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Abstract.  The guided waves of a symmetric planar waveguide 
formed by an isotropic dielectric placed in a hyperbolic medium and 
having a cubic-nonlinear response are studied theoretically. The 
optical axis of the hyperbolic medium is directed along the normal 
to the interfaces between the media. If the permittivity of the wave-
guide core exceeds the main permittivity for an extraordinary wave 
in the hyperbolic medium, then each TM mode is characterised by 
two cut-off frequencies. Dispersion relations for these modes are 
found in the case of focusing and defocusing core media. The num-
ber of the modes possible at a given frequency depends on the radia-
tion intensity. It is shown that zero values of the mode propagation 
constants are possible in the waveguide, which corresponds to the 
formation of a standing wave between the boundaries of the wave-
guide. In addition, in the case of a defocusing waveguide layer, such 
stopped modes can be obtained with increasing field intensity. The 
dependences of the propagation constant and the width of the trans-
verse distribution of the mode field on the radiation intensity are 
found and analysed. 

Keywords: metamaterials, hyperbolic dispersion, nonlinear dielec-
tric, waveguide.

1. Introduction 

A hyperbolic material can be defined as a strongly anisotropic 
uniaxial medium, whose principal components of the permit-
tivity tensor or of the magnetic susceptibility tensor have 
opposite signs [1, 2]. An extraordinary wave propagating in 
such a nonmagnetic medium is characterised by an isofre-
quency surface of the refractive index describing the hyperbo-
loid in the phase space. This leads to a number of unusual 
optical properties of hyperbolic media (see [3 – 8], and also 
reviews [9 – 11]). 

Plasmonic or photonic guiding devices, such as wave-
guides, are widely used in various communication networks 
and information processing systems. Many guiding struc-
tures, including a hyperbolic medium, have already been con-
sidered. Among them are the interface between a dielectric 
and a hyperbolic medium, supporting the propagation of sur-

face plasmon polaritons [12, 13]; waveguides with a hyper-
bolic core [14 – 16], characterised by the coexistence of for-
ward and backward modes, by the possibility of the light 
slowing down, and by negative refraction; and waveguides 
with a hyperbolic cladding [17, 18]. In all the papers men-
tioned, only the linear response of media to the applied radia-
tion has been examined. 

An optically linear planar waveguide with a transparent 
isotropic dielectric layer placed in a hyperbolic medium was 
studied in [18]. If the anisotropy axis of the hyperbolic 
medium is directed perpendicular to the interfaces between 
media, then the TM waves are extraordinary waves in this 
medium and are ordinary waves in the dielectric waveguide 
layer. Because of this, unlike conventional dielectric wave-
guides, in waveguides with a hyperbolic cladding each TM 
mode is characterised by two cut-off frequencies, i.e., each 
TM mode exists in the waveguide only in a certain frequency 
range at its fixed thickness [18].

Nonlinear guided modes in an asymmetric planar wave-
guide that was formed by an isotropic dielectric layer placed 
on a linear or nonlinear substrate and covered with a hyper-
bolic material were investigated in [10]. In this case, in addi-
tion to guided waveguide modes, additional modes appear 
that arise when a local maximum of the electric field is present 
in the nonlinear substrate. These modes are absent in the lin-
ear case and can be excited when the radiation power exceeds 
a certain threshold; the cut-off frequencies of each of them are 
determined by the permittivities of the media and the field 
intensity. 

