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Abstract.  We report a numerical analysis of the stochastic accel-
eration of electrons, stipulated by a random change in the phase of 
the force acting on the electron. The main source of randomness is 
the random spatial distribution of electromagnetic fields in the 
focal region of multimode laser radiation. A typical frequency of 
the random phase change corresponding to the maximum impact of 
the effect under consideration lies in the range of (0.25 – 0.5)n (n is 
the radiation frequency of a neodymium laser). A wave packet 
model convenient for calculations taking into account the radiative 
transitions of the neodymium ion is proposed. The dependence of 
the average energy of relativistic electrons on the flux density in the 
range of 1015 – 1018 W cm–2 is calculated. The time dependence of 
the average electron energy during the laser pulse in the form of 
approximating formulas is constructed. The typical time for the 
development of stochastic heating of electrons is determined. It is 
found that the stochastic acceleration process weakly depends on 
the laser pulse duration, when the latter exceeds several hundred 
periods of the electromagnetic wave.

Keywords: laser plasma, stochastic heating of electrons, electron 
distribution function.

1. Introduction

Recently, in many studies on the irradiation of solid targets 
by high-intensity laser radiation, the generation of electrons 
with an anomalously high energy being significantly higher 
than the equilibrium energy for the relevant flux density has 
been observed both experimentally and theoretically (see, 
e.g., [1 – 5]). Interest in the studies on the generation of high-
energy electrons in laser plasma is stipulated not only by the 
importance of this process for laser thermonuclear fusion, but 
also by the urgency of using such electrons for the diagnostics 
of plasma and other objects, and also for solving the funda-
mental problems of correct derivation of the matter state 
equation under extreme conditions and, accordingly, for con-
structing the behaviour models for dense and super-dense 
plasma at high temperatures [3, 6, 7]. In experiments on the 
Doppler shift of resonant lines of multiply charged ions in the 
X-ray range, Basov et al. [8] for the first time observed the ion 
velocities corresponding to an anomalously high energy (sev-

eral megaelectronvolts) at moderate intensities on the target 
(~1013 W cm–2). Generation of strongly ionised ions with 
anomalously high energies under resonance absorption con-
ditions was also observed and explained for longer wave-
length radiation of the CO2 laser [9]. The presence of these 
ions also indicates the generation of high-energy electrons. 
One of the explanations for the appearance of such electrons 
may be the stochastic mechanism of heating of charged par-
ticles in an electromagnetic field with a random change in the 
field phase, and, consequently, in the force acting on the elec-
tron in the course of its motion [6, 10, 11]. Generation of high-
energy electrons also took place in hydrodynamic calcula-
tions, including the interpretation of some experiments [7]. As 
shown by recent experiments [12], heating of electrons up to 
relativistic temperatures makes it possible to use laser plasma 
as a point source of positrons and, in the long run, to form 
electron – positron plasma. 

In a free electromagnetic field of a light wave, the electron 
is periodically accelerated and decelerated, thus oscillating in 
the energy space and gaining on average some oscillation 
energy comparable to the energy acquired per quarter of the 
wave period. This energy is not much larger than the 
Maxwellian (thermal) energy in the laser plasma. Periodic 
electron energy variations occur much more slowly than the 
variations of the wave amplitude, at least for the particle rela-
tivistic motion in the fields with flux densities of more than 
1013 W cm–2. If, at the end of the acceleration period, the local 
wave phase and, correspondingly, the phase of the Lorentz 
force acting on the electron are changed, a possibility of mul-
tifold acceleration appears. In an ideal case, it is desirable to 
change the phase synchronously with the electron motion. In 
reality, the change in the wave phase that an electron ‘sees’ 
occurs randomly. The sources of randomness may be the elec-
tromagnetic field fluctuations caused by the spatially inho-
mogeneous structure of multimode radiation focused on 
the target [5, 13]; the field distortions stipulated by the oscil-
lations arising in the plasma, which leads to the emergence 
of spontaneous electric fields in the longitudinal direction 
[10, 11]; the fluctuations of the relative phase of spectral com-
ponents of the inhomogeneously broadened line of laser radi-
ation; the spontaneous magnetic field [14]; and the fluctua-
tions in the plasma refractive index when using low-density 
microstructured targets [15].

