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Abstract.  Surface plasmon excitation at a photonic crystal – metal 
interface is studied taking into account multiple scattering of an 
initial light wave on a periodical crystal structure. The analysis is 
focused on calculating characteristics of the eigenwaves in a one-
dimensional crystal, which comprise a set of harmonics with the 
wavevectors separated from each other by the value of the crystal 
lattice wavevector. Reflection from the crystal – metal interface binds 
the amplitudes of propagating and evanescent modes. Calculations 
show that for the dielectric characteristics of a synthetic opal and a 
substrate made of a real metal with a ruby laser radiation used as 
the initial wave, the fulfilment of plasmon resonance conditions 
leads to a local increase in the surface plasmon amplitude by a factor 
of 6.4 – 9 as compared to the average amplitude of the initial wave. 
As a rule, the effect can only be obtained for a single surface wave, 
all other waves being substantially weaker than the main plasmon. 
There is a specific case where the resonance condition holds for two 
modes simultaneously. In this case, two oppositely directed fluxes 
of equal intensity are generated at the interface. The resonance 
condition breaks at a small deviation of the incident angle of the 
initial wave q from the normal direction (|q| ³ 10–4 rad). In the 
latter case, the picture is asymmetric: at angles |q| ³ 5 ́  10–3 rad, 
only one plasmon remains intensive. The local density of electro-
magnetic energy at the photonic crystal – metal interface may exceed 
the corresponding value of the initial wave by a factor of 40 – 80.

Keywords:  photonic crystal, evanescent modes, surface plasmon 
intensity.

1. Introduction

There is a series of works reporting the principal possibility of 
exciting surface plasmons in various optical schemes [1 – 16]. 
In contrast to classical schemes [17] (which employ a total 
internal reflection prism or corrugated metal surface), other 
variants were also considered. Plasmon generation on a hole 
in a metal screen, on a system of screen holes, on walls of a 
cylindrical or planar waveguide and on an output flange of 
a waveguide was discussed. In the last decade, attention has 
been paid to plasmon excitation on photonic crystal faces. 
Variation of crystal reflection and transmission coefficients 
observed experimentally near a metallic plate or film was con-

sidered as a manifestation of plasmon influence [18 – 24]. The 
process of plasmon excitation was not discussed in these 
works.

We have established [25, 26] that transformation of the 
initial wave to the plasmon requires a thorough study of the 
structure of optical modes in the crystal. In [25, 26], we started 
a theoretical study of waves in such systems and estimated the 
efficiency of transforming initial waves incident onto the crystal 
input surface to plasmons at output surface. A one-dimen-
sional photonic crystal was considered; as seed waves we have 
chosen the waves propagating either in parallel or at a small 
angle to the crystal layers (Fig. 1b). The modulation factor of 
the dielectric function was taken close to that of widely used 
globular crystals – synthetic opals, that is, noticeably less 
than unity. These parameters are estimated in [26]. In these 
conditions, the initial plane wave acquires, as a rule, a weak 
component due to scattering on medium irregularities and 
has an increased value of the wavevector. There is also a second 
eigenwave, in which the component with a large value of the 
wavevector prevails and a small component has the transverse 
structure of the initial wave. The first eigenwave (mode) is the 
propagating one, whereas the second eigenwave is evanescent.

Analysis of the boundary conditions for the waves at the 
crystal – metal interface, which takes into account both the 
eigensolutions, yields amplitudes of the wave reflected from 
the boundary and of the surface wave propagating along the 
interface. Calculations show that under optimal conditions 
the amplitude of the surface wave at the interface may exceed 
that of the initial propagating wave by a factor of 5 – 6. This 
occurs [25, 26] at the values of the dielectric functions of the 
two media and at the angle of initial wave incidence close to 
the plasmon resonance conditions [17]. Restrictions to these 
characteristics are strict: for example, deviation from the opti-
mal angle of initial wave incidence by 5 ́  10–3 rad reduces the 
amplitude of the plasmon wave by an order of magnitude. 
Hence, resonances in the system are very narrow. Calculation 
results strongly depend on variations of problem parameters 
and the question arises as to the dependence of this effect on 
the number of interacting waves considered. Kuznetova and 
Raspopov [25, 26] used a well known two-wave approach 
[27,  28] as a basis. It is not clear whether the estimates obtained 
in the two-wave approximation can answer the question on a 
reachable coefficient of transformation of the initial propa-
gating wave to the surface plasmon.

In the present work, we present a multiwave theory of 
radiation passage through a photonic crystal with plasmon 
origin when the radiation reflects from a crystal – metal inter-
face. Calculations based on the theory suggested will confirm 
a high efficiency of the scheme with a photonic crystal for 
generating surface plasmons.
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2. Problem statement. Optical modes  
in a crystal

Consider a photonic crystal unbounded in the directions of 
the coordinate axes x and y. The crystal has an interface 
with a metal substrate along the plane z = 0. The dependence 
of the crystal dielectric function has the form e(x) = e0 + 
eu[exp(iGx) + exp(–iGx)], that is, the period of the crystal lat-
tice is L = 2p/G. Medium properties are independent of the 
coordinates y and z. A light wave falls onto the crystal. 
Note that in theoretical studies of one-dimensional pho-
tonic crystals it is customary to consider waves propagat-
ing in the direction normal to crystal layers, that is, along 
the gradient e (Fig. 1a). However, there are works concern-
ing two-dimensional problems. For example, nonlinear 
interaction of radiation with a photonic crystal was studied 
in [29] under inclined wave incidence to the crystal. The 
problem required two-dimensional consideration. The 
present work requires solving a two-dimensional problem 
as well. Here we consider the case where the incident wave 
passes at a small angle with respect to the crystal layers 
(Fig. 1b) or even along the layers, that is, normally to the 
gradient e. In addition, only two-wave interaction is con-
ventionally considered in the literature [27, 28] including 
our works [25, 26]. In the present work, we include into 
consideration five partial waves with the wavevector 
x-components {kx – 2G, kx – G, kx, kx + G, kx + 2G} and the 
sought-for components kz and magnetic field amplitudes 
{H–2, H–1, H0, H1, H2}.

Issuing from known wave equation for TM-waves in an 
inhomogeneous medium [30] we obtain the equation for the 
y-component of the magnetic field H
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Taking into account a small value of the modulation depth 
relative to the average value of the dielectric function eu/e0 º x 
we obtain from (1) the equations for the amplitudes of five 
partial waves:
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The wavenumber component kz that is the same for all the 
components with different kx is to be found. To simplify 
formulae, we divide system of equations (2) by w2/c2 and 
transfer to dimensionless wavevector components g = Gc/w, 
u = kxc/w, u = kzc/w. The coordinates x and z are accordingly 
renormalised. Now the matrix for system of equations (2) 
takes the form for the magnetic field components {H–2, H–1, 
H0, H1, H2} (3).

Now we will find eigenvalues Uj = uj
2  and eigenvectors of 

matrix (3). According to the rank of the matrix we have five 
eigenvectors { f1, f2, f3, f4, f5}. The functions fj are linear com-
binations of simple waves: fj = S mj n hn, where hn refer to the 
partial waves mentioned above. We may write functions hn 
using positive indices:

{h1, h2, h3, h4, h5} = {exp[i(u – 2g)x], exp[i(u – g)x], 

	 exp(iux), exp[i(u + g)x], exp[i(u + 2g)x]}.
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Figure 1.  Propagation direction of a light wave falling onto a photonic 
crystal. (a) Standard scheme and (b) scheme of the present work.
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The new functions fj are modes of an inhomogeneous medium 
in the crystal under consideration. We take medium charac-
teristics typical for a synthetic opal in the visible spectral 
range: e0 = 1.851, x = 0.035. Let the absolute values of the 
lattice dimensionless wavevector g be within the limits 0.5 – 1.5 
and those of the dimensionless x-component of the initial 
wavevector be in the interval –0.7 £ u £ 0.7. In this case, all 
the off-diagonal elements in the matrix are substantially less 
than diagonal ones. Hence, in each of the functions fj , one 
simple wave prevails, whereas factors at other waves are 
substantially smaller. Specific features of the modes obtained 
for the medium with mentioned dielectric function charac-
teristics will be considered in Section 4 (Fig. 2). Note that 
the weak waves comprised in the modes cannot be neglected; 
only making allowance for these waves can explain the trans-
formation of the initial wave to evanescent waves.