In this paper, we determine the modes of a guided wave in 
a symmetrical planar waveguide, which is formed by an iso-
tropic nonlinear dielectric layer surrounded by a hyperbolic 
linear material (Fig. 1). We consider the cubic-nonlinear 
response of the medium from which the waveguide layer is 
made, and its effect on the dispersion characteristics of the 
TM modes. The distribution of the guided wave fields and the 
dispersion relation connecting the propagation constant and 
the radiation frequency are analytically obtained and anal-
ysed. The cases of focusing and defocusing Kerr media of the 
waveguide layer are considered. In all the cases in question, 
the TM modes are also characterised by two cut-off frequen-
cies. For a focusing medium, the effective refractive index (or 
the propagation constant) of the mode increases monotoni-
cally with increasing field intensity. In the case of a defocusing 
medium, the propagation constant decreases monotonically, 
reaching zero in the limit. This situation corresponds to a zero 
energy flux along the waveguide, or ‘stopped light’, and arises 
precisely in a symmetric hyperbolic waveguide. It is shown 
that the mode density per unit of the reduced waveguide 
thickness depends monotonically on the radiation intensity. 
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This makes it possible to control the number of modes excited 
in the waveguide by changing the radiation intensity. It is also 
shown that, in the case of a defocusing core, the mode width 
decreases with increasing field intensity. 

2. Basic equations 

We consider a planar waveguide whose dielectric core, or 
waveguide layer, has a thickness h and is made of a transpar-
ent nonmagnetic material. The substrate and the cover layer 
are uniaxial hyperbolic materials, the optical axis of which is 
perpendicular to the waveguide axis (Fig. 1). The electromag-
netic properties of the hyperbolic material are determined by 
the main permittivities (eigenvalues of the permittivity tensor) 
eo and ee having different signs. The waveguide layer is a 
transparent cubic-nonlinear (Kerr) isotropic dielectric char-
acterised by a linear permittivity ei and a Kerr constant eK. 
The coordinate axes are defined as follows. The X axis is nor-
mal to the medium interface plane, the Y and Z axes lie in the 
plane of the waveguide, with the Z axis coinciding with the 
direction of radiation propagation in the waveguide. In this 
geometry, the electromagnetic fields do not depend on the 
coordinate y. 

In the general case, the system of equations describing the 
propagation of a wave with an electric field strength E in an 
anisotropic medium with an optical axis directed along the X 
axis has the form [18, 19]: 
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Here, Pnl is the nonlinear polarisation vector; k0 = w/c is the 
wave number in vacuum; and De(x) = ee(x) – eo(x). 

For the planar waveguide in question, the linear principal 
permittivities can be represented by a piecewise continuous 
function of the transverse coordinate
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In the planar geometry (Fig. 1), TE and TM waves can be 
treated independently. The present work is devoted to the 

study of directed TM waves, which are extraordinary and 
described by the vectors E = (Ex, 0, Ez) and H = (0, Hy, 0). The 
components of these vectors are related to each other by the 
equations
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It is assumed that parametric processes (generation of har-
monics or addition of frequencies) are absent. The nonlinear 
polarisation of a TM wave in an isotropic dielectric can be 
represented by the expressions 

Pnl x = (gxx|Ex|2 + gxz|Ez|2)Ex,

Pnl z = (gzz|Ez|2 + gzx|Ex|2)Ez, 

where the parameters gij depend on the components of the 
fourth-rank nonlinear susceptibility tensor cmnkl. In this anal-
ysis, we assume the approximation 
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to be valid. This approximation was used in a number of stud-
ies (e.g., [20 – 24]), where the influence of the nonlinear 
response of a medium on guided waves was investigated. Such 
an approximation was sufficient to reveal the main features of 
the guiding structures. 

3. Field distributions for TM waves 

The waveguide under study is uniform in the direction of the 
Z axis, so that the fields of the guided wave can be represented 
as ( ,0, ) ( )exp iE E zE x z b= u u  and (0, ,0)HH y= u exp(ibz), where b 
is the propagation constant. Under this assumption, system 
(1) yields the equations for the component Ezu : 
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Next, we introduce the parameters q2 = (eo /ee)( b2 – k0
2ee) 

and p2 = k0
2ei – b2. For the guided waves, the condition q2 > 0 

must be satisfied. In the case of surrounding hyperbolic 
media, this inequality is met only for eo < 0 and ee > 0. This 
is the so-called hyperbolic medium of metallic type [11]. 