By measuring directly the emission current, the authors of 
Refs [2, 3] experimentally recorded electrons with an anoma-
lously high energy as compared with the thermal energy. It 
was found that a significant fraction (~10 %) of electrons 
have an energy over 100 keV with a luminous flux density of 
~1013 – 1014 W cm–2, which corresponds to a plasma tempera-
ture of ~500 eV. Thus, the fraction of such electrons turns 
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out to be much larger than it should be for the Maxwellian 
distribution. An attempt was made in works [5, 6] to evaluate 
numerically the possibility of stochastic heating of the elec-
tron gas in the electromagnetic field of laser radiation and to 
present a qualitative comparison with experimental results. In 
this case, the electron gas temperature is estimated as the 
average energy with respect to the relevant nonequilibrium 
distribution function for relativistic electrons, averaged over 
the laser pulse duration. 

In the present work we consider the dynamics of electron 
emission as a function of the laser pulse structure which is 
represented in the form of a wave packet corresponding to 
the spectral composition of the radiation of a neodymium 
laser. Emission of electrons in this case is understood as 
their escape from the region of interaction with the electro-
magnetic field, i.e. from the region of laser radiation focus-
ing onto the target. The flux distribution function of emitted 
electrons is of interest. The shape of the distribution func-
tion is determined both in energy and momentum represen-
tations. The time dependence of the distribution function is 
found during the laser pulse action at a radiation intensity 
up to 1018 W cm–2. Formulas for electromagnetic fields are 
obtained with allowance for the random parameters deter-
mining the stochastic acceleration of the particles. Probable 
sources of randomness in a laser – plasma system are anal-
ysed.

2. A wave packet simulating the laser field  
in the interaction region

The radiation line structure of the neodymium laser with 
inhomogeneous broadening of the Stark components in the 
neodymium transition 4F3/2 – 4I11/2 and the processes of gen-
eration of short laser pulses in neodymium glass have been 
studied in detail [16 – 18]. Based on the data on the neodym-
ium laser, we construct an analytical model of a short laser 
pulse (wave packet), which is convenient for numerical calcu-
lations.

Consider a number of assumptions underlying this model. 
In contrast to work [16], two upper Stark sublevels and six 
lower sublevels are considered equidistant, and their splittings 
are the same, although in reality the upper level splitting is 
almost two times greater than the distance between the sub-
levels of the lower level 4I11/2 (75 cm–1). Twelve Stark compo-
nents in our model have the same frequency form, close to the 
Lorentzian one, but different amplitudes. 

A short laser pulse has a bell-like parabolic shape, i.e., an 
ideal contrast. In the near zone (at the laser output), the field 
intensity in the beam has a near-rectangular super-Gaussian 
(of eighth degree) distribution over the aperture with a sharp 
dip at the edges. Thus, the wavefront field is inhomogeneous, 
and the field amplitude variation is random. The field ampli-
tude fluctuations along the aperture constitute ~10 %, and, 
accordingly, the field’s local phase varies randomly. The spa-
tial distribution of intensity over the laser beam aperture has 
the form of a speckle structure. The spatial inhomogeneity 
size of the amplitude and phase is of the order of several mil-
limetres (spatial coherence), which corresponds to that exper-
imentally observed for neodymium lasers. Thus, the wave 
front curvature before entering the focusing system locally 
changes in a random manner. All this has an impact on the 
electromagnetic field distribution in the focusing region. Note 
that in a target with a subcritical density characterised by 
bulk absorption, the interaction of laser radiation with elec-

trons occurs in the focusing region volume inside a low-den-
sity medium rather than on the surface.

Next, to simulate a random structure of an electromag-
netic field in the focal region, we define a wave packet with 
random phase parameters, as described below.

Let the amplitudes of the Stark components decrease sym-
metrically with distance from the centre frequency, in con-
trast to the numerical calculations of the above-mentioned 
works. In our model, the effects associated with cross-relax-
ation and the efficiency of the inversion reset are not taken 
into account. All 12 Stark components of the radiation line 
are assumed equivalent.

The formulas
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define, respectively, the temporal shape of a pulse having a 
duration t and the distribution of the components over the 
field amplitude. Here the subscript i is the current temporal 
index ranging from 1 to N = nlNp; nl is the number of wave 
periods; Np is the number of points per period; NL is the num-
ber of components in a line; and j is the number of the laser 
line component. In this case, we can represent the expression 
for the composite wave with in-phase components in the form
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where w0 is the centre frequency; and Dnl is the number of 
periods corresponding to the frequency interval between 
neighbouring equidistant components.

