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Abstract.  The possibility of implementing an off-resonant Raman 
scheme of optical quantum memory on the basis of an ensemble of 
three-level atoms is investigated under the condition of equal polar-
isations of resonant transitions forming the L-scheme. The devel-
oped model is used to analyse the signal-to-noise ratio at the output 
of an optical quantum memory device in 143Nd3+ : Y 7LiF4. It is 
shown that this ratio can significantly exceed unity for single-pho-
ton input pulses. The required values of the parameters can be 
obtained by using an impurity crystal in the form of a whispering-
gallery mode ring resonator. 

Keywords: quantum memory, impurity crystal, resonator, signal-
to-noise ratio. 

1. Introduction 

The creation of optical quantum memory is one of the topical 
tasks of modern quantum optics and computer science [1 – 6]. 
Devices capable of storing and retrieving quantum states of 
light are necessary for the operation of optical quantum com-
puters and for the implementation of long-distance optical 
quantum communication. In addition, quantum memory can 
be used to develop deterministic sources of Fock states of the 
electromagnetic field, i.e., states with a certain number of 
photons, and also to implement various quantum measure-
ment protocols involving the transfer of nonclassical states of 
light into atoms. 

At present, main attention is paid to quantum memory 
schemes utilising the interaction of weak light pulses with 
ensembles of atoms. These schemes are based on photon 
echoes [7 – 9], electromagnetically induced transparency 
[10,  11] and off-resonant Raman absorption and scattering 
[12], as well as make it possible to implement multimode 
quantum memory necessary for practical applications. As for 
quantum information carriers, dielectric crystals doped with 
rare-earth ions are among the most promising [13]. The coher-
ence lifetime of impurity-ion ground-state hyperfine transi-
tions, which determines the storage time of the recorded 
information, reaches several hours in such crystals [14]. Of 
particular interest are isotopically pure impurity crystals, 

which exhibit very narrow optical lines up to 10 MHz [15 – 19]. 
Such a small inhomogeneous broadening of optical transi-
tions opens the possibility of implementing various schemes 
of off-resonant Raman quantum memory [20 – 24], which has 
so far been realised only in gas media [25 – 27] and in a dia-
mond crystal [28]. 

The overwhelming majority of theoretical works devoted 
to the development of new optical quantum memory schemes 
is based on the use of an ideal three-level model of atoms with 
the L-scheme of transitions having orthogonal polarisations. 
Indeed, in an experiment it is sometimes possible to find close-
to-ideal conditions. However, in some cases, in particular 
when analysing the signal-to-noise ratio at the output of a 
memory device, such a model is not complete. First of all, 
there is a need to take into account the actual structure of 
atomic levels that goes beyond the three-level model. For 
gases, the corresponding theory was developed in [29]. In the 
context of solid-state off-resonant Raman memory, one can 
note paper [30], in which, in addition to the analysis of noise, 
it was shown that it is possible to realise the L-scheme of 
orthogonal linearly polarised transitions in diamond NV cen-
tres due to the action of external electric and magnetic fields. 
Another factor that significantly affects the noise level is the 
nonorthogonal polarisation of the transitions forming the 
L-scheme, which is typical, for example, of optical ground- 
and excited-state hyperfine transitions in rare-earth ion-
doped dielectric crystals. As an example, we can cite paper 
[31], where 10 L-like systems were experimentally identified in 
a 167Er3+ : Y2SiO5 crystal. Therefore, the theoretical analysis 
of the storage and retrieval of single photons in the regime of 
off-resonant Raman interaction of fields with impurity crys-
tals doped by rare-earth ions, taking into account the real 
hyperfine structure of the working levels and the identical 
polarisation of the transitions forming a L-like scheme, is an 
important problem. This is the subject of this work. 