There is no restriction on the sign of p2. The case  p2 < 0  
corresponds to a pair of surface waves (plasmon polaritons 
[12, 13]) propagating along the waveguide boundaries. The 
case p2 > 0 corresponds to the guided waves, which are called 
waveguide modes. In what follows, only the case p2 > 0 is 
considered. 
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Figure 1.  Scheme of a hyperbolic symmetric planar waveguide. 
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The first and last equations of system (5) are easily inte-
grated: 

( )expE A qx( )
z
1

0=u ,     ( )expE A qx( )
z h
3
= -u .	 (6)

Superscripts ‘1’ and ‘3’ denote a substrate and a coating layer, 
respectively. 

The solution of the second equation in (5) can be expressed 
in terms of elliptic Jacobi functions [25]. To do this, we must 
integrate equation (5) once, which will give 
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where G is the integration constant. 
In the following derivation, we confine ourselves to the 

case of the defocusing medium of the waveguide core (eK < 0). 
The case of the focusing medium (eK > 0) can be treated sim-
ilarly. 

Next, we introduce the dependent variable Ezu a= u , 
where | |/k 2K0

2a e=  is the nonlinearity parameter. From (7) 
follows the equation 
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Replacing v(x) by ( ) /x 1u ur  in (8) gives the equation 
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2x u u= r r ; 0 12G Gx ; and x monotonically increases 

with G. Consequently, the parameter x can be regarded as an 
alternative G to the integration constant. The parameters in 
(8) are expressed in terms of x as follows: 

1
p

1
2

2

2

2

u a x
x

=
+

r ,    
p
1
1

2
2

2

2u a x
=

+
r .

The integration in (9) leads to the expression 
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where x0 is the second integration constant. The integral on 
the right-hand side of this equation is an elliptic integral of the 
first kind [25]. Consequently, v(x) can be expressed in terms 
of the Jacobi function, i.e. elliptic sine: 
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Then the z-component of the electric field in the waveguide 
core (subscript ‘z’) is given by 
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The maximum value of the z-component of the electric field 
Ez is 

A
p

1
max 2a x

x
=

+
.	 (11)

Taking into account expressions (6) for the electric field in 
the substrate and the coating layer, we can write the system 
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required, the tangential components of the electric field 
strengths are continuous at the interfaces between the media. 

In the case of the focusing medium of the waveguide core, 
the distribution of the z-component of the electric field fol-
lows from (12) when using the substitution x = ik, where 0 £ 
k £ 1. 

The components Hy
u  and Exu  can be expressed through Ezu  

using the formulas:
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These expressions follow from system (3) and assumption (4).
It is interesting to analyse how system (12) is transformed 

in the linear case, when the value of eK is negligible. Then, for 
the parameter x we have 
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where we used the definition of x and L’Hospital’s rule. Thus, 
the constant G is related to the maximum intensity of the field 
in the linear case. 

4. Dispersion relations 

Taking into account the continuity conditions for Hy
u  at the 

boundaries x = 0, x = h, the following relations can be 
obtained from system (12) and equations (13): 
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Comparing the equations of this system, one can note that 
/ /x h NT p2 10

2x= + + , where T is the period of the elliptic 
function sn(x, x), and N is an integer constant. The periods of 
the elliptic functions sn(x, x) and cn(x, x) are the same, and the 
period of the function dn(x, x) is equal to T/2. Therefore, the 
pair of equations (15) reduces to a single equation:
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Expression (16) relates the propagation constant b contained 
in the parameters p and q to the radiation frequency w, which 
is included in the definition of k0. Thus, the equation obtained 
is the dispersion relation. The substitution x = ik from (16) 
yields the dispersion relation in the case of the focusing 
medium of the waveguide layer (eK > 0). 

The parameter x takes into account the nonlinear proper-
ties of the medium of the waveguide layer. It follows from (11) 
that its value increases with increasing Amax

2 . 
In the linear case (x = 0), the elliptic functions are replaced 

by their trigonometric counterparts and the system of equa-
tions (15) leads to the dispersion equation obtained previ-
ously [18]: 
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where m is an integer that can be used as a mode marker (it is 
usually called the mode index or mode order). 