A wave with random component phases appears as
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and Fj (t) are the random phases of the components relative to 
each other within the uncertainty relation.

The expressions for the total field amplitude of all compo-
nents with a phase yi external to the wave packet have the 
form

i( ) [ ( , ) ] ( )expE t f j t fRnd e i
j

iy=y ' 1/ .

A few words should be said about the random function yi. 
The phase yi corresponds to the field phase that an electron 
‘sees’. It is determined by the relative position of the electron 
and the wave. In other words, this is a local field phase at the 
location of a moving electron at a given time. This phase 
depends on the spatial structure of the field, since the elec-
tron, being as a rule relativistic, in some measure moves in 
space randomly, changing, along with its position, also its 
momentum, both in magnitude and direction. The process of 
interaction of an electron with a field in this case occurs for a 
sufficiently long time, i.e., during many (tens and hundreds) 
periods. This is the so-called stochastic acceleration, in con-
trast to direct acceleration which lasts a single period or sev-
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eral periods in the case several independent lasers are used. 
Therefore, in our case, the random phase variation in time is 
also essential. We should note that the electric field is respon-
sible for electron acceleration, while the magnetic field is 
responsible for changing its trajectory, including the change 
in the direction of its momentum. This is equivalent to a ran-
dom variation of the electromagnetic field phase yi in time at 
the electron location. Thus, this time-dependent function, in 
fact, simulates the random nature of the force acting on the 
electron along its trajectory.

Figure 1 shows an instantaneous phase picture of the laser 
radiation components at a certain time moment. The phase of 
each component changes with time independently. A random 
change in the phase of the field of each component is assumed 
pre-determined, i.e. it does not depend on the state of the 
ensemble of electrons. The envelope of the field maxima of 
the components has a bell-like shape. 

A model of the spectral line structure for the neodymium 
laser on silicate glass with a radiation wavelength l = 1.06 mm 
is illustrated in Fig. 2. It shows the frequency dependence of 
the wave’s electric field strength. The black thick curve cor-

responds to the instantaneous line shape, taking into account 
the random phases of all the components and the function yi. 
The asymmetry (both phase and amplitude) of the line’s wings 
with respect to the centre frequency w0 = 1.78 ´ 1015 s–1 can be 
observed. A small frequency variation at the maximum also 
occurs (not shown in Fig. 2). For comparison, the line’s field 
is shown with no allowance for the perturbing phases for 12 
components (dashed curve). Here a complete symmetry of the 
wings is observed. All the curves have been obtained for a 
pulse duration of 3.5 ps, i.e., for as many as ~103 periods of 
the field oscillations.

3. The motion equations  
with random parameters

The motion equations for a relativistic electron can be written 
in the form:
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are the reduced momentum, electron kinetic energy, electric 
and magnetic fields, respectively; q is the electron charge; m is 
its mass at rest; and g is the relativistic factor. In the formulas 
of this section, the quantities with a prime are real physical 
variables. The last term L(p) in the first equation takes into 
account the deceleration force frad = |dprad /dt| acting on the 
accelerated particle at the expense of the electron radiation 
response in the electromagnetic wave field, and also the decel-
eration force fee = |dpee /dt| resulting from the long-range inter-
action of a relativistic electron with a cloud of relatively slow 
electrons with a concentration n » 1.6 ´ 1020 cm–3. Thus, the 
deceleration force is L(p) = frad + fee, and its direction coin-
cides with the direction p of the momentum of the accelerated 
electron. The excitation of electron plasma waves by a bunch 
of accelerated electrons is not taken into account. 

To evaluate the radiation response, we use the expres-
sion 
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for the energy loss e' of a relativistic electron due to magnetic-
bremsstrahlung in the field of a plane polarised wave [19].

In our notations, we obtain a relation for the radiation 
force
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Figure 1.  Instantaneous phase picture of components at a given time 
moment: ( ) maximum amplitudes of components and ( ) random 
phases of each component.
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Figure 2.  (Colour online) Laser line structure with random phases con-
sisting of 12 components (black thick curve). The family of thin curves 
is the line of 12 components. The dashed curve is a composite line with-
out taking into account the random phase yi.
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where r0 is the classical radius of the electron. We should note 
that although the radiation response force increases strongly 
with increasing electron energy, it is still substantially less 
than the accelerating force for the range of the laser flux den-
sities under consideration.

