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Abstract.  We report the results of numerical simulation of the evo-
lution of a weak elliptically polarised input probe pulse in the case 
of electromagnetically induced transparency in the field of ellipti-
cally polarised control light. It is shown that the electric field 
strength of any input probe pulse can be represented as a sum of the 
electric field strengths of two subpulses whose polarisation ellipses 
have the same constant eccentricities and mutually perpendicular 
directions of the major axes, one of these axes being parallel to the 
major axis of the polarisation ellipse of the control light. The direc-
tions of rotation of the electric field strength vectors of subpulses 
are mutually opposite. Subpulses move with different velocities in 
a medium, which leads to their spatial separation. In the propaga-
tion of subpulses, their polarisation characteristics (eccentricities 
and directions of major axes of polarisation ellipses) remain 
unchanged. At any stage of evolution, including the instants of 
significant spatial overlapping of subpulses, the intensity of the 
probe light in the medium is the sum of their intensities. 
Consequently, these subpulses are nonstationary mutually orthog-
onal elliptically polarised normal modes of the probe field whose 
existence is related to the medium anisotropy caused by the con-
trol field. The simulation is carried out for a scheme of degenerate 
quantum transitions between 3P0 , 3P1

0 and 3P2 levels of the 208Pb 
isotope, taking into account the Doppler broadening of the spec-
tral lines under the assumption that the probe field has a higher 
frequency than the control field.

Keywords: electromagnetically induced transparency, elliptic polari­
sation of light, birefringence, normal modes.

1. Introduction

Optical control of electromagnetic fields and populations of 
quantum-transition energy levels, based on the destructive 
interference of probability amplitudes under resonance exci-
tation by the laser light, is of considerable interest in connec-
tion with the possibilities of its practical application. Depending 
on the specifics of the experiment, this control underlies a 
number of effects, the most significant of which are popula-
tion trapping [1, 2] and electromagnetically induced transpar-
ency (EIT) [3 – 5]. Restricting ourselves to the EIT phenome-
non, we note that its use is promising for the development of 
systems of optical quantum memory [4], systems of quantum 

communications [4, 6, 7] and quantum information [3 – 5], and 
devices for high-precision magnetic measurements [8] and 
chronometry [9]. EIT lies at the basis of methods for produc-
ing large optical nonlinearities [5, 10] and amplification with-
out population inversion [11, 12].

In the presence of a degeneracy of quantum-transition 
energy levels, EIT in a specific way manifests itself in the evo-
lution of the polarisation characteristics of the interacting 
light fields. Thus, the authors of Refs [13, 14] studied theo-
retically and experimentally the EIT-accompanying rotation 
of the polarisation plane of the probe field with a change in 
the control light intensity, and the authors of Refs [15, 16] 
examined the effect of a constant magnetic field on the evolu-
tion of the circular components of the probe light. The linear 
and circular birefringence of the probe field in the case of EIT 
was investigated theoretically and experimentally in [17]. 
Theoretical work [18] predicted the possibility of propagating 
a probe EIT field in the form of two modes with different 
polarisation states. 

In the above-mentioned works devoted to the study of the 
polarisation effects in EIT, the amplitudes of the probe and 
control fields were assumed to be stationary. This approach is 
valid for describing the quasi-stationary interaction of the 
waves, when the duration of the light pulses significantly 
exceed the times of irreversible relaxation of quantum transi-
tions. Another situation, called the nonstationary EIT regime, 
arises if the probe pulse duration is less than the irreversible 
relaxation times or is comparable with them. It is this regime 
that is most promising from the point of view of the practical 
use of EIT in quantum communication and information sys-
tems. In [19, 20], a theoretical study was made of the propaga-
tion of the polarisation pulses of the probe field in the case of 
EIT in degenerate two-level quantum systems. It was found 
that the transfer of the light energy occurs at the speed of light 
in a vacuum, while the polarisation wave of the light propa-
gates in a medium with a lower velocity. In work [21, 22], we 
studied theoretically the nonstationary EIT regime in the 
cases of linear and circular polarisations of the input control 
field in the L-scheme of degenerate quantum transitions. We 
showed that the birefringence arising under the action of the 
control light leads in the first case to the splitting of the circu-
larly polarised input probe pulse into linearly polarised sub-
pulses in the medium, while in the second case, the linearly 
polarised input probe pulse separates into circularly polarised 
components.