In the further analysis, instead of the propagation con-
stant b, we will use the value neff = bk0, called the effective 
refractive index of the mode. In the previous section, it was 
shown that the parameter q must satisfy the inequality q2 > 0. 
In the case of the hyperbolic environment with principal per-
mittivities eo < 0 and ee > 0, this condition restricts the pos-
sible values of the effective refractive index neff: 

0 ( , )minneff e i
2G G e e ,	 (18)

where neff = 0 corresponds to the zero value of the propaga-
tion constant b, i.e., the formation of a standing wave between 
the core bounding media. In the beam representation, neff = 

ie sin ain, where  ain is the angle of incidence of radiation on 
the dielectric – hyperbolic medium interface. Thus, for ee < ei, 
it follows from (18) that there is a critical angle of inci-
dence   acr that determines the condition of total internal 
reflection sin ain £ sin acr = /e ie e ; therefore, the total reflec-
tion of radiation from the dielectric – hyperbolic medium 
interface is observed for all angles of incidence that are less 
than critical. In this case, hyperbolic media differ from ordi-
nary anisotropic media. 

It should be noted that in the case of a conventional die
lectric waveguide, the possible values of neff lie in the interval 

ne eff i
2G Ge e . 	 (19)

The total reflection from the interface of two dielectrics occurs 
when sin ain ³ sin acr = /e ie e . Figure 2 shows the dispersion 
curves for TM modes of a dielectric waveguide with parame-
ters ei = 4.0 and ee = eo = 2.25. Each curve has an initial point 
(cut-off frequency), where neff e

2 e= , and then tends to the 
common value for all modes, neff i

2 e= , which is reached at 
hk0 ® ¥. 

The elliptic functions in (16) are periodic for all x, except 
for x = 1. Therefore, we can assume that equation (16), like 
(17), has a set of branches of solutions neff i

2 e= , which are the 
dispersion characteristics of the waveguide modes. Each 
mode is also denoted with an integer index m. 

In the case of the hyperbolic medium, at ee < ei, the value 
neff i
2 e=   is not attainable (18) and the behaviour of the dis-

persion curves differs markedly from that presented in the 
case of a conventional waveguide (Fig. 2). 

Figure 3 shows the functions ( )n hkeff
2

0 , which are the 
numerical solutions of equation (16) for several values of x. 
The solutions for x = 0 correspond to the case of (17). It was 
assumed that the linear permittivities of the waveguide layers 
are as follows: ei = 4.0, ee = 3.0 and eo = –3.5. It was shown in 
[17, 18] that in a waveguide surrounded by a hyperbolic mate-
rial there is no fundamental mode with m = 0. Equations (16) 
and (17) also do not have solutions for m = 0. Thus, in all the 
cases presented in Fig. 3, the mode index starts with m = 1. 

It follows from the dependences shown in Fig. 3 that the 
TM modes in each case have two cut-off frequencies. With a 
change in frequency at ( ) 0n hkeff

2
0 = , the mode appears in the 

waveguide, and at ( )n hkeff e
2

0 e=  it disappears, i.e. – the radia-
tion is coupled out of the waveguide core (6). This phenome-
non is absent in a conventional dielectric waveguide. Thus, 
the presence of an additional cut-off frequency for directional 
TM modes [18], detected in the linear case, also occurs for an 
optically nonlinear waveguide layer. 

Comparing the results presented in Fig. 3, one can note 
that with increasing nonlinear parameter, the mode density 
per unit reduced thickness hk0 decreases, and each dispersion 
curve shifts towards larger values of the reduced thickness. 
This suggests that with an increase in the field intensity in the 
case of the defocusing medium, the effective value of neff 
decreases and eventually reaches zero (at a constant radiation 
frequency). Because the propagation constant b is propor-

m = 0 1 2 3
4

5

0 5 10 hk0

2.5

3.5

3.0

neff
2

Figure 2.  Dispersion curves for TM modes of a conventional dielectric 
waveguide with m = 0 – 5. 