The deceleration force of particles due to the long-range 
interaction is determined for the case of Coulomb scattering 
of a relativistic electron by small angles on relatively resting 
electrons [20]. As the maximum impact parameter, we take 
the Debye radius rD, and as the minimum impact one – the 
Compton wavelength rC. The energy loss per unit length x is 
given by the expression
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In the calculations, the Coulomb logarithm is assumed equal 
to ~10.

In our case, the electromagnetic field is assumed strong 
and pre-determined, so that the energy dissipation due to the 
excitation of plasma oscillations and their damping is not 
considered. These equations do not take into account the 
losses caused by bremsstrahlung resulting from collisions 
with ions. However, it should be noted that at flux densities 
above 1018 W cm–2, the radiation response at each step (cell) 
becomes significant and must be taken into account in elec-
tron trajectory calculations.

Making allowance for the friction forces L(p) leads to a 
slight ‘dip’ in the high-energy part of the distribution func-
tion, which virtually does not affect the average energy evolu-
tion. The Coulomb force fee does not explicitly depend on the 
intensity; therefore, its contribution to electron deceleration 
decreases with increasing field amplitude. As for the radiation 
response, the situation here is opposite. When the field ampli-
tude increases, the force frad of magnetic bremsstrahlung 
response quadratically increases. In the relativistic case, the 
ratio of the radiation force and the ponderomotive force Fem 
appears as

F
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where, as follows from the calculations, p µ g µ IL
0.4. For 

example, at a laser radiation flux density of IL » 1018 W cm–2, 
h » 10–3, while at IL » 2 ´ 1019 W cm–2 it can reach ~0.16. 
The above expression for the ratio of forces is only valid for 
h << 1.

The electromagnetic field is assumed to be specified, i.e., 
independent of the plasma properties. Based on the said above, 
we can write the expressions for the electric and magnetic fields 
with random phases under consideration in the form:

E(r, t) = E0(r)ERnd y(t)exp(ik0t)

	 ´ [(1 – gr)exp(–kr) + 2gr cos(kr + f(r))],

B(r, t) = B0(r)ERnd y(t)exp(ik0t) ´

	 ´  [(1 – gr)exp(–kr) + exp(–ip/2)2gr sin(kr + f(r))].

Here gr is the amplitude reflection coefficient; k is the wave 
number; k0 = w0 /c; and f(r) is the random phase of the 
reflected wave. The reflected wave is formed in the region of 
critical density. In our model, it is assumed that the reflected 
wave has the same phase structure as that of the incident 
wave. This assumption is justified only for small reflection 
coefficients (in the calculations it is assumed that  gr = 0.2) 
which are realised in the majority of experiments on laser 
plasma heating. The motion of electrons was considered from 
a certain restricted region of space with a random location of 
electrons, similarly to [6]. The initial particle distribution in 
the momenta was chosen Maxwellian, with a temperature of 
about 1 keV, which corresponds to the plasma corona tem-
perature near the critical density region. As a result of the 
angular distribution of modes in the laser beam far zone that 
corresponds to the radiation focusing region, speckle struc-
tures are formed in the field distribution, and the changes in 
the phase of the field acting on the electron are random when 
passing from one peak to another [5]. This leads to the fact 
that the moving electron is subjected to the electromagnetic 
field with a phase that changes greatly during a time being 
much shorter than the wave period (i.e., in discrete steps). In 
this case, the phase is considered constant in the interval 
between jumps. The random distribution of the relative phase 
is taken into account for each spectral component, and the 
frequency of the field phase change corresponds to 0.4n (n is 
the laser radiation frequency). The motion equations were 
solved by the fourth-order Runge –  Kutta method with adap-
tive step and the spatial resolution in the calculations was 50 
points per electromagnetic wave period. To find the time evo-
lution of the electron distribution function along with the 
mean energy T of electrons, we used ~104 test particles. The 
statistical accuracy of determining the electron energy T aver-
aged over the entire particle ensemble at a given time moment 
constitutes ~1 %.

4. Results of calculations and their discussion

Typical particle trajectories in the process of acceleration 
without taking friction forces into account in the motion 
equations are given in [5]. Since the friction forces are small, 
they have little impact on the size of the acceleration region. 
At the initial stage, most electrons are captured into the accel-
eration regime. Acceleration mainly occurs along the wave 
vector. In our case, the electron beam divergence at the pulse 
end was ~0.05 rad with a flux density of 1018 W cm–2. In this 
range of radiation flux densities, the electron beam divergence 
decreases proportionally to T –1/2.