In this paper, we present the results of a numerical simula-
tion of evolution of a weak short elliptically polarised probe 
pulse in the field of the elliptically polarised control light. The 
case of counterintuitive imposition [3] of interacting fields is 
considered. It is shown that birefringence in this situation 
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occurs at the frequency of the probe field, leading to the split-
ting of the input probe pulse into two elliptically polarised 
subpulses with identical eccentricities of the polarisation 
ellipses, but with different directions of rotation of the electric 
field strength vectors. Subpulses move in the medium without 
changing the polarisation state, and any probe pulse can be 
represented as the sum of subpulses propagating indepen-
dently of each other. In other words, these subpulses are non-
stationary normal modes of the probe light under EIT condi-
tions in the field of the elliptically polarised control light.

Our theory takes into account the inhomogeneous broad-
ening of the quantum-transition lines and does not use the 
weak probe field approximation, although the latter is 
assumed to be rather weak in comparison with the field of the 
control light. The calculations were carried out for a scheme 
of quantum transitions between the degenerate energy levels 
3P0, 3P2, 3P10 of the 208Pb isotope, in the vapours of which the 
authors of Refs [23, 24] experimentally observed EIT of circu-
larly polarised laser fields.

2. Formulation of the problem

The L-scheme underlying the further analysis consists of 
nondegenerate lower (3P0), fivefold degenerate middle (3P2) 
and triply degenerate upper (3P10) levels of the 208Pb isotope. 
Let fk (k = 1, 2, ..., 9) be an orthonormal basis of the com-
mon eigenfunctions of the operators of energy, square and 
projection of the angular momentum on the z axis for an 
isolated atom corresponding to the lower (k = 1, M = 0), 
upper (k = 2, 3, 4, M = –1, 0,1) and middle (k = 5, 6, ..., 9, M 
= –2, –1, 0, 1, 2) levels. We denote by D1 and D2 the reduced 
electric dipole moments of the 3P0 ® 3P1

0 and 3P2 ® 3P1
0 transi-

tions, respectively, and by w1 and w2 (w1 > w2) the frequen-
cies of these transitions for an atom at rest. We also set T1 = 
1/D1, where D1 is the half-width (at the e–1 level) of the den-
sity distribution of frequencies w'1 of the 3P0 ® 3P1

0 transitions 
in view of the Doppler effect.

We define the electric field of two laser pulses propagating 
along the z axis, having carrier frequencies w1 and w2 (probe 
and control pulses, respectively), in the form

E = ( )cosE t k zil
l

xl l l xl
1

2

m w d- +
=

6/

	 ( )cosE t k zj yl l l ylw d+ - + @,	 (1)

where ml = /(| | )l D T2 1 l 1' + ; i and j are the unit vectors of the 
x and y axes; Exl, Eyl are the nonnegative real amplitudes; dxl 
and dyl are the phase additions of the x- and y-components of 
the probe ( l = 1) and control ( l = 2) fields; and kl = wl /c. The 
quantities Exl, Eyl, dxl and dyl are functions of z and t.

We define the variables fl and gl as

fl = [Exl exp(idxl) – iEyl exp(idyl)] / 2 ,

gl = [Exl exp(idxl) + iEyl exp(idyl)] / 2 .