3. Boundary conditions. Basic system  
of equations

By using the eigenfunctions discussed in Section 2, we describe 
a semirestricted domain (z £ 0). The magnetic field inside the 
crystal is presented in the form
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Fj are constants; and Hrefl is a sum of reflected modes; while 
calculating the square root for Uj > 0, the product of the 
positive number to the imaginary unit is taken, and for Uj < 0 
the positive number is chosen. Thus, propagating waves 
pass from –¥ in the positive direction of the z axis, and 
evanescent waves attenuate in the negative direction of the 
z axis. Propagating waves can generate reflected waves with 
inverted dependence on z at the interface. For evanescent 
waves, there are no waves inverted in z. In the calculations, 
only such parameter sets are considered, which give one 
solution for matrix (3) in the form of a propagating mode, 
whereas the other solutions refer to evanescent modes. We 
will use the subscript m to denote the single propagating 
wave and the amplitude of the corresponding reflected wave 
will be written as Frefl so that expression (4) for the field inside 
crystal will take the form
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From (6) and (5) follows 
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Now consider the domain z > 0. In this case, the medium 
is homogeneous (metal) and the field H in it can be presented 
as a single sum
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where sn are the wave amplitudes, and

( )ng g3 metn
2g u e= + - - 	 (9)

are attenuation constants in metal.
In contrast to (4), the choice of square root sign in (9) is 

obvious. By making (7) and (8) equal at z = 0, we obtain the 
expression for the y-component of the magnetic field
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From (10) follows that factors at each of the functions hn(x) 
should be equal. Finally, we obtain the first boundary con
dition – the continuity condition for H(x, z) in the form of five 
equations:
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Let us pass to the second boundary condition. We find expres-
sions for the values, to which the tangential electric field 
components are proportional in two domains, namely, for the 
parameters e–1¶H/¶z at z = 0. In the domain z < 0 we use 
the expansion of e, and the product takes the form
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Figure 2.  Normalised amplitudes of partial waves comprised in various modes of the photonic crystal. The angle between the direction of initial 
wave propagation and normal to the crystal surface is q = arcsin(–0.25); parameters of the medium are given in the text. Numbers of partial waves 
{1, 2, 3, 4, 5} refer to the wavenumbers {kx – 2G, kx – G, kx, kx + G, kx + 2G}. Pictures corresponding to various modes are ordered according to 
reducing eigennumbers Uj : (a) U1 = 1.787, (b) U2 = –0.1666, (c) U3 = –1.836, (d) U4 = –7.692 and (e) U5 = –11.031.
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In view of (7) and (12) we have
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This formula comprises factors mjn, some of which refer to 
harmonics neglected in our calculations. In further calcula-
tions, the factors corresponding to such harmonics are assumed 
zero mj 0 = mj 6 = 0. Other coefficients mjn are calculated by the 
method from Section 2.

In the domain z > 0 such problems are absent and from 
(8) we obtain
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By making (13) and (14) equal we find
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From (15) follows that the factors at each of the waves 
hn(x) (1 £ n £ 5) in both sides of the equality should coincide. 
Thus, the second boundary condition takes the final form
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By combining both boundary conditions (11) and (16) and 
excluding unknown amplitudes sn we obtain the system of 
equations
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System (17) obtained is a basis for numerical simulations.

4. Calculation results

Numerical simulations were performed for a number of 
particular examples according to the algorithm described 
above. We take the average value of the crystal dielectric 
function e0 = 1.851 and its relative modulation depth x = 
0.035. The exciting wave is the radiation of a ruby laser at 
the wavelength l = 694 nm, the period of the crystal lattice is 
L = 0.6 l, and the absolute value of the lattice wavevector 
is G = 1.6698 w/c. The crystal is placed on a silver substrate; 
the dielectric function of silver at the wavelength of the incident 
wave is emet = –22.6367 + 0.4013i [31]. For the angle of inci-
dence of the initial wave we take q = arcsin(–0.25), for the 
x-component of the scattered wave we have u = –0.25. Note 
that these parameter values obey the equality

.Re Reg K c1 4198
met

met
spp
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0 /u e e
e e

w+ =
+

=` `j j,	 (18)

where Kspp is the wavenumber of a resonance plasmon [17]. 
Equality (18) at the parameters chosen provides the maximal 
proximity to the condition for plasmon resonance, which was 
derived for surface waves at the interface between two uniform 
media [17]. In our works [25, 26] employing two-wave approxi-
mation, this condition provided the maximal plasmon intensity. 
One can easily write the condition, similar to (18), by making 
substitutions u ® –u, Kspp ® –Kspp, and g ® –g. It will be the 
resonance condition for a positive angle q, which, in contrast 
to (18), refers to a plasmon propagating in the negative 
x-direction rather than in the positive one. Thus, it is clear 
that symmetry of the problem is not violated and the results 
obtained for negative angles q can be expanded to the case of 
positive q values as well.

We assume that in a multiwave system, as previously, the 
maximal plasmon amplitude should be sought for near the angle 
value satisfying equality (18). After substituting the parameters 
chosen above to matrix (3), the determinant of the matrix 
yields a quintic polynomial with respect to the square z-com-
ponent of the wave vector u2 º U. There are five roots or five 
values Uj that turn the determinant to zero:

{U1, U2, U3, U4, U5} 

	 = {1.787, –0.1666, –1.836, –7.692, –11.031}.

In what follows, the solutions are ordered according to falling 
values Uj . The following values wj correspond to Uj :

wj = {1.337i, 0.408, 1.355, 2.774, 3.211}.

In this raw, the first wave is propagating along the z axis and 
the other waves are evanescent. For each value of Uj there 
corresponds a set of amplitudes of partial waves, which is 
an  eigensolution or, in other words, mode structure in the 
inhomogeneous medium. Figure 2 shows the calculated nor-
malised amplitudes of partial waves comprised in particular 
modes. Data shown in Fig. 2a refer to the only mode, which 
propagates in the direction of the z axis. All other modes 
have imaginary z-components of wavevectors inside the crystal 
and attenuate with a distance from the crystal – metal inter-
face; Figs 2b – 2e refer to such modes. The results presented 
show that each mode comprises a selected partial wave with 
the factor substantially greater than factors at other waves. 
Now the eifenfunctions for unlimited crystal are found and we 
can describe a semirestricted medium and conjugation of the 
fields at the interface, that is, solve system of equations (17). 
The attenuation factors of partial waves in a homogeneous 
metal medium are calculated by using expression (9), and 
then one can pass to solving the main system of equations (17). 
The amplitude of the incident wave is taken unity and five 
other amplitudes are found. As a result, we obtain the absolute 
values of four plasmons and a reflected mode: {F1, F2, F3, F4, 
F5, Frefl} = {1.0, 6.373, 0.0291, 0.0426, 0.0005, 0.934} (the 
unit amplitude of the initial wave is the first in the list). The 
absolute value of the amplitude of the most intensive plasmon 
6.37 is close to the value 6.50 obtained in our earlier work [26]. 
The other evanescent waves are substantially weaker than the 
‘main’ plasmon.

We should verify whether the plasmon amplitude obtained 
is the maximal one for the crystal characteristics chosen and 
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the plasmon resonance condition provides the optimal regime in 
the system. We have performed similar calculations by varying 
the angle of incidence for the initial wave at the constant 
period of medium modulation L = 0.6 l. The dielectric func-
tions of the two media are similar to previous calculations. 
Calculation results for dependence of the absolute value of 
the main plasmon amplitude are shown in Fig. 3 versus the 
angle of incidence. The dependence obtained is sharp, and 
the maximum position coincides with the value of resonance 
angle calculated above within an accuracy of 10–4 rad. The 
plasmon propagating in the negative x-direction has the 
maximal amplitude of 6.7; the calculated amplitude of a 
weaker plasmon propagating in the positive x-direction is 
0.043. The amplitude of the reflected propagating wave is 0.93. 
The FWHM of the maximum is 4 ́  10–3 rad. Hence, similarly 
to [25, 26], the determining role of plasmon resonance is 
confirmed.

Now consider the case where the initial wave passes per-
pendicular to the surface z = –d. It means that the x-compo-
nent of the initial wave is zero, u = 0. In contrast to the previous 
consideration, instead of (18), the following equality should 
hold
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In matrix (3) by putting u = 0 for the modes of the modulated 
medium we obtain the matrix:
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Properties of symmetry of this matrix due to the sym
metry of directions ±x in the case of normal incidence allow 
one to transfer it to the quasi-diagonal form:
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Omitting details, we present eigennumbers and mode 
structure expressed in terms of previous partial waves. For 
the eigennumbers we have the relation

Uj = {1.8506, –0.1661, –0.1665, –6.2104, –6.2104}.

These eigennumbers correspond to the following values wj :

wj = {1.3604i, 0.4076, 0.4080, 2.4921, 2.4921}.

The mode structure for this case is shown in Fig. 4. One 
can see that each mode comprises partial waves with either 
similar amplitudes or amplitudes of equal absolute values and 
opposite signs. These modes are symmetric or antisymmetric 
solutions to equations (2) for fields in the modulated medium 
of the unlimited crystal. Note that the initial exciting wave is 
symmetric in x; hence, antisymmetric modes do not interact 
with it and are not pumped by it.

Now we can solve the main system of equations (17). In 
calculations, we take the amplitude of incident wave equal 
to unity and find amplitudes of the reflected wave and four 
pairwise symmetric running plasmons; each pair of symmetric 
plasmons forms a standing wave. Antisymmetric modes are 
not generated at normal incidence of the exciting wave. 
Calculation yields the following values: the absolute values of 
amplitudes for each of two oppositely directed main plasmons 
are 3.24, for two weak plasmons these are 0.021, and for the 
reflected wave it is 0.931 (the values are normalised to the 
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Figure 3.  Absolute value of the amplitude of the main plasmon wave 
vs. sinus of the incident exciting wave angle sin q at g = 1.6698.
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Figure 4.  Normalised amplitudes of partial waves comprised in (a, b, c) symmetric and (d, e) antisymmetric modes of photonic crystal at normal in-
cidence of the initial wave onto the crystal.
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amplitude of the initial wave). The density of the electro-
magnetic energy flux normalised to that of the initial flux is 10 
for each of the oppositely directed fluxes. The relative density 
of electromagnetic energy oscillates from zero in nodes to 40 
in antinodes, the oscillation period coinciding with half the 
period of the crystal lattice.

Note that the pictures of excited fields in the case of normal 
incidence and incidence at the angle of q = arcsin(–0.25) 
strongly differ. In order to reveal how this transfer occurs in 
changing the angle of incidence we have performed detailed 
calculations over the whole intermediate range of angles. In 
the calculations, the lattice wavenumbers were taken such 
that resonance condition (18) holds for each incidence angle 
of the initial wave. Calculations show that in approaching the 
normal incidence up to the angle q = arcsin(–0.01), the ampli-
tude of the main plasmon actually does not change, and other 
plasmons do not become noticeably stronger. In further 
reduction of angle q, the picture substantially changes: the 
amplitude of the main plasmon strongly increases. In Fig. 5 
one can see that it reaches 9.1 at the angle q  = –10–5 rad. 
Figure 5 also shows an increase in the amplitude of a weaker 
plasmon to the value of 4.7. Further approach of angle q to 
zero and the corresponding reduction of the calculation steps 
result in irregular jumps of calculated values. This is explained 
by solution instability near q = 0 and requires another algo-

rithm for calculating the mode structure. Practical employment 
of the specific behaviour of waves at very small angles seems 
rather interesting. However, the values of plasmon amplitudes 
obtained near zero incident angles should be averaged over 
the angular width of the exciting beam, which can hardly be 
made less than 5 ́  10–5 rad because of the real crystal trans-
verse dimensions. One can surely speak about plasmons with 
the amplitude of about 9.

5. Conclusions 

Efficiency of exciting surface plasmons in a synthetic opal 
in  the visible spectral range is calculated. The method for 
studying optical modes in a crystal is developed, which takes 
into account multiple scattering of radiation on periodical 
inhomogeneities of the medium. Analysis allowed one to 
match multiple-component modes at the crystal – metal inter-
face. The cases were found, where the multiple-wave approach 
is substantial. This occurs at such system parameters that the 
wavevectors of two waves participating in plasmon generation 
(including the initial and excited waves) have equal or close 
absolute values. In the problems considered, this occurs when 
the waves in the crystal undergo strong Bragg reflection. One 
of such variants is normal incidence of the initial wave onto a 
crystal (the wave propagation direction is parallel to crystal 
layers). In this case, a symmetric picture arises: two oppositely 
directed fluxes of energy of equal values. It is shown that at a 
small deviation of the exciting wave direction from normal 
incidence, the picture becomes asymmetrical. When the devi-
ation from normal incidence is |q| ³ 5 ́  10–3 rad, only one 
plasmon remains intensive. However, in the interval of angles 
|q| ³ 10–4 – 10–5 rad close to normal incidence, transforma-
tion of the propagating mode to the main surface plasmon is 
especially efficient. The field amplitude in the plasmon wave 
maximum may reach 6.4 – 9 relative to the initial wave 
amplitude. The local density of electromagnetic energy at the 
crystal –  metal interface correspondingly increases by 40 – 80 
times as compared to the initial wave.

Results of the present work show the possibility of employ-
ing the scheme presented for efficient generation of plasmons.
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