Proceeding from the results of work [5] and our calcula-
tions, the size of the interaction region (the typical size of tra-
jectories) turns out equal to ~0.05 cm in the longitudinal 
direction, and ~0.01 cm in the transverse direction. In our 
calculations, the plasma density is considered constant in this 
region. At the end of the laser pulse, all the particles move by 
inertia, no longer interacting with the electromagnetic field 
and plasma. We should note that the dependence of energy on 
time for each particle has a very non-smooth random charac-
ter; the energy jumps are sometimes comparable to the energy 
itself. The same applies to the phase dependences and, to a 
lesser extent, to the dependences of coordinates on time. 
However, averaging over the ensemble of particles gives a 
relatively smooth dependence T(t). (The average energy T is 



919Time evolution of the distribution function for stochastically heated relativistic electrons

not the electron temperature; it rather represents a spread in 
energy of electrons in the directed beam.) 

The results of calculating the time evolution of the nor-
malised probability density distribution of electrons are 
shown in Fig. 3. The curves here are presented for different 
time moments during the laser pulse action. The distribution 
function undergoes a significant change in the course ~100 
laser wave periods after switching the field on (first five 
curves, starting from the left). The distribution function max-
imum at the end of the laser pulse can sometimes slightly shift 
towards lower energies. At the same time, the average elec-
tron energy continuously increases with time and reaches a 
maximum value at the end of the laser pulse. This can be 
explained by the fact that, by the end of the laser pulse, the 
distribution function tail is always located in the region of 
higher energies. After 2.5 ps (~700 periods), the distribution 
function experiences saturation, and its shape remains further 
virtually unchanged (three curves shown by thin lines). The 
fine-scale random structure that most clearly manifests itself 
at the end of of the laser pulse is not related to the accuracy of 
the calculations. It is a consequence of the stochastic nature 
of the spatiotemporal structure of the electromagnetic field. A 
change in the distribution function within the high-energy 
region occurs at the leading edge of the laser pulse, while the 
energy distribution of electrons remains virtually unchanged 
in the region of the pulse decay. The distribution of electrons 
in energies is very different from the Maxwellian one, espe-
cially in its high-energy part.

The average energy of electrons at a given time moment 
was calculated over the entire ensemble of relativistic elec-
trons, regardless of their location by this time moment. The 
calculated values of the mean energy T versus time are shown 
in Fig. 4 (curve with circles). The laser pulse shape was chosen 
to be bell-like, which is closer to real pulses of neodymium 
lasers compared to rectangular or triangular pulses.

The maximum energy growth rate is observed at the lead-
ing edge of the pulse, where the time derivative of the local 
field amplitude is positive. The initial stage of energy accumu-
lation by an electron is described by the power-law depen-
dence Tin µ m b (dashed curve), where m is the number of cells 
in which the force phase changes. That number is approxi-
mately equal to half the number of field periods in the labora-
tory coordinate system by the given time moment. The time 

dependence of the kinetic energy averaged over the entire 
ensemble of electrons can be analytically represented in the 
form

Tin(t) = Bint b,

where energy is taken in MeV and time in ps; the coefficient 
Bin weakly depends on the field intensity in the relativistic 
case and is equal to ~1.4 in the flux density range of 1017 – 
1018 W cm–2; and the stochastic electron acceleration index  b 
» 4. This formula is valid at the leading edge of the laser pulse 
for a time less than 1.5 ps, which is less than 400 periods. The 
corresponding dependence of Tin(t) is presented in Fig. 4 by 
the dashed curve.

During the pulse, the energy growth slows down, and 
after ~700 periods (~2.5 ps) becomes saturated. Based on the 
calculations, we describe the energy evolution (in MeV) dur-
ing the laser pulse action by the approximate analytical 
expression with two empirical parameters B1 and B2:
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Here time is measured in picoseconds; the parameters B1 = 
0.227 and B2 = 0.012 are virtually intensity independent in the 
flux density range of 1016 – 1018 W cm–2; the parameter B0 
depends on the laser radiation intensity: B0 µ IL

a; and the 
parameter a is determined from the slope of the dependences 
of the average electron energy on the flux density given in 
Fig. 5. For curve ( 1 ) in Fig. 5, the exponent a is about 2/5 in 
the flux density range 1016 – 1018 W cm–2. For example, for a 
flux density of 2 ´ 1018 W cm–2, the parameter B0 is about 
25 MeV. The dependence of the average electron energy cal-
culated according to the approximation formula for Tapp(t) is 
represented in Fig. 4 by a grey curve. The dashed curve in 
Fig. 4 illustrates the accuracy in the case of approximation by 
means of the analytical expression Tapp(t) compared to the 
dependence T(t) obtained numerically. Note that the function 
Tin(t) represents the first term of the fourth order in the time 
expansion of the function Tapp(t).

At the initial stage, with increasing intensity in time, the 
stochastic acceleration of electrons, averaged over the entire 
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ensemble of particles, resembles in its nature the Fermi accel-
eration [21] for a relativistic particle in a non-autonomous 
dynamic system. However, in the middle of the pulse, where 
the field amplitude varies only slightly, the energy growth rate 
decreases, and at the pulse end, with the average intensity 
decreasing with time, the average energy experiences satura-
tion and remains constant (without taking into account the 
losses caused by bremsstrahlung ). The acceleration develop-
ment after switching on laser radiation occurs during ~150 
wave-phase perturbations, i.e., during ~0.5 ps for a wave-
length l = 1.06 mm.

In work [7], using the ATLANT-HE software [7], two-
dimensional hydrodynamic calculations of the energy of fast 
electrons being produced during heating of an aluminium tar-
get by the iodine laser radiation (first and second harmonic) 
with an intensity of ~1016 W cm–2 were conducted. According 
to the scaling performed in this work, the dependence of 
energy on intensity is determined by the expression T » 
8(ILl2 )2/3, where T is taken in keV, IL – in PW cm–2 and l – in 
mm. Estimates according this formula give T » 40 keV at flux 
densities of ~1016 W cm–2, which is approximately three times 
less than the value obtained from the results of the present 
work. It should also be noted that the scaling performed in 
the work mentioned above gives a different, as compared with 
the present work, character of the energy dependence of fast 
electrons on the flux density of laser radiation on the target in 
stochastic processes. A different form of the dependences of 
the average electron energy on the radiation intensity is 
apparently explained by a difference between the distribution 
functions of electrons obtained in this work and that used 
in [7, 22].

A few words should be said about the possibility of exper-
imental observation of the stochastic mechanism of electron 
acceleration. The necessary experimental conditions can be 
implemented by irradiating low-density targets [23], when 
plasma with a homogeneous subcritical electron density is 
formed over the entire volume of the interaction region, with 
a transverse size of ~0.01 cm and a longitudinal size of 
~0.05 cm. In this case, the distribution function is measured 
as a function of the laser pulse duration (in the range 0.2 – 
3 ps), along with the dependence of the average energy at the 
pulse end on the radiation intensity at the target (up to 
~1018  W cm–2). This experiment is possible, for example, 
using such picosecond installations as PICO-2000 LULI 

(École Polytechnique, Palaizeau) [24], PHELIX-GSI 
(Darmstadt) [25], TRIDENT [Los Alamos] [26], OMEGA EP 
(Rochester) [27], and others.

5. Conclusions

The stochastic mechanism of electron heating we have con-
sidered can only develop at the pulse duration of the order 
of 1 ps or more, including that at nanosecond durations. 
The average energy of electrons can substantially exceed (by 
more than an order of magnitude) the energy of oscillatory 
motion, i.e. the energy of direct acceleration in the laser 
field. In this case, the length on which acceleration and 
energy accumulation occur is significantly reduced. The for-
mulas derived from numerical analysis to describe the time 
dependence of the average energy of electrons can be useful 
both for hydrodynamic calculations and for experimental 
data processing.

We also note that stochastic acceleration of relativistic 
electrons occurs mainly along the wave vector [4, 5, 11]. This 
is equivalent to the emergence of a longitudinal macroscopic 
electric field (stochastic ponderomotive force) in the interac-
tion region. Such a mechanism of particle acceleration can be 
used in studies on magnetic reconnection [28] and in model-
ling the acceleration of matter in astrophysical objects (bursts 
of high-energy radiation, cosmic ray acceleration). The same 
mechanism can also lead to undesirable pre-heating and 
instabilities in compression of a thermonuclear target.
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