Following [25], we henceforth refer to fl and gl as the ampli-
tudes of the right- and left-hand circular field components, 
respectively, although the opposite terminology is often used 
(see e. g., [26]). We represent the wave function Y of an atom 
in an electric field ( 1 ) as an expansion in the basis of fk (k = 
1, 2, ..., 9):
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where xl = wl t – kl z, l = 1, 2. We introduce the quantities

c1 = p c
*
1 1r ,  c2 = c2r ,  c4 = c4r ,  c5 = p c2 5r ,

c7 = (1/ )p c6 2 7r ,  c9 = p c2 9r ,	 (2)

where pl = 2Dl /|Dl| and l = 1, 2. We define the normalised 
independent variables s and w as

s = z/z0,   w = (t – z/c) /T1,

where z0 = 3'c/(2pN|D1|2T1 w1) and N is the concentration of 
atoms. Using the Maxwell and Schrödinger equations, we 
obtain in the first approximation of slow envelopes the system 
of equations:
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where

e1 = (w1’ – w1) /D1,   e2 = be1,

x = 0.6 b|D2 /D1|2,   b = w2 /w1.	

(4)

The system of equations (3) does not contain the ampli-
tudes c3r , c6r  and c8r , which agrees with the selection rules 
(DM  = ±1) for transitions under the action of the circular 
field components ( 1 ). In the equations for c2 and c4, the terms 
– gc2 and – gc4 are introduced phenomenologically to take into 
account the spontaneous decay of the upper-level states of the 
L-scheme in question. Here g = T1/(2t), where t is the radia-
tive lifetime of the 3P10 level. The allowance for the Doppler 
broadening of the quantum-transition lines by averaging the 
dipole moments of the atoms with respect to the parameter e1, 
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determined in ( 4 ), led to the appearance of integrals in the 
first four equations of system ( 3 ).

To describe the light, we use the parameters al, al, gl of 
polarisation ellipses of the probe (l = 1) and control ( l = 2) 
light. Here al is the semi-major axis of the ellipse measured in 
ml units; al is the angle of its inclination to the х axis in radi-
ans; and gl is the contraction parameter (0 £ al < p,  –1 £ gl £ 
+1) [25]. The quantity |gl| determines the ratio of the minor 
axis of the ellipse to its major axis. The condition gl = 1 (gl = 
–1) means s– (s+) polarisation. If |gl| = 1, then the angle al is 
not defined, and in the calculations we formally assume it to 
be equal to – 0.1 rad.

In carrying out a numerical analysis, the boundary condi-
tions describing the probe light at the input surface s = 0 of 
the resonant medium were chosen in the form

a1 = a10,   a1 = a10,   g1 = g10,   dx1 = dx10	 (5)

(w ³ 0), and the input control light is given by the relations

a2 = a20,   a2 = a20,   g2 = g20,   dx2 = dx20, 	 (6)

where al 0, gl 0, dxl 0 (l = 1, 2) and a20 are some constants. On the 
contrary, a10, which is the semi-major axis of the polarisation 
ellipse of the input probe field, was assumed to depend on the 
time w. As initial conditions, it was assumed that only the 
lower energy level is populated before the arrival of the probe 
pulse (w < 0), so that for w = 0 the equality c1 = 2 is satisfied, 
and all other probability amplitudes given by expressions ( 2 ) 
are zero.

The form of the dependence of a10 on w was chosen so that 
equalities ( 5 ) describe a bell-shaped pulse of the probe light. 
Equations ( 6 ) describe the input control light, whose inten-
sity does not change during the entire process of wave interac-
tion. Such a model corresponds to the scheme of counterin-
tuitive superposition of the control field, usually used in the 
experimental study of the EIT phenomenon [3].

According to [27], for the selected 208Pb transitions, in for-
mulas ( 3 ) and ( 4 ) w2 /w1 =0.7, x = 2.11 and (at T = 
900 – 1000  K), g = 1.5 ́  10–2. In the case of T = 950 K, we 
have T1 = 1.63 ́  10–10 s. Choosing saturated vapours of 
208Pb for estimates and using the data of [28], we find N = 
3.4 ́  1013 cm–3 and z0 = 0.03 cm at the same temperature. 
Note that the value of z0 depends strongly on temperature. 
Thus, z0 = 0.1 cm at 900 K, and z0 = 0.01 cm at 1000 K. The 
time T1 depends weakly on the temperature, decreasing with 
its change by about 5 %. The time t of the radiative decay of 
the 3P10 level, which plays at low vapour densities the role of 
the irreversible relaxation time of the quantum system, is 
about 6 ns [27].

