the interface between the 
dielectrics, but from a plane located at some effective depth 
deff. If deff is defined as the imaginary part of a reciprocal of 
the longitudinal component of the wave vector:  deff = Im(kz
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= sink n n0 2
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-_ i  [here q0 > qcr = arcsin(n2/n1) and qcr 

is the critical angle], then the beam lateral shift D = 2deff tanq0 
coincides with the value calculated according to the Artman 
formula: D = (k1cosq)–1djr/dq [13], where jr is the reflection 
coefficient phase, which has the form
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As an intermediate result, we consider the G – H shift in 
the case of angular incidence of the beam of electromagnetic 
radiation onto a homogeneous periodic dielectric structure 
(a = 0), when the beam angular spectrum is located inside the 
forbidden band [14]. As shown in [15], the reflection coeffi-
cient phase (it is assumed that n1 » n2 » 0e ) has the form j = 
arctan(dq–1tanh (kL)), where q 2 2d k= - . This implies that 
at d = 0 the lateral shift D = – dj/dkx = tanh (kL)k–1tanq. This 
expression coincides with the formula D = 2deff tanq if the 
effective layer depth is deff = 1/2k.

It is known [15] that the total field inside the structure is a 
superposition of forward and backward waves which expo-
nentially decay along z coordinate approximately as exp(–kz). 
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Figure 2.  (Colour online) Reflection of a wide light beam (a/l = 15) 
from a photonic barrier located inside the periodic structure (a = 2 ́  
10–3, lpb = 8 mm). Here and in Figs 3, 4 and 6 the arrows indicate the 
direction of beam propagation.
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The effective penetration depth can be estimated numerically 
by the expression:
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where Efor is the forward wave amplitude. Thus, the effective 
penetration depth of radiation is determined by the attenua-
tion of the forward wave’s ‘centre of gravity’. The same esti-
mate for the penetration depth also retains for chirped peri-
odic structures.

Figure 3 shows the reflection of a wide light beam under 
the condition that the photonic barrier is located at the peri-
odic structure edge. The total beam shift is only determined 
by the G – H shift whose magnitude constitutes several wave-
lengths of the incident radiation. For a particular structure 
(segment АВ in Fig. 3), as it follows from the geometrical con-
sideration, the G – H shift is D = 2 mm, whereas the numerical 
calculation using the Artman formula gives the value of D = 
1.9 mm. The estimates given above assume that the reflected 
beam retains its original profile.

The formulas obtained are valid for semi-infinite struc-
tures. Actually, this means that the attenuation inside the 
photonic barrier must be sufficient to ensure that the reflec-
tion coefficient is close to unity. This imposes a restriction on 
the size of the photonic barrier in the case of a chirped grat-
ing: the condition tanh(klpb) » 1 implies that klpb H 3. When a 
light beam is incident onto a structure with klpb < 3, a notice-
able tunnelling of electromagnetic radiation through the PB is 
observed (Fig. 4). This regime reduces the efficiency of the 
compression – stretching mechanism of reflected pulses 
(beams) and is not used in practice.

It also follows from the above estimates that, with the 
exception of the near-surface layer, we can neglect the G – H 
shift (segment AB in Fig. 3) against the background of the 
total beam shift (segment CD in Fig. 2).

3. Reflection of narrow light beams

Consider the reflection of narrow divergent light beams, 
i.e. the beams possessing a wide angular spectrum (Dkx, b G 
Dkx, bg) with phase modulation. The reflection region of 
such beams embraces a considerable part of the chirped 
structure, with the beam profile and its wavefront being 
distorted.

Since there is no explicit expression for the reflection 
coefficient, approximate formulas can be used to estimate 
the lateral shift and angular dispersion. We assume that the 
reflected beam is formed from the spectral components, 
each of which is completely reflected from the planes located 
at various depths. The reflection coefficient of the current 
spectral component is R » exp(i2zkz), where its phase j = 
2zkz, and 2z = 2(kz – k0)/b + z0 is the double path that the 
spectral component has passed in the longitudinal direction 
when reflected from the plane at the depth z. Defining the 
shift by the formula D = – dj/dkx and using the relationship 
between the longitudinal and transverse components of the 
wave vector: k2 = kx

2 + kz
2, we obtain approximate formulas 

for the lateral shift and phase modulation of the beam’s 
spectral components:
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(here q is the current angle).
We may conclude from formula (3) that a stretched 

reflected beam is formed in the plane z = 0, whose spectral 
components have a characteristic linear lateral shift along x. 
Figure 5 shows the dependences D(kx) calculated by formula 
(3) [curve ( 1 )] and using a numerical method [curve ( 2 )]. The 
shape of the curves is almost the same; however, curve ( 2 ) 
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Figure 3.  (Colour online) Reflection of a wide beam (a/l = 15) from a 
photonic barrier located at the front boundary of the chirped structure (a 
= 2 ́  10–3, lpb = 8 mm). 
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Figure 4.  (Colour online) Reflection of a wide beam (a/l = 15) at a re-
duced photonic barrier located at the front boundary of the chirped 
structure (a = 6 ́  10–3, lpb = 2.75 mm).
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contains lateral shift oscillations caused by re-reflections of 
light radiation inside the periodic structure. The diffraction 
parameter (4) determines the sign and magnitude of the 
beam’s wavefront curvature.

Figure 6 shows the reflection of a narrow divergent light 
beam from a chirped structure with a = –2 ́  10–3. It can be 
seen that a significant part of the periodic structure is involved 
in the reflected beam formation. The beam acquires a conver-
gent wavefront in the course of reflection. Along with focus-
ing of part of the reflected beam, additional beam reflections 
and a more complex field structure in the region of its forma-
tion are observed.

When the sign of a changes, the light beam, after reflec-
tion from the quasi-periodic structure, acquires a phase front 
corresponding to the divergent beam, and its profile broad-
ens. With further propagation in free space, such a beam will 
continue to diffract.

The efficiency of using the chirped volume structures for 
the transformation of light beams depends on the accuracy of 
matching the spectral characteristics of the compression and 
stretching devices. Since the dependence of the angular dis-
persion on the angle in the chirped structures is nonlinear, this 
limits the use of narrow light beams with a large angular 
divergence.

The use of sufficiently wide beams makes it possible to 
improve the adjustment accuracy. As an example, let us con-
sider the compression of a diffracted light beam (a/l = 5 ́  103, 
l = 1 mm, q = 45°, – kd2j/dkx

2 = 2.83 m) by approximately 
25 times when the beam is reflected from a chirped periodic 
structure with parameters L = 1.5 cm, a = –5 ́  10–7, De/e0 » 
10–3 (Fig. 7). As a result of phase modulation compensation, 
the beam restores its original width (a/l = 200) at the bound-
ary z = 0. The restoration efficiency is 96 %, which is related 
to the beam energy losses due to tunnelling.

4. Conclusions

We have numerically calculated the reflection of the light 
Gaussian beams with various angular spectrum widths from a 
chirped dielectric plane-layered structure. By means of a geo-
metric approach, approximate formulas for the total lateral 
shift, Goos – Hänchen shift, and phase modulation of the 
reflected radiation wavefront have been obtained.

The total lateral shift of the reflected beam with a narrow 
angular spectrum is composed of the Goos – Hänchen shift 
and the shift associated with radiation propagation in the 
transparency region of a quasi-periodic structure. The reflec-
tion of light beams with a wide angular spectrum is accompa-
nied by a growth of the region of radiation interaction with 
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Figure 5.  Dependences of the lateral shift on the wave vector’s trans-
verse component, obtained with ( 1 ) the use of formula (3) and ( 2 ) nu-
merical calculation. The periodic structure parameters: L = 1.5 cm, n0 = 
1.4, a = –5 ́  10–7, De/e0 » 10–3.
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Figure 6.  (Colour online) Focusing of the narrow beam reflected (a/l = 
5) from the chirped periodic structure (a = –2 ́  10–3).
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Figure 7.  Compensation of phase modulation after reflection from a 
chirped grating. Shown are the profiles of ( 1 ) the initial beam, ( 2 ) 
broadened beam and ( 3 ) reflected beam in the z = 0 plane, and also ( 4 ) 
the transmitted beam in the plane z = L
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the structure, and, as a result, the profile is broadened and a 
phase modulation of the angular spectrum appears. The use 
of a chirped periodic structure allows one to obtain both con-
verging and divergent light beams during reflection.
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