1057Modes of a nonlinear planar waveguide with a dielectric layer immersed

tional to neff, the case neff = 0 corresponds to the formation of 
a standing wave in such a waveguide, i.e., to the absence of a 
travelling wave along the waveguide axis. 

Figure 4 shows the dispersion curves for TM waves in the 
case of the focusing medium (eK > 0) for several values of the 
nonlinear parameter k. It follows from these dependences that 
in this case each TM mode also has two cut-off frequencies. 
However, in contrast to the situation with the defocusing 
medium, with increasing parameter k, the density of the 
excited modes (the repetition rate of the dispersion curves) 
increases. And each of the dispersion curves is shifted towards 
smaller values of hk0. Therefore, in the case eK > 0, the value 
of neff

2  increases with increasing radiation intensity at a con-
stant frequency. As a result, the value of neff e

2 e=  is attained, 
corresponding to the cut-off frequency, and the considered 
mode is no longer retained by the waveguide. 

Comparing the results for eK < 0 and eK > 0, we can con-
clude that the case eK < 0 is more interesting: the number of 
possible modes decreases with increasing intensity. This can 
mean a decrease in the number of excited modes for a given 
width of the waveguide core and a lesser probability of the 
appearance of intermode dispersion. In addition, an increase 
in intensity contributes to the slowing down of the propagat-
ing mode.

In what follows, the case of the defocusing medium of the 
dielectric layer will be considered in more detail. 

We note that for the maximum possible intensity of 
the guided wave, the nonlinear parameter x becomes 
equal to unity and the elliptic functions entering into the 
dispersion relation (16) reduce to the corresponding 
hyperbolic functions [25]. Equation (16) then takes the 
form: 
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0 5 10 hk0
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1.5

2.5
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0 5 10 hk0

1.0
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2.5

2.0

0.5
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0 5 10 hk0

1.0

1.5

2.5

2.0

0.5

neff2

Figure 3.  Dispersion curves for TM modes in the case of a defocusing 
medium, eK < 0, ee < ei, with mode indices m = (a) 1 – 9, (b) 1 – 8 and (c) 
1 – 5; x = (a) 0, (b) 0.5 and (c) 0.9.
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Figure 4.  Dispersion curves for TM modes in the case of a focusing me-
dium, eK > 0, ee < ei, with mode indices m = (a) 1 – 9, (b) 1 –12 and (c) 
1 – 21; k = (a) 0, (b) 0.5 and (c) 0.85. 
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Here, the signs of the principal permittivities of the hyperbolic 
material, eo < 0 and ee > 0, are taken into account, and 
explicit expressions for the parameters p and q are also used. 
Because hk0 ³ 0, equation (20) has a solution only in the case 

neff e
2 e= ,   hk0 = 0. 

However, these conditions are devoid of physical meaning, 
since they are realized at h = 0. 

5. Effect of the field energy density  
on the characteristics of the waveguide modes 

This section is devoted to the analysis of the influence of the 
energy density of the waveguide mode on the parameters of 
its propagation, such as the effective refractive index, the cut-
off frequency and the width of the transverse distribution of 
the electric field of the mode in the case eK < 0. 

In the previous sections, in order to take into account 
nonlinear effects, in all equations describing the guided wave, 
we used the dimensionless parameter x. However, the quan-
tity x does not have a simple physical meaning and, therefore, 
in the subsequent analysis, the density of the energy trans-
ferred by the wave, W, will be considered as a parameter 
determining the degree of the waveguide nonlinearity.