Then, use is made of dimensionless intensities of Il, i. e. 
densities of energy fluxes of the probe ( l = 1) and control ( l = 
2) fields, measured in units of c 1

2m /(8p):

I1 = (1 )a1
2

1
2g+ ,   I2 = ( / ) (1 )a2

2
2
2b x g+ .

The dimensional intensities Ilr  (in kW cm–2 ) of the probe and 
control fields in the temperature range 900 – 1000 K (this 
range is used for dimensional measurements) can be defined 
as Ilr  = 1.3Il. Note that the system of equations ( 3 ) is valid for 
any ratio of the intensities of the control and probe fields. 
However, below we describe EIT under the condition I10 << 
I20, i. e., in the regime when the input probe light is much 
weaker than the control field.

3. Normal modes (results of numerical analysis)

We set in ( 5 ) and ( 6 )

a10 = p/6,   a10 = 0.2 sech [(w – 20) /5], 

g10 = – 0.5,   dx10 = 0;	
(7)

a20 = 0,   a20 = 6.6516,   g20 = – 0.3,   dx20 = 0.	 (8)

Boundary conditions ( 7 ) describe a 1.5-ns input probe pulse 
with a peak intensity I1r  = 65 W cm–2. This probe light is 
polarised elliptically with a contraction parameter equal to 
– 0.5 (left-hand elliptic polarisation [25]), where the angle 
between the major axis of its polarisation ellipse and the x 
axis is equal to p/6. According to ( 8 ), the constant intensity I2 
of the control light is approximately 20 kW cm–2 (the intensity 
of the control light in experimental studies [23, 24] was 
approximately the same). Since I2r  exceeds I1r  by more than 
300 times, the situation described by formulas ( 7 ) and ( 8 ) 
refers to the case of the weak probe light. The control field 
also has the left-hand elliptical polarisation with a contrac-
tion parameter equal to – 0.3, the major axis of the polarisa-
tion ellipse coinciding with the x axis. The latter is assumed 
for simplicity in all subsequent calculations and does not limit 
the generality of the reasoning, since the evolution of the 
interacting fields depends only on the angle between the major 
axes of their polarisation ellipses. Note that in the slow-enve-
lope approximation, a large difference between the carrier 
frequencies of the probe and control fields leads to the inde-
pendence of the characteristics of the polarisation ellipse of 
the control light in the medium from the values of the con-
stant quantities dx10 and dx20.

The results of the calculation are shown in Fig. 1. The 
plots of the dependence of I1 on w for different fixed distance 
s (thick curves in Fig. 1) show that at sufficiently small dis-
tances inside the medium, the input probe pulse begins to split 
into two separate subpulses (pulses 1 and 2 in Figs 1b and 1c). 
In this case, the form of dashed and thin curves describing the 
evolution of the quantities a1 and g1, respectively, indicates 
that as the probe field passes through a given point of space, 
the angle a1 smoothly changes from 0 to about p /2, while g1 
smoothly decreases from a value approximately equal to 0.74 
to a value close to –0.74 (the dashed and thin curves are shown 
here and below only in those time intervals where the value of 
I1 differs appreciably from zero). Thus, at short distances, the 
polarisation state of the probe field, determined by the values 
of a1 and g1, varies as the pulse propagates in the medium.

At sufficiently large values of s, the energy of the probe 
light is concentrated in two subpulses (1 and 2 in Fig. 1d). In 
the region of localisation of each of these pulses, the polarisa-
tion characteristics of the light remain unchanged both in 
space and time. For pulse 1, calculation yields a1 = 0, g1 = 
0.7415, and for pulse 2 we have a1 = p /2, g1 = – 0.7415. This 
circumstance allows us to assume that pulses 1 and 2 are nor-
mal modes (waves) [26] of the probe light. In an anisotropic 
crystalline medium, normal modes are linearly polarised, and 
in an optically active medium they have circular polarisation. 
In our case, when the optical isotropy of the gas is removed by 
imposing the elliptically polarised control light, the normal 
modes are elliptically polarised in the general case.

In what follows, the normal mode (corresponding to pulse 
1 in Fig. 1d) for which a1 = 0 will be called the parallel mode, 
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and the normal mode for which a1 = p/2 will be called the 
perpendicular mode. Note that the parallel mode propagates 
faster than the perpendicular mode. If we denote by u the 
velocity of the normal mode, then under the conditions in 
question c/u » 16 and c/u » 40 for the parallel mode and the 
perpendicular mode, respectively.

The curves describing the evolution of the phase dx1 of the 
probe field in the medium are not presented in Fig. 1. In this 
regard, we note that in the region of each of the subpulses, in 
which the energy of the probe field is concentrated at large 
distances, this quantity is independent of s and w. For a sub-
pulse corresponding to the parallel normal mode, dx1 = 
– 0.5001, and for a subpulse corresponding to the perpendicu-
lar normal mode, dx1 = 0.2852.

Figure 2 shows the calculation results, the initial condi-
tions of which differ from ( 7 ), ( 8 ) only in that g20 = 0.3. This 
choice means the right-hand elliptic polarisation of the con-
trol field, whereas in the previous calculation the polarisation 
was left-handed. It follows from Figs 2b and 2c that at small 
distances, as in the case of left-hand polarisation, the probe 
pulse splits into two subpulses, and during this process the 
major axis of the polarisation ellipse rotates by an angle 
approximately equal to p /2 (dashed curves in Figs 2b and 2c). 
However, the direction of variation in g1 is opposite to that of 
g20 = – 0.3. According to the plots (thin curves in Figs 2b and 
2c), this value varies smoothly from about – 0.74 to 0.74. At 
large distances, the energy of the probe light is concentrated 
in two pulses (Fig. 2d) with unchanged polarisation states. In 
the region of pulse 1, a1 = 0, g1 = – 0.7415, and in the region 
of pulse 2, a1 = p /2, g1 = 0.7415. Thus, pulse 1 is the parallel 
normal mode, and pulse 2 is the perpendicular normal mode. 

Using the results given above, we can make the following 
assumption. The contraction parameters of polarisation ellipses 

of parallel and perpendicular normal modes can be repre-
sented in the form g1 = – sgn(g2) 1gr  and g1 = sgn(g2) 1gr , respec-
tively, where 1gr  ³ 0 is the modulus of the contraction param-
eters, which is the same for both modes, and sgn(x) is a sign 
function equal to – 1 for x < 0, to zero for x = 0 and +1 for 
x > 0; 1gr  = 0.7415 (for the situations under study).

On the basis of physical considerations, we can assume 
that 1gr  depends only on |g2|, i. e. the modulus of the contrac-
tion parameter of the polarisation ellipse of the control light. 
This circumstance was confirmed by a series of calculations 
for various values of the quantities (including the temporal 
shape of the envelope of the input probe field) entering into 
boundary conditions ( 5 ) and ( 6 ). Figure 3 shows the results 
of calculations performed under conditions

a10 = p /3,   a10 = .0 08 sech[(w – 200)/50],

g10 = 0,   dx10 = 0;	
(9)

a20 = 0,   a20 = 5.7606,   g20 = – 0.3,   d20 = 0.	 (10)

In this case, the input probe pulse is linearly polarised at an 
angle of p /3 to the x axis. It has a 10-fold longer duration and 
a 1.6-fold greater peak intensity than the probe pulses in the 
previous calculations (see Figs 1a and 2a); the intensity of the 
control field is ~15 kW cm–2, i. e., 75 % of I2 corresponding to 
conditions ( 8 ). A qualitative picture of the process of the 
splitting of the input probe pulse into normal modes is analo-
gous to that shown in Fig. 1, although now such a splitting 
requires a much larger distance (the jump in a1 in Fig. 3d is 
determined by the choice of the region of variation of this 
quantity). At a distance s = 4000 (Fig. 3d), the calculation 
shows that the value of 1gr  with an error of less than 0.1 % 
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Figure 1.  Evolution of the characteristics of the probe field in the medium for s = ( a ) 0, ( b ) 100, ( c ) 180 and ( d ) 400 (I1 – thick curves, a1 and g1 
– dashed and thin curves, respectively); g20 = – 0.3.
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g20 = 0.3.
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coincides with the value obtained in the first two calculations. 
The error is due not only to the error of the numerical method 
for solving system ( 3 ), but also to the fact that this system of 
equations takes into account the influence of the probe field 
on the control field. 

The dependence of 1gr  on |g2|, constructed from the results 
of calculations similar to the first calculation of this section, is 
shown in Fig. 4. One can see that the normal modes of the 
probe light have linear and circular polarisations in the case 
of linear and circular polarisations of the control field, respec-
tively. This circumstance corresponds to the conclusions of 
papers [21, 22]. When |g2| changes near zero, the parameter 
1gr  changes faster than |g2|, and the situation is opposite when 
the value of |g2| is equal to unity.

Note that if we set a20 = 0 in ( 8 ), which corresponds to the 
absence of the control light, then, as calculation shows, the 
energy of the input probe pulse is almost completely absorbed 
by the medium at a distance s = 3 from the input surface. The 
fact that upon imposing the control light this energy pene-
trates into the medium at a distance s = 400 (see, for example, 
Fig. 1d) indicates the presence of the EIT phenomenon.

4. Representation of the probe field by  
a superposition of normal modes

The probe field, expressed by formula ( 1 ), can be represented 
as the sum of normal modes. Using standard definitions of 
the polarisation ellipse parameters [25], we obtain the follow-
ing relations between the variables entering into ( 1 ) and the 
parameters of the polarisation ellipse of the probe wave:

Ex1 = a1e+(a1, g1),   Ey1 = a1e–(a1, g1),

e+(a1, g1) = ( ) /cos1 1 2 21
2

1
2

1g g a+ + -6 @ ,	 (11)

e–(a1, g1) = ( ) /cos1 1 2 21
2

1
2

1g g a+ - -6 @ ,

dy1 = dx1 + d1,   d1 = 
, 0,

, ,

argp p

p0 0

!

=
)

p = (1 – 1
2g ) sin 2a1 + 2g1i.	

(12)

Expressions ( 11 ) and ( 12 ) show that the values of a1, a1, g1 
and dx1 uniquely determine the probe field (as well as the val-
ues of Ex1, Ey1, dx1 and dy1).

We denote by Jx and Jy the x- and y-components of the 
Jones vector [26] of the probe wave:

Jx = m1Ex1exp(idx1),   Jy = m1Ey1exp(idy1).	 (13)

We use the symbols ( )i
1a , a ( )i1 , 

( )i
1g , ( )

x
i
1d  and ( )

y
i
1d  for the quanti-

ties a1, a1, g1, dx1 and dy1, describing parallel (i = 1) and per-
pendicular (i = 2) normal modes of the probe field. According 
to what was said in the previous section, we can write

( )
1
1a  = 0,  a ( )1

1 ,   ( )
1
1g = – sgn(g2) 1gr ,  

( )
x1
1d ,

( )
y1
1d  = ( )

x1
1d  – sgn(g2) p/2,	

(14)

( )
1
2a  = p/2,  a ( )1

2 ,   ( )
1
2g = sgn(g2) 1gr ,  

( )
x1
2d ,

( )
y1
2d  = ( )

x1
2d  +sgn(g2) p/2,	

(15)

where a ( )i1  is the s- and w-dependent semi-major axis of the 
polarisation ellipse of parallel (i = 1) and perpendicular (i = 2) 
normal modes, while all other quantities are independent of s 
and w. Using formulas ( 11 ), ( 12 ) and ( 13 ), we find expres-
sions for the components J ( )x

i  and J ( )y
i  of the Jones vectors of 

parallel (i = 1) and perpendicular (i = 2) normal modes:

J ( )x
1  = ( )exp ia ( ) ( )

x1 1
1

1
1m d ,  J ( )y

1  = ( )exp ia ( ) ( )
y1 1 1

1
1
1m g dr ,	 (16)

J ( )x
2  = ( )exp ia ( ) ( )

x1 1 1
2

1
2m g dr ,  J ( )y

2  = ( )exp ia ( ) ( )
y1 1

2
1
2m d .	 (17)

Using ( 16 ) and ( 17 ) together with the expressions for ( )
y
i
1d  

from formulas ( 14 ) and ( 15 ), it is not difficult to establish 
the orthogonality condition for the Jones vectors of normal 
modes:

J J( ) ( )
x x
1 2 *  + J J( ) ( )

y y
1 2 *  = 0.	 (18)

Thus, the parallel and perpendicular normal modes of the 
probe field form an orthogonal pair, and any probe field of 
form ( 1 ) can be represented as the sum of such modes [26]. 
Thus, it is sufficient to express the characteristics of the nor-
mal modes on the input surface s = 0 in ( 14 ) and ( 15 ) through 
similar characteristics of the input probe pulse; in this case, 
( )
1
1g and ( )

1
2g  are assumed to be known on the basis of a numer-

ical definition of 1gr  (see Fig. 4). Thus, only a
( )i
10  and 

( )
x
i
10d  (i = 

1, 2) should be defined, i. e. the values of the quantities a ( )i1  
and ( )

x
i
1d  on the input surface.

In the considered cases of absence of phase modulation of 
the input probe field, x10d  does not depend on w and, without 
loss of generality, is assumed below to be zero. Equating the 
Jones vector of the probe wave incident on the input surface 
to the sum of the Jones vectors of the normal modes on this 
surface, we arrive at the system of equations:

, ,
, ,

X Z A Y T
Y T B X Z C

01 1

1 1

g g
g g
+ = + =

- = - =

r r

r r
) 	 (19)

where the unknown quantities X, Y, Z, T and the known 
quantities A, B, C are given by formulas

g–1

0.8
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0.4

0.2

0 0.2 0.4 0.6 0.8 |g2|

Figure 4.  Dependence of 1gr  on| 2g |.
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X = / cosa a( ) ( )
x10

1
10 10

1d^ h ,  Y = / sina a( ) ( )
x10

1
10 10

1d^ h ,

Z = / cosa a( ) ( )
x10

2
10 10

2d^ h ,  T = / sina a( ) ( )
x10

2
10 10

2d^ h ;	
(20)

A = ( , )10 10e a g+ ,   B = sgn(g2) e–(a10, g10) cos d10,

C = –sgn(g2) e–(a10, g10) sin d10. 	
(21)

The discriminant of the linear system of equations ( 19 ) is 
–(1 + 10

2g )2 ¹ 0, and, consequently, this system has a unique 
solution. The coefficients in ( 19 ) for unknowns and the right-
hand sides of the equations described by formulas ( 21 ) are 
independent of w, so that the components X, Y, Z, T of the 
solution of the system also do not depend on w. The missing 
values of the characteristics of normal modes are further 
defined as follows:

a a X Y( )
10
1

10
2 2

= + ,  a a Z T( )
10
2

10
2 2

= + ,

and then, on the basis of formulas ( 20 ), the values of ( )
x
i
10d  are 

found.
Using this procedure for normal modes corresponding to 

the input probe field of the first of the above-presented calcu-
lations, one can obtain the characteristics:

( )
10
1a  = 0,  a ( )10

1  = 0.0720 sech[(w – 20)/5],

( )
10
1g  = 0.7415,   ( )

x10
1d  = – 0.4991,	

(22)

( )
10
2a  = p/2,  a ( )10

2  = 0.1646 sech[(w – 20)/5],

( )
10
2g  = –0.7415,   ( )

x10
2d  = 0.2865.	

(23)

We note the practical agreement between the values of ( )
x10
1d  

and ( )
x10
2d  with the values obtained for the normal modes of the 

first calculation. The results of calculations using data (22), 
(23) together with the conditions (8) for the input control light 
are shown in Fig. 5 and demonstrate the evolution of both 
normal modes in the medium.

The parallelism of the time axis of lines ( 2 ) and ( 3 ) and 
the height of their position that is independent of the distance 
s (Figs 5a – 5d) indicate that the polarisation characteristics a1 
and g1 of each normal mode remain unchanged when it prop-
agates in the medium. This property is included in the stan-
dard definition of normal modes. The sum of the intensities of 
the normal modes at each distance s coincides (with an accu-
racy of about 0.2 %) with the intensity of the probe field of the 
first calculation. This circumstance is illustrated in Fig. 6.

The procedure for finding the characteristics of normal 
modes using Eqn (20) is applicable under the condition g2 ¹ 
0. For g2 = 0, as noted above, 1gr  = 0, i. e., the normal modes 
represent the linearly polarised light. It can be shown that 
in this case their characteristics on the input surface are 
defined as

( )
10
1a  = 0,  a ( )10

1  = a10 e+(a10, g10),  
( )
10
1g  = 0,   ( )

x10
1d  = 0,

( )
10
1a  = p/2, a ( )10

1  = a10 e–(a10, g10),  
( )
10
2g  = 0,   ( )

x10
2d  = d1,

where d1 is given by (12) for a1 = a10 and g1 = g10.
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Figure 5.  Calculated characteristics ( 1 ) I1, ( 2 ) a1 and ( 3 ) g1 of parallel (solid curves) and perpendicular (dashed curves) normal modes for the dis-
tances s = ( a ) 0, ( b ) 100, ( c ) 180 and ( d ) 400.
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5. Conclusions

The results of the calculations show that in the case of EIT, in 
the field of elliptically polarised control light, the gaseous 
medium acquires the ability of birefringence with elliptically 
polarised normal modes of the probe field. Note that birefrin-
gence with normal modes of this type takes place in the prop-
agation of radio waves in a magnetised cosmic plasma [29]. 
The major axis of the polarisation ellipse of one of the normal 
modes of the probe field is parallel to the major axis of the 
polarisation ellipse of the control light, while the major axis of 
the polarisation ellipse of the other normal mode is perpen-
dicular to it. The ratio of the minor axis to the major axis is 
the same for the polarisation ellipses of both modes. The 
direction of rotation of the electric field strength vector of the 
first of these modes is opposite to the direction of rotation of 
the electric field strength vector of the control light. The vec-
tor of the electric field strength of the other mode rotates in 
the same direction as the corresponding vector of the control 
field. The pulse of the first-type mode propagates in the 
medium slower than the pulse of the second-type mode. The 
polarisation characteristics of both modes are determined 
only by the polarisation characteristics of the control field.

It is shown that each normal mode of the probe light 
propagates in a medium without changing the polarisation 
state and independently of the other mode. The electric field 

strength of an arbitrary probe pulse in a medium can be rep-
resented as the sum of the field strengths of normal modes, 
and the intensity of an arbitrary probe pulse can be repre-
sented in the same way. These properties of the light are usu-
ally implied when using the term ‘normal mode’ [26].

The difference in the velocities of pulses associated with 
normal modes leads to a separation of an arbitrary input 
pulse in the medium into two subpulses, each representing 
one normal mode. At the initial stage of the decay of the 
probe pulse, the ‘runaway’ of its normal modes is manifested 
in a significant temporal and spatial dependence of its polari-
sation characteristics.

Kis et al. [18] studied theoretically the stationary EIT 
regime in the same scheme of quantum transitions as in the 
present paper. However, Kis et al. [18] assumed that the con-
trol field acts on the short-wavelength transition, and the 
probe field on the long-wavelength transition. The boundary 
and initial conditions used by us correspond to the opposite 
situation. In our case, both normal modes propagate in the 
medium without absorption, whereas in [18] the absorption of 
one of the normal modes was significant.

In conclusion, we note that the study of the nonstationary 
polarisation effects accompanying EIT is, from a practical 
point of view, promising for designing devices whose opera-
tion principle is based on controlling the polarisation state of 
coherent optical light.
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