2. Basic equations 

The general scheme of quantum memory based on the Raman 
interaction of two fields with an ensemble of N >> 1 atoms 
placed in a resonator is shown in Fig. 1. This scheme was ana-
lysed in detail in [32] under the assumption that polarisations 
of |3ñ – |1ñ and |3ñ – |2ñ transitions are orthogonal. This situa-
tion is realised quite easily in gases located in a magnetic field. 
In this paper, we consider the case of an arbitrary L-scheme, 
which is obtained, for example, by using hyperfine sublevels 
of the ground and excited states of impurity ions in dielectric 
crystals. In the case of nonorthogonal polarisation of the 
transitions forming the L-scheme, the control field with fre-
quency w acts on both transitions, producing a Raman com-
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bination with the signal (frequency w' ) and idler (frequency 
w'' ) fields. Then, the Hamiltonian of the system in the rotat-
ing wave approximation takes the form: 

H = –  [ ( ) ( )exp expi it t g a32 32 31 31 31 31' s w s w sW W- - + - +

	 +  ]g a g b g b32 32 31 31 32 32s s s+ + + h.c.,	 (1)

where a = A exp(– iw't) and b = B exp(– iw''t) are the annihila-
tion operators for the photons of the signal and idler fields, 
respectively, in the resonator modes; s31 = P*exp(iw't), s21 = 
S*exp[i(w' – w)t], s32 = Q*exp(iwt) are the atomic transition 
operators (smn = |mñán|); and A, B   and P, S, Q are slowly 
varying field and coherence amplitudes, respectively. For an 
ensemble of atoms, taking into account that in the process of 
interaction with a weak signal field almost all atoms are in the 
ground state (ás11ñ » N, ás33ñ » ás22ñ » 0), from the 
Heisenberg – Langevin equations we obtain the equations 

( )exp iN td-i i iP P P SP P 32 31gD W W=- - + +o

	 + A+N ( )expi i ig g AS t31 32 d

	 +  N B [ ( ) ] ( )exp expi i i ig t g BS t31 32d d d- +l l ,	 (2)

Ai i iS S S P g QS S 32 31gD W=- - + - **o

	 – ( ) ( )exp expi i i iQ t g PA t*
31 32d dW - + -* *

	 –  [ ( ) ] ( )exp expi i i ig Q B t g PB t* *
31 32d d d- + -*l l ,	 (3)

A( )i iQ Q Q g S*P S Q 31gD D=- - - -o

	 –   [ ( ) ]exp iB td d-( )expi i iS t g S* *
31 31dW - - l ,	 (4)

A( )exp iNP t kAd+ - - +Ni iA g g Q k2 in31 32= * *o ,	(5)

NPexp[ ( ) ]i iB g t31 d d= - -* lo

	 +  BexpN ( )i ig Q t kB k2 in32 d- - +* l ,	 (6)

where for all atomic coherences we used a normalisation of 
the form N/P Pjj

N
1=

=
/  and introduced the notation d = 

w – w' ; d' = w – w'' ; /( )g d V2mn mn 0'w e=  is the coupling 
constant of the field with atoms at the |mñ – |nñ transition, 
which is characterised by the dipole moment dmn (in this case 
we can set w' = w'' = w); gP, gS, gQ  are the decay rates of coher-
ences; 2k is the decay rate of the field in the resonator; and V 
is the volume of the resonator field mode. The two-photon 
detuning DS takes into account the frequency shift equal to 
– |W32|2/DP (DP is the single-photon detuning), which occurs 
under the action of the control field. In the case of an exact 
two-phonon resonance, when DS = 0, we have d = – d'. Finally, 
the amplitude of the signal field at the output from the reso-
nator, Aout(t), is found from the boundary condition Aout(t) = 

( )A tk2  – Ain(t). In the numerical solution of the system of 
equations (2) – (6), the operators are replaced by complex 
numbers corresponding to the amplitudes of the transition 
probability between the vacuum and single-photon states for 
the field and between the ground and excited states for atoms. 
In this case, the idler field Bin at the input is assumed to be 
zero. Since the signal field is considered to be weak, the contri-
bution of atomic noise operators in the Heisenberg – Lan-
gevin equations can be neglected (see, e.g., [32]), and they are 
not included in this system of equations. In the case of orthog-
onal polarisation of the transitions forming the L-scheme, we 
must set W31 = 0 and g32 = 0 if we consider the signal field act-
ing on the |1ñ – |3ñ transition and the control field acting on 
the |2ñ – |3ñ transition. 

3. Quantum memory in a 143Nd3+ : Y 7LiF4 
crystal 

As an example, let us consider the possibility of storing and 
retrieving single-photon states in an isotopically pure 
143Nd3+ : Y 7LiF4 crystal, which has been recently used in 
experiments demonstrating quantum memory protocols 
based on atomic frequency combs [33, 34]. The presence of a 
hyperfine level structure in odd isotopes of impurity neodym-
ium ions allows storing information about a signal photon in 
the form of coherence created on transitions between hyper-
fine sublevels, and the isotopic purity of the crystal provides 
an inhomogeneous optical transition broadening of 10 – 
50 MHz [18, 33], which is much smaller than the hyperfine 
splitting of energy levels. The hyperfine structure and the rela-
tive probabilities of optical transitions between the sublevels 
of the ground state [4I9/2(0)] and the excited state [4F3/2(0)] 
(zero in parentheses is the lowest sublevel of the Stark struc-
ture) can be calculated using the effective spin Hamiltonians 
given in paper [18]. 
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Figure 1.  (Top) Schematic diagram of off-resonant Raman quantum 
memory and (bottom) scheme of working transitions:	
( 1 – 3 ) mirrors that are transparent to the control field (frequency w) 
and form a ring resonator with one input/output for a signal field (fre-
quency w' ) and an idler field (frequency w'' ); Wmn(t) is the amplitude 
(Rabi frequency) of the control field corresponding to the |mñ – |nñ tran-
sition; Ain(t) and Aout(t) are the amplitudes of single-photon pulses of 
the signal field at the resonator input and output, respectively. 
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At certain values of the longitudinal magnetic field, 
clock transitions occur between hyperfine ground-state sub-
levels, which contributes to an increase in the phase relax-
ation time. In this case, there is one value of the magnetic 
field (~636 Gs), at which a symmetric and isolated L-scheme 
of transitions is obtained, when only one of the excited-state 
sublevels is related to only two ground-state sublevels and 
the probabilities of both transitions are identical. Moreover, 
in this case, the linear Zeeman effect is absent for all direc-
tions of the magnetic field, which corresponds to a full clock 
transition, or ZEFOZ-transition (zero first-order Zeeman 
transition) [35, 36]. According to calculations, the full clock 
transition occurring in a longitudinal magnetic field, equal 
to 636 Gs, has a frequency of 2087 MHz, and the polarisa-
tion of both transitions forming the L-scheme corresponds 
to linear polarisation perpendicular to the optical axis of the 
crystal. 

The main problem in the numerical solution of the system 
of equations (2) – (6) was to determine the conditions under 
which a single-photon wave packet can be stored and retrieved 
in the regime of off-resonant Raman absorption and emission 
with a large signal-to-noise ratio. In this case, Gaussian single-
phonon pulses with the amplitude Ain(t) = Ain

0 exp [–R(t – T  )2 ] 
were considered, where the parameter R is related to the 
FWHM pulse duration t by the relation R = t–22ln2, and the 
normalisation corresponding to a single-photon state of the 
signal field has the form 2dt 1=| ( ) |A tiny . The choice of 
Gaussian pulses for the analysis is due in particular to the fact 
that they are optimal for use in optical quantum schemes 
from the point of view of temporal synchronisation [37]. The 
change in the Rabi frequency of the control field W32(t), which 
results in the emission of a Gaussian pulse in the off-resonant 
Raman scattering regime, can be described analytically (see 
the solution obtained in [38]):

( ) {2[ ( ) ( ) ]}expt
C

t T R t TP32
2 0

2
2gW W

= - - -

	 ´  ( )exp exp
C R
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R R

1
2
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2 2

P P P
2

2
2 2pg g g

- + c m; E)

	 ´  R2( )erf erf
R

C
t T

R2 2
P P

1g g
- - -

-

c m ;; EE1 ,	 (7)

where C = |g31|2N(gPk)–1(|W0|/DP)2 is the cooperative parame-
ter, and W0 is the maximum value of the Rabi frequency in the 
modulation process. To store an analogous Gaussian pulse in 
the off-resonance Raman absorption regime, it is necessary to 
use the time-reversed dependence (7). It is convenient to 
assume that the input pulse has a maximum amplitude at a 
time instant –T (T > 0), so that the information storage time 
is 2T. The noise that appears during the storage and retrieval 
of light pulses is defined as radiation at a signal field fre-
quency that arises when the control field in the absence of an 
input pulse is applied to the atomic ensemble. In general, at 
the output of the device one observes the sum of the useful 
signal and the noise. For the L-scheme with the same polari-
sation of the transitions, we have W31 = W32, and the noise 
level is determined primarily by the term ( )exp iN td-31W  in 
Eqn (2). Thus, a large signal-to-noise ratio can be obtained by 
reducing the Rabi frequency of the control field and decreas-
ing the total number of particles. In this case, the single-pho-
ton detuning DP proves much smaller than the interval 
between the lower sublevels, which for an exact two-photon 

resonance is equal to |d| = |d'|. This fact imposes a restriction 
on the minimum duration of the signal field. 

One of the results of the calculation is shown in Fig. 2. In 
calculations, the duration of single-photon pulses, t, was set 
equal to 425 ns, and the information storage time 2T was 2 ms. 
The homogeneous width of all resonance transitions was con-
sidered equal to 10 kHz, which corresponds to a phase relax-
ation time of 100 ms. It is this order of magnitude of the relax-
ation time that we expect to obtain in the crystal under con-
sideration in the case of a full clock transition between the 
hyperfine sublevels. The values of the other parameters are 
presented in the caption to Fig. 2. In this case, the total quan-
tum memory efficiency h, defined as

| ( ) |

| ( ) |

d

d

A t t

A t t

in

out

2

2

h =
y
y

,

is equal to 76 %, and the contribution of noise to the signal 
field at the output is 1.4 %. For the crystal in question, suit-
able values of the coupling constant gmn are found by using a 
whispering-gallery mode ring resonator of about 1 mm in 
diameter with a Q-factor of 108, which at such diameters is 
not very large and corresponds to the resonator finesse of 
~104. In addition, to obtain N » 105 particles requires a very 
low concentration of impurity ions. In fact, it can be a small 
segment of a ring resonator containing impurities. 

4. Conclusions 

We have developed a theoretical model describing the storage 
and retrieval of weak light pulses in the regime of off-resonant 
Raman absorption and emission of photons in an ensemble of 
three-level atoms that have an L-scheme of nonorthogonally 
polarised transitions. Using this model, we have analysed the 
signal-to-noise ratio at the output of an optical quantum 
memory device based on an isotopically pure 143Nd3+ : Y 7LiF4 
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Figure 2.  Input (dashed curve) and output (dotted curve) signal field 
pulses, as well as noise (solid curve) illustrating the operation of quan-
tum memory in 143Nd3+ : Y 7LiF4. The result of the numerical solution of 
equations (2) – (6) was obtained for DP /2p = –25 MHz, W0 /2p = 
30.4  MHz, |d| /2p = |d' | /2p = 2087 MHz, g31 /2p = g32 /2p = 7.9 kHz, N = 
1.9 × 105, k /2p = 6.2 MHz, gP = gS = gQ = 2p × 10 kHz, t = 425 ns, T = 
1 ms.
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crystal. For the given crystal, we have determined the condi-
tions under which an ideal L-scheme of transitions is imple-
mented, when only one of the hyperfine sublevels of the 
excited electronic state is related to only two hyperfine sublev-
els of the ground electronic state of impurity ions, and the 
probabilities of both transitions are equal. In this case, the 
lowest sensitivity of the Raman transition frequency to fluc-
tuations of the magnetic field is attained, which corresponds 
to a full clock transition. The simulation results have shown 
that under these conditions the signal-to-noise ratio can sig-
nificantly exceed unity for single-photon input pulses. The 
required values of the parameters can be obtained by using an 
impurity crystal in the form of a whispering-gallery mode ring 
resonator. 
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