The energy density of a plane monochromatic wave in a 
medium at a given frequency is determined using the Brillouin 
formula: 

3

16
( )| | ( )| | | | dW x E x E H x1
e ox z y

2 2 2

p e e= + +
3-

u u u^ hy ,	 (21)

where the components of the electric field of the TM wave are 
determined by equations (12) and (13), and the transverse dis-
tributions of the principal permittivities ee(x) and eo(x) are 
determined by expression (2). 

5.1. Effective refractive index 

We consider a planar waveguide with a fixed thickness of the 
waveguide layer. The radiation frequency is assumed to be 
constant and such that hk0 = 5. The values of the linear per-
mittivities are the same as in the previous section, and the 
Kerr constant is eK = –10–9 cgs units  (in SI units this value 
corresponds to –10–18 m2 V–2). Figure 5a shows the dispersion 
curves for the linear case. The dashed vertical line corre-
sponds to hk0 = 5. One can see that in this case for a given 
width of the waveguide layer and the radiation frequency in 
the waveguide, TM modes with indices m = 2 and 3 can be 
excited. Comparing the dependences shown in Figs 3a – 3c, it 
can be seen that with an increase in the nonlinearity parame-
ter x the dispersion curves with indices m = 2 and 3 cease to 
intersect with the line hk0 = 5. This means that, starting from 
certain values of x, the corresponding modes in the linear 
waveguide are not excited. Also, for sufficiently large values 
of x in the waveguide with hk0 = 5, a single mode with the 
index m = 1 can be excited, whereas modes with m = 2 and 3 
cannot be retained. 

A similar behaviour of the dispersion curves is presented 
in Fig. 5b, which shows how the square of the effective refrac-
tive index of all possible modes at hk0 = 5 varies with increas-
ing energy density W. For W = 0, the values of neff

2  for the 
indices m = 2 and 3 are the same as in the linear case for hk0 = 5 
(see Fig. 5a). 

With increasing energy density W, the values of neff
2  for 

m = 2 and 3 decrease. At a certain value of W, propagation of 
the mode with the index m = 3 ceases, because the correspond-
ing effective exponent neff or, equivalently, the propagation 
constant becomes zero. With a further increase in W, the 
mode with m = 3 becomes damped. With an even larger 
increase in W, the effective refractive index of the mode with 
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Figure 5.  Behaviour of the modes in a hyperbolic waveguide at hk0 = 5: 
(a) dispersion curve at x = 0, (b) dependence of the effective refractive 
index on the density of the energy carried by the wave and (c) depen-
dence of the fraction of the energy contained in the waveguide core on 
the density of the transferred energy.
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the index m = 2 becomes zero and the mode leaves the wave-
guide. 

The mode with the index m = 1 is a special case. It is absent 
in the linear case, but if W exceeds a certain threshold, this 
mode can be excited. Another feature of the function   ( )n Weff

2  
for m = 1 is that it is two-valued. One branch of the curve 
behaves in the same way as for m = 2 and so for m = 3: neff

2  
decreases to zero, the other branch tending to the maximum 
possible value neff e

2 e= . 
Figure 5c shows the dependence of the energy fraction h 

of the guided wave contained in the waveguide core on W, 
defined as 

h = Wcore /W,

where Wcore is the density of the transferred energy concen-
trated in the waveguide core. Comparing Figs 5b and 5c, one 
should pay attention to the fact that with decreasing neff the 
guided wave is better concentrated in the core of the wave-
guide. This fact will be discussed in more detail in the next 
subsection of the paper. If neff

2  tends to ee (mode with m = 1), 
then the guided wave gradually leaves the waveguide. Two 
branches of the curve with m = 1 correspond to two propagat-
ing modes. The field of one of them is mainly contained in the 
core of the waveguide, and the field of the second one is con-
centrated mainly in the surrounding hyperbolic medium. 

Figures 6 and 7 show several examples of the field distri-
butions of TM modes at hk0 = 5 and eK = –10–9 cgs units. 
Figure 6 demonstrates the distribution of the electric field of 
the mode with m = 2 at the minimum and maximum values of 
W. The cases in Figs 6a and 6c correspond to W £ 1 J m–2,  

.n 2 83eff
2

= , the cases in Figs 6b and 6d correspond to W ³ 
15  J m–2, .n 0 05eff

2
=  (see Fig. 5b). It follows from the pre-

sented dependences that the length of the damping field in the 
substrate and in the coating layer of the waveguide is smaller 
for small values of neff. 

Figure 7 shows the distribution of electric and magnetic 
fields for the nonlinear mode with m = 1. The cases in Figs 7a 
and 7c correspond to 2.8n 8eff

2
= , and the cases in Figs 7b and 

7d correspond to .n 1 66eff
2

= . 
For comparison, Fig. 8 shows similar (see Fig. 5) depen-

dences for a conventional dielectric waveguide with ei = 4.0, 
ee = eo = 2.25 and eK = –10–9 cgs units. The reduced thickness 
of the waveguide layer (the waveguide core) hk0 was assumed 
equal to 10. In the case of arbitrarily weak fields, the modes 
with indices m = 0 – 4 can be excited in the waveguide. With 
increasing field intensity, the linear values of neff

2  for each 
mode decrease to its minimal limit: neff e o

2 e e= = . No addi-
tional modes arise in this case. 

5.2. Width of the transverse distribution  
of the electric field strength 

It follows from expressions (6) that the parameter q deter-
mines the damping of the field channelled along the X axis 
outside the waveguide layer. Let us determine the radiation 
damping length outside the waveguide layer in units of the 
wavelength l as 

4
L

q
1

d p= u
, 

where /q q k0=u  is the normalised value of q. Consequently, at 
a distance Ld, the field intensity |Ez|2 decreases by a factor of 
e. Because neff depends on the density of the transferred energy 
W, the length Ld will also vary with W. 
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Figure 9 shows the dependence of Ld on W for symmetric 
hyperbolic and ordinary dielectric waveguides. For illustra-
tion, in both cases a mode with the index m = 2 was chosen. 
As was shown above, in the case of the defocusing Kerr 
medium, the effective refractive index decreases with increas-
ing W, and for the hyperbolic medium with eo < 0 and ee > 0  
the parameter q increases with increasing W. In turn, q ~ 
1/Ld. Thus, with increasing W, the concentration of radiation 
in the waveguide core increases and the width of the trans-
verse distribution of the field strengths, which can be called 
the mode width, decreases. In the case of the conventional 
dielectric waveguide, the parameters neff and q vary identically 
and, consequently, as the field intensity W increases, the 
mode width increases and the radiation penetrates deeper into 
the cladding. 

5.3. Cut-off frequencies 

It was shown above that each TM mode in the hyperbolic 
waveguide with ee < ei and a fixed thickness of the waveguide 
layer exists only in a certain frequency interval. Thus, each 
mode is characterised by two cut-off frequencies. Next, we 
consider the dependence of the cut-off frequencies on the den-
sity of the energy carried by the wave. For illustration, the 
mode with the index m = 2 was chosen.

The cut-off frequencies are defined as follows. The reduced 
thicknesses hk0, for which n 0eff

2
= , and ee are denoted by  V

( )
cm
1  

and  V ( )
cm
2 , respectively; therefore, the hyperbolic waveguide 

with the thickness of the waveguide layer h retains the TM 
mode with the index m only for frequencies lying in the interval 

h
c V

h
c V( ) ( )

cm cm
1 2G Gw .	 (22)
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The cut-off frequencies can be obtained from Eqn (16) as 
a function of the nonlinear parameter x at suitable values of  
( )p neff

2  and ( )q neff
2 . The results for the mode with m = 2 are 

shown in Fig. 10, and the initial values of V 2
( )
c
1  and V ( )

c2
2  for 

x = 0 were found in the linear case (17). The change in the cut-
off frequencies with increasing field energy W is shown in 
Fig. 10b. When constructing dependences, the permittivities 
were chosen the same as before, and eK = –10–9 cgs units. 

It follows from Fig. 10 that both cut-off frequencies 
increase with increasing nonlinearity parameter x (or field 
intensity). The width of the interval (V ( )

cm
1 , V ( )

cm
2 ) increases 

insignificantly. For x ® 1, both frequencies tend to infinity, 
and this means that it is no longer possible to excite guided 
waves in the waveguide. 

6. Effect of losses in the surrounding  
hyperbolic medium 

Hyperbolic media, as a rule, are composite metamaterials, the 
structure of which includes conductive components, such as 
metal plates or nanowires. This leads to the appearance of 
energy losses of electromagnetic radiation passing through 
such a medium. For a real hyperbolic medium, the principal 
permittivities eo and ee are complex quantities. If the radiation 
frequency is far from all resonances characteristic of the 
medium, the imaginary parts of eo and ee are insignificant 
compared with the real ones [19]. However, because of the 
complexity of eo and ee, the propagation constant b also 
becomes a complex quantity: b = k0(neff + id). The coefficient 

d determines the absorption of the energy carried by the wave 
in the linear case when W(z) ~ exp(–2k0dz). 

Figure 11 shows the dispersion curves for TM modes at ee 
= 3 + 0.05i, eo = –3.5 + 0.1i, ei = 4 and eK = 0. Imaginary parts 
of eo, ee of this order can be obtained in real hyperbolic media 
without applying any means to compensate for energy losses 
[26]. The dependences of the real and imaginary parts of the 
parameter q on hk0 are shown in the same figure. The values 
of neff

2  are the squares of the real part of the normalised prop-
agation constant Re b/k0. 

In the presence of energy losses, the cut-off frequencies are 
defined as follows: V ( )

cm
1  is defined as before, the reduced 

thickness hk0 for which Re q = Im q will be denoted by V
( )
cm
2 . In 

the presence of losses, the maximum possible value of neff
2  is 
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a

b

10

10

15

20

25

20 30 400 W/J m–2

5

10

15

20

25

0

5

Vcm, Vcm
(1)

Vc2
(1)

(2)

Vcm, Vcm
(1) (2)

Vc2

Vc2

(1)

(2)

Vc2
(2)

0.2 0.4 0.6 0.8 x

Figure 10.  Dependences of the cut-off frequencies on (a) x and (b) W. 

0 5 10 hk0

m = 1 2

2

3
3

4

1

n e
ff

, R
eq

, I
m
q

2

Figure 11.  Dependences of n2eff (solid curves), Re q (dashed curves) and 
Im q (dotted curves) on the reduced thickness hk0 of the waveguide for 
the first four modes. 



	 E.I. Lyashko, A.I. Maimistov1062

somewhat greater than Re ee. As was shown in [19], the sec-
ond cut-off frequency disappears with strong dissipation, 
when Re ee, o ~ Im ee, o. 

The propagation length of the guided mode in units of 
the emission wavelength l in the linear case is defined as 
Lp = 1/(4pd). Dependences of Lp on the reduced thickness 
hk0 of the waveguide layer for several first TM modes are 
presented in Fig. 12. For their construction, the principal 
permittivities of the hyperbolic medium were chosen to be 
the same as in [14], where a waveguide with a hyperbolic 
core was considered: ee = 5.97 + 0.065i, eo = –3.44 + 0.15i. 
For the waveguide considered in this section, we used ei = 7. 
It was also assumed that the radiation frequency remains 
unchanged. 

Figure 12 shows that for a waveguide with a hyperbolic 
medium, the propagation length is equal to tens of wave-
lengths. For a waveguide with a hyperbolic core, considered 
in [14], the propagation length was less than 4l. In the case 
considered here, the radiation is localised mainly in a trans-
parent dielectric, and only the exponentially decreasing tails 
of the field distribution are in the hyperbolic material. 

In conclusion, it should be noted that for hyperbolic 
materials with weak dissipation, when Im ee, o <  0.1Re ee, o, