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Abstract.  The methods of modern group analysis allow an analytic 
solution of the Cauchy problem to be constructed for the system of 
kinetic equations for a fully ionised electron – ion plasma, describ-
ing the acceleration of ions during the adiabatic expansion of a 
cylindrical plasma. Time and spatial dependences of the distribu-
tion functions of particles are obtained and their integral character-
istics, such as density, average velocity, temperature, and energy 
spectrum, are found. The formation of the energy spectrum of 
accelerated ions, asymptotically repeating the spatial distribution 
of their density, and the cooling of electrons in the process of ion 
acceleration are analytically described. Particular attention is paid 
to the investigation of the influence of the heavy ionic component on 
the dynamics of the light component. The features of ion accelera-
tion in the case of a two-temperature electron distribution function 
that describes the presence of hot and cold electron components are 
studied, which corresponds to the typical conditions of the experi-
ment on plasma heating by intense laser radiation. 

Keywords: ultrashort laser pulses, laser plasma, laser acceleration 
of ions, targets of ‘nanoforest’ type. 

1. Introduction 

The generation of ions in a plasma produced by a high-power 
laser pulse is presently of interest for such applications as the 
development of compact radiation sources with record-high 
densities of secondary particle fluxes based on nuclear reac-
tions by laser-accelerated ions [1], radiation medicine and 
nuclear pharmacology [2 – 4], radiography [5, 6], fast ignition 
for laser thermonuclear fusion [7, 8], etc. Numerous schemes 
have now been proposed for obtaining high-energy ions 
[9,  10] by ultra-short high-intensity lasers. Among all possible 

schemes for laser-driven particle acceleration, we note those 
corresponding to the expansion of plasma formations of 
cylindrical type. A natural implementation of such a scheme 
is the radial expansion of a heated laser-plasma channel aris-
ing in the caustic of a focused laser beam or during its self-
focusing [11], and the expansion of cylindrical nanotubes irra-
diated with the laser radiation [12].

In addition, innovative high-average-density targets with 
an artificial substrate coating have been recently discussed. The 
structure of such targets consists of numerous nano-/microwires 
stretched along the normal to the surface (nano-forest tar-
gets) [13]. It has been demonstrated that under laboratory 
conditions, when such targets are irradiated by ultrahigh-
energy density pulses, pressures exceeding 1 Gbar can be 
reached in the produced plasma [14]. Note that such pressures 
are characteristic for ‘extreme’ astrophysical objects. Targets 
of this type are expected to be effective for the laser triggering 
of nuclear reactions in the plasma of radially expanding 
numerous plasma microcylinders due to its high average den-
sity [1]. It is important to note that to produce a neutron 
source on the basis of such a scheme, high energies of acceler-
ated particles will not be required if use is made of D- or 
DT-enriched microwires to initiate synthesis reactions. This 
will allow the use of relatively low-intensity laser radiation. 
The practical realisation of the above-mentioned problems 
must be preceded by a theoretical study of the radial expan-
sion of a heated cylindrical plasma, which is the subject of this 
work. 

Since the publication of Gurevich et al.’s paper [15] on the 
expansion of plasma into vacuum, the problem of ion accel-
eration has been considered in numerous formulations, 
including both different geometries (plane, cylindrical and 
spherical) and various physical models of plasma description 
(hydrodynamic and kinetic). The electrostatic acceleration of 
ions in a plasma under the action of laser radiation is based 
on the effect of particle acceleration by a charge separation 
field when plasma electrons ‘break away’ from ions as a result 
of laser-driven acceleration or heating. The separation of the 
charges can be practically complete if the electrons are 
removed from the plasma by the laser field and the ions are 
accelerated by the intrinsic Coulomb field (Coulomb explo-
sion [16 – 18]), or be negligibly small (quasi-neutral [19, 20] or 
close-to-quasi-neutral [21]). In addition, an intermediate vari-
ant is possible between these limiting cases (see, for example, 
[22 – 24]), which causes the variability of plasma dynamics 
under the action of laser radiation. 

The duration of a laser pulse acting on a plasma and pro-
ducing an accelerating electric field is an important factor 
that determines the dynamics of plasma particles. For a long 
laser pulse, when the typical duration tL (subpicosecond/pico-
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second) is much longer than the ion acceleration time, an iso-
thermal expansion regime with a specified thermal electron 
energy is usually considered [21, 22, 24]. In the case of a short 
(femtosecond) pulse, whose duration tL is small in compari-
son with the characteristic ion acceleration time, an adiabatic 
regime characterised by the cooling of electrons, whose ther-
mal energy (obtained from the laser) is converted into the 
energy of accelerated ions, is typical for the expansion of a 
plasma (see, for example, [17, 20]). This case is considered in 
the present paper devoted to a detailed study of the adiabatic 
radial expansion of a cylindrical plasma in the quasi-neutral 
approximation, which is of interest both for interpreting 
recently obtained experimental results [25, 26] and for plan-
ning new experiments using artificial microwires on target 
surfaces. Note that for a long laser pulse, a competitive mech-
anism for accelerating ions under conditions of cylindrical 
geometry is the mechanism of ponderomotive ion accelera-
tion. The latter is characteristic for the expansion of a laser-
plasma channel [11]. The dominance of one or the other 
mechanism  –  thermal or ponderomotive – can be established 
by comparing the analytically obtained characteristics of 
accelerated particles. 

In this paper we propose an analytic theory that relies on 
the methods of modern group analysis to find solutions to the 
kinetic equations for the electron and plasma ion distribution 
functions in the model of adiabatic expansion of a cylindrical 
plasma. We have shown that the renormalisation-group 
approach is an effective tool for the analytical solution of 
problems of laser-plasma acceleration of charged particles 
[20, 27, 28]. 

The work consists of four sections and an Appendix. In 
Section 2, the initial equations for the theoretical analysis of 
the process of plasma particle scattering are formulated. 
Using the renormalisation-group approach to these equa-
tions, invariant-group analytic solutions of the initial prob-
lem for the kinetic equations of plasma particles are con-
structed on the basis of a group of symmetries of special form 
(most of the formulas related to the finding of the group are 
listed in the Appendix). As an example, these solutions are 
analysed for the case of a plasma with initial Maxwellian 
velocity distribution functions (Section 3). A situation typical 
for the experiment is studied when there is a heavy (domi-
nant) ionic component and an impurity light component, and 
the electron distribution function, apart from the main com-
ponent, has a hot component. All this determines the maxi-
mum energy of the expanding impurity ions. Section 4 dis-
cusses the results obtained and summarises the paper. The 
Appendix contains formulas that illustrate the symmetry 
properties of the equations under discussion and explain how 
to construct an analytical solution. 

2. Initial equations: electron – ion plasma 

The dynamics of the adiabatic expansion of a cylindrical 
plasma bunch is determined by the solutions of the kinetic 
equations for the distribution functions of plasma particles of 
type a (electrons and ions). Taking into account the axial 
symmetry of the problem along the cylinder axis z and consid-
ering these equations in the cylindrical coordinates {t, r, j, z, 
,rua  , }zu uj

a a , we assume the particle distribution functions to 
be independent of the coordinates z and j, and the velocity 
distribution along z is taken to be Maxwellian (for each group 
of particles) with temperatures Ta. We also assume that the 
electric field in the plasma is axially symmetric, having a 

unique nonzero component Er(t, r) along the radius r. Taking 
these assumptions into account, we obtain a simple equation 
for the velocity of the distribution function of particles of type 
a, integrated over the z-component, i.e., for 
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which we will consider as the initial one: 
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Here, m a and e a are the mass and charge of type a particles. 
In this paper, the case of an electron – ion plasma with two 
types of ions will be analysed in detail, which corresponds to 
two possible values, i = 1 and i = 2. In this case, ee = –e and 
ei = Zie, where Zi is the charge number of ions; and me = m 
and mi = Mi.

Kinetic equations (1) should be used together with the 
equation that determines the quasi-neutrality condition in the 
plasma, 
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Solutions to equations of form (1), (2) with the use of the 
renormalisation-group approach were discussed previously in 
the application to the problem of adiabatic expansion of the 
plasma in plane [20, 27] and spherical [28] geometries. This 
approach relies on the idea of the renormalisation-group sym-
metry of the solution with the corresponding infinitesimal 
operator, under the action of which the solution to the 
unknown initial problem for t = 0 is transformed into a solu-
tion for 0t ! . In this case, the particle distribution functions 
are written in terms of the invariants of the renormalisation-
symmetry operator. Applied to the initial problem for equa-
tions (1), (2) with the initial conditions corresponding to the 
initial distribution functions of particles with homogeneous 
initial temperature and zero initial mean velocity, the equa-
tions for the particle distribution functions are as follows:
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where /(1 )u rt t2 2 2W W= +  is the local plasma flow rate; W is 
the frequency determined by the ratio of the sound velocity cs 
to the characteristic initial plasma-cylinder radius L; and 

/c Z T Ms c1 1=  is the characteristic sound velocity determined 
by the ions of main type with charge Z1 and mass M1 and the 
temperature of cold electrons Tc, which is confirmed by works 
[22, 23]. Note that, although the found solution is suitable for 
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an arbitrary number of particle types, we will study below the 
situation when there is a basic ionic component and a small 
impurity, and the electron distribution function is a two-tem-
perature one, i.e., it contains hot and cold components. The 
electric potential F introduced in (3) is renormalised, eF /m ® 
F, and, thus, it has the dimension of the square of the veloc-
ity. Its dependence on the invariant i0 is found from the quasi-
neutrality condition (2), which, taking (3) into account, takes 
the form 

3 3- -

33
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In the next section, we analyse solutions (3), (4) for the case of 
a plasma with initial Maxwellian particle distribution func-
tions. 

3. Adiabatic expansion of the Maxwellian 
plasma. Integral characteristics of accelerated 
particles 

Let us concretise solutions (3), (4) for the case of a plasma 
with initial Maxwellian distributions of ions of two types with 
charges e Z e1

1=  and e Z e2
2
= , maximum concentrations  n10 

and n20, and temperatures T1 and T2. The initial distribution 
function for electrons is taken as the sum of two Maxwellian 
velocity distributions with different thermal velocities, maxi-
mum concentrations nc0 and nh0, and temperatures Tc and Th 
for cold and hot electrons, respectively. Then for the func-
tions f=

a  we obtain: 

( )
expf n i i

i
2

10c c

T T
e e

T
2 2 1

2
2
2 2

2
0r

F
= - + + +=

V V V2c c cp
^ h= G,

( )
expf n i i

i
2

1h h

T T
e e

T
2

0
2 1

2
2
2 2

2
0r

F
= - + + +=

V V V2h h hp
^ h= G,

( )
expf n i i M

Z m i1
T T T

1
2

10
2 11

2
12
2 2

1

1
2
0

1

r
F

= - + + -=
V V V2 21 1p

^ h= G,	 (5)

( )
expf

V
n

V
i i M

Z m
V
i

2 2
1

T T T

2
2

20
2 21

2
2 2
2 2

2

2
2
0

p
r

F
= - + + -=

2 2 2

^ h= G,

where r = W i0; f f fe h c
= += = =  is the electron distribution func-

tion. Here, the potential F (i0) is determined through the 
plasma parameters by the solution of the transcendental 
equation: 
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Without loss of generality, we can choose F(0) = 0 and, thus, 
obtain the relation between the maximum concentrations: 

, ,Z n n n n i 1 2c h ei i
i

0 0 0 0= + = =/ .

For comparison with experimental data, it is often not the 
form of the distribution function that is of interest, but its 
integral characteristic. The concentration of ions is deter-
mined by the expression 
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is a universal function, which, as will be shown below, deter-
mines not only the distribution of particle concentration and 
flux, but also the asymptotic spectra of ions. 

The flux of ions i, which is measured by sensors located at 
a distance r0 in the radial direction from the axis, is found 
from the simple expression: 
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The spectral distribution of accelerated ions in the radial 
direction with respect to energy is expressed as 
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where e e( /2)( ) ; 2 / / ;M b t T Vi i r
i i

i i
2

iu cW= = T  and   c = 1 + 
W 2t 2. Note that of particular interest are the spectra corre-
sponding to the values observed in the experiment. Let us 
present an asymptotic expression, which can be obtained 
from (9) in the limit t " 3W , using the saddle-point method: 
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Let us analyse the solution of the problem in a specific 
case, which is typical for the experiment, namely, when there 
are heavy ions (the main component, subscript ‘1’) and lighter 
ions (impurity, ‘2’), i.e. Z2M1 /(Z1M2) > 1 and n20 < n10. 
Analysis of equation (6) allows an approximate solution to be 
obtained for the distribution of the plasma concentration and 
spectral distributions. In the equation for the potential (6), we 
select the dominant terms on the left- and right-hand sides. 
Equating them, we obtain approximate analytical expressions 
for the potential in the form of a binomial in r2. 

Let us first compare the terms on the left-hand side of (6), 
corresponding to hot and cold electrons. Then, we obtain the 
characteristic value of the potential 

/2 (1 / ) ( / )lnV T T n n0 0el c h h cT
2 2 1

crF = + - - .	 (11)

It follows from the analysis of (6) that for F > Fel (F < 0), the 
contribution of cold electrons dominates, and for F < F el 
(|F| > |Fel|) dominant is the contribution of hot electrons. Let 
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us now compare the contributions of ions of first and second 
types. Both contributions are compared at 
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Note that when F > Fion, the contribution of ions of first type 
dominates, and for F < Fion dominant is the contribution of 
ions of second type. 

Thus, at small r, the main role in the equation for the 
potential is played by cold electrons and ions of main type. 
The balance of these contributions gives a decrease in the 
potential F (the growth of |F |) to the largest of the two val-
ues, which is determined by expression (11) or (12), depend-
ing on the ratio of the problem parameters. A further 
decrease in the potential occurs according to one of two sce-
narios. 

The first scenario (variant I) assumes a situation where the 
value of F falls to the value of F ion at r = rion 1. In the interval  
0 < r < rion 1, the potential is determined by the balance of 
cold electrons and the main ions. We give the corresponding 
expression, which is easily obtained from (6): 
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In the interval rion 1 < r < rel 2, the potential distribution is 
determined by the balance of cold electrons and ions of sec-
ond type (impurity ions). It can easily be obtained by replac-
ing the subscript 1 ® 2 in (13). The value of rel 2 can be found 
from the solution of the equation F ( rel 2) = Fel( rel 2). In the 
region rel 2 < r < 3, the approximate solution for the poten-
tial is determined by the balance of the hot electrons and ions 
of second type. This is obtained by replacing the subscripts c 
® h and 1 ® 2.

The second possible scenario involves a decline in the 
potential from F ( r = 0) to Fel( rel 1) in the region  0 < r < 
rel 1, in which the distribution of F is determined by the bal-
ance of the cold electrons and the main ions (13); then, in the 
region rel 1 < r < rion 2 – by the balance of the hot electrons 
and the main ions; and finally, in the region rion 2 < r < 3  – 
by the balance of the hot electrons and ions of second type. 
Here, rel 1 and rion 2 are found from the conditions  F ( rel 1)= 
Fel( rel 1) and F ( rion 2) = F ion( rion 2), where the functions Fel 
and F ion are determined by expressions (11) and (12), and F 
– by the approximate solution (6), obtained as a result of the 
formal neglect by nondominant groups of particles [formula 
(13) and its analogues]. Thus, in the region dominated by hot 
electrons and lighter ions of second type (Z2 /M2 > Z1/M1), we 
neglect the contribution of cold electrons and ions of first 
type. 

Let us now consider the spectra of accelerated ions using 
the obtained approximate solutions. The analysis will be car-
ried out for the first scenario. Expressions for the potential at 
finite times can be used to analytically describe the time evo-
lution of the spectrum by calculating integral (9) with the help 
of the above representation of the potential in the form of a 

binomial. As a result, we obtain the expression in the form of 
a sum of three contributions: 
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the coefficients j0 k and j1 k are expressed in the following 
way: k k k0
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Let us consider in detail the spectral distributions in the 
limit t " 3. In this case, it is possible to obtain simple ana-
lytic formulas. In the region e /2M ion1

2
1 ra a , the energy spec-

tra are written in the form: 
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In the interval rion 1 < r < rel 2 [corresponds to the interval  
M2 (  rion 2)2/2 < e < M2(  rel 2)2/2], we obtain 
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In the interval rel 2 < r [corresponds to  e2 > M2 (  rel 2)2/2], we 
have 
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Following the scheme described above, it is easy to derive for-
mulas for the functions ion1
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Below we present the results of a numerical solution of equa-
tion (6) and describe the integral characteristics. The obtained 
data are compared with the approximate expressions for 
spectra (15) – (18). 

Let us now analyse the solution obtained. We choose the fol-
lowing parameters: Z1 = 3, M1 = 15, Z2 = 8, M2 = 16, n20 = 10–3ne0, 
nh0 /ne0 = 3 ́  10–2, Th /Tc = 300, T1 /Tc = 10–2, and T2 /T1 = 1.

Figure 1 shows the numerical solution of (6) for the poten-
tial. This solution is imposed on a piecewise smooth function 
(dashed curve) that is an approximate solution, the procedure 

for finding which is described above. Figures 1a and 1b cor-
respond to different ranges of r2 values. It follows from Fig. 1 
that the proposed model agrees well with the found numerical 
solution (6). The distribution of the ion and electron concen-
trations is shown in Fig. 2. One can see the existence of char-
acteristic regions, in which the charge balance is determined 
by cold electrons and a heavy ionic component, then by a 
light ionic impurity and cold electrons, and finally by hot elec-
trons and impurity light ions at a greater distance from the 
axis of symmetry of the problem. The dynamics of the plasma 
can be traced by comparing Figs 2a and 2b. Note that at large 
times the flux becomes self-similar [27], and the concentration 
distribution and spectral distributions are determined by the 
universal function Ni [see formula (7)]. 

The energy spectrum of impurity ions is shown in Fig. 3. 
The well-observed two slopes in the spectral distribution cor-
respond to the transition from the region dominated by cold 
electrons to the region dominated by hot electrons, i.e., in 
accordance with formulas (11) – (15), at 2e /2M el2 2

2- r .
Figure 4 shows the impurity ion current (8) observed at 

the detector. Two characteristic bursts are seen. First, fast 
ions (from the spatial region where the balance is determined 
by hot electrons) and then slow ions (from the region where 
the balance is determined by the cold electrons) contribute 
to the current. The time of arrival at the detector is deter-
mined by the sound velocity of the plasma; this means that 
the ions of main type will arrive at the detector much later. 
Their distribution in this case contains a single peak. In our 
opinion, of the two presented scenarios, the first one is the 
most typical, but in certain cases the second scenario can 
also be realised. 
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Figure 1.  Dependence of the potential F on the variable r2 (solid curve) 
and approximate dependence (dashed curve); (a) the range of small val-
ues of r2, (b) the wider range of its values. Vertical gray lines indicate 
the values of (a) ion1
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and (b) Wt = 10. 



	 V.F. Kovalev, S.G. Bochkarev, V.Yu. Bychenkov1028

4. Discussion of the results and conclusions

Using the group approach, we have derived in this paper a 
solution to a system of kinetic equations describing the 
dynamics of the radial expansion of a multicomponent 
plasma. The integral characteristics of ion acceleration are 
obtained, including the distribution of the densities and fluxes 
of particles (ions), as well as their energy spectra. The asymp-
totic solution found for the spectral function repeats the dis-
tribution of the ion concentration. Particular attention is paid 
to the analysis of the case, which is very typical for the exper-
iment, when it is possible to select the main heavy component 
and a light low-density impurity. For this case, we obtain, in 
particular, simple asymptotic analytic expressions describing 
the spectral distributions of particles. A peculiar feature of 
the curves specifying the spectra of light ions is their proxim-
ity to a piecewise linear form and the presence of several 
slopes, which corresponds to the dominance of a particular 
group of particles. Thus, the developed model can be used to 
predict the characteristics of accelerated ions, for example, 
cylindrical nano-/microplasma or ion acceleration from the 
plasma channel. 

Let us now compare the effectiveness of the considered 
thermal mechanism of ion acceleration with the ponderomo-
tive mechanism of their acceleration by the example of a laser-

heated cylindrical plasma channel [11, 29]. According to [29], 
the energy of laser-generated ions with ponderomotive accel-
eration is small in comparison with the energy accumulated 
during thermal expansion in the case of a sufficiently short 
laser pulse, i.e., when the condition 

e ( )
c
r

Z m
M

mc a
a1 /

L
ion

ion ion0
2 2

0
2
0
2 1 2

1t + ,	 (19)

is met, where r0 is the radius of the channel and eion is the 
characteristic energy of accelerated ions. For example, for the 
radiation parameters of a Ti : sapphire laser with a wavelength 
l = 0.8 mm, intensity IL - 5 ́  1018 W cm–2, which corresponds 
to a dimensionless field amplitude a0 » 1.5 (a0 = 0.85 ́  
10–9l [mm] IL

1/2 [W cm–1]2), pulse duration tL » 30 fs and the 
channel radius r0 = 4 mm, we find that in the case of accelera-
tion of protons, the ratio of the energy acquired by them from 
the ponderomotive mechanism to the characteristic energy 
for protons under thermal expansion (e2 - Th) is ~10–2. We 
assume here that the temperature of the hot electron compo-
nent is determined by the commonly used ponderomotive 
scaling: T mc a1 1h

2
0
2- + -_ i » 400 keV [30]. 

As noted in the Introduction, new innovative laser targets 
are targets of ‘nano-forest’ type [13, 14]. In our opinion, these 
targets, for example, a target made of titanium nano-/microw-
ires with the addition of deuterium, are promising for trigger-
ing nuclear DT reactions and generating neutrons. Indeed, 
the high average density of such a coating can provide a high 
yield of neutrons. It is known that a DT-reaction efficiently 
occurs at a relatively low energy of colliding particles 
(~100 keV); therefore, unlike the problem of laser generation 
of high-energy ions, ultra-high densities of the energy flux of 
laser radiation are not required. If we consider a laser-heated 
target surface in the form of cylindrical TiD wires of diameter 
D ~ 150 nm and an average separation of ~500 nm between 
them, then such a characteristic energy (100 keV) will be 
acquired by deuterons at a laser radiation intensity IL - 
1018 W cm–2 during the expansion time of the wire to a dis-
tance of the order of the characteristic distance between the 
wires. 

The estimates obtained above are based on the assump-
tion of a quasi-neutral character of the plasma expansion. 
However, under irradiation of nanotargets, a transition from 
a quasi-neutral regime to a regime with a strong charge sepa-
ration and, in the limit, to the Coulomb explosion regime, is 
possible. This occurs for lD /D > 1 [ /(4 )T n e0D e e

2pl =  is the 
Debye radius and D is the diameter of the nanocylinder]. For 
the above example,  lD /D » 5 ́  10–2 for ne0 » 5 ́  1023 cm–3 
and, therefore, lD » 7 nm, i.e., the expansion regime is close 
to quasi-neutral. Thus, the expansion will occur in the quasi-
neutral or close-to-quasi-neutral regime, if only not very thin 
(D K 10 nm) wires are used. 

In conclusion, we note the prospects of using high-power 
short-wavelength (ultraviolet) lasers (see, for example, [31]). 
The transition to short-wavelength radiation will further 
increase the effective density of the nanostructured target sur-
face and, consequently, the yield of neutrons, due to the con-
vergence of deuterium-enriched nano-/microwires, without 
reducing the penetration depth of laser radiation. A more 
detailed study of a neutron source based on targets of this 
type will be carried out elsewhere. 
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Appendix. 
The Lie group of point transformations

The Lie group of point continuous transformations (admis-
sible by the system of kinetic equations for the velocity of the 
distribution functions of particles of type a, integrated with 
respect to the z-component, i.e., for f=

a , and by the nonlocal 
quasi-neutrality condition) has the most visible form in rect-
angular coordinates. Considering the transformations in the 
plane perpendicular to the z axis, we write the corresponding 
infinitesimal operators of the point symmetry group (for 
details of the calculation of the symmetries for systems of 
integrodifferential equations, see [32]): 

¶
¶

¶
¶

¶
¶

¶
¶, , ,X t X x X y Y f
f0 1 2 1= = = =

a

a
a/ ,

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶Y x x y y E E E Ex

x
y

y
x

x
y

y
2 u

u
u

u
= + + + + +

a
a

a
a

a
d n/ ,

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶2Y t t x x y y x

x
y

y
3 u

u
u

u
= + + - +

a
a

a
a

a
d n/

	 –  ¶
¶

¶
¶3 3E E E Ex

x
y

y
- ,	 (A1)

¶
¶

¶
¶

¶
¶

¶
¶,G t x G t yx y

1 2u u
= + = +a

a
a

a
/ / ,

¶
¶
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¶

¶
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¶
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¶
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x
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¶
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¶
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Operators (A1) have a simple physical meaning: the first 
three operators, X0, X1 and X2, correspond to the time trans-
fer transformations t and the coordinates x and y. The follow-
ing three operators, Y1, Y2 and Y3, describe the transforma-
tion of stretching. The transformations with the operators G1 
and G2 correspond to Galilean transformations along the x 
and y axes, respectively, and the operator Z corresponds to 
the rotation transformation in the {x, y} plane. Finally, the 
operator Xpr corresponds to the group of projective transfor-
mations. 

The axially symmetric invariant-group solution arises in 
using the two-dimensional algebra  L2 = {Z, R} composed of 
the rotation operator Z and the operator R = X0 + W 2 Xpr  
and represents a linear combination of the time shift operator 
X0 and the projective group operator Xpr. In cylindrical geom-
etry, the operator Z = ∂/∂j corresponds to a shift in angle j, 
and the operator R is expressed as: 

¶
¶

¶
¶(1 )R t t tr r

2 2 2 2W W W= + + +

	 + 
¶
¶

¶
¶r t tr

r

2 u
u

u
u

W - -
a

a j
a

j
a

a

^ h; E/

	 –  ¶
¶

¶
¶3 3tE E tE Er

r

2 2W W- j
j
.	 (A2)

Invariance with respect to the operator Z gives an axially 
symmetric solution that does not depend on the angular vari-
able j, and the renormalisation-symmetry operator R speci-
fies finite transformations relating the initial values of the 
particle distribution functions and the electric field at t = 0 
with their values for t ¹ 0, i.e., it gives the required solution of 
the initial problem for equations (1), (2) with initial condi-
tions corresponding to the isotropic initial Maxwellian distri-
bution functions of particles with homogeneous initial tem-
perature and zero initial mean velocity. In this case, the solu-
tion is expressed in terms of the invariants of the operator R,

,i
t

r i t
t

tr
1

1
1

r0 2 2 1
2 2

2 2

2
u

W
W

W
W

=
+

= + -
+

a
a ,

, , (1 )i t i f i E t1 /
r2

2 2
3 4

2 2 3 2uW W= + = = +=a j
a

a
a ,	 (A3)

 (1 )i E t /
5

2 2 3 2W= +j .

For the solution considered in the paper with Ej = 0, the 
invariant i5 is zero, and the relation between ia 3 and i4 with the 
remaining invariants is given by formulas (3), (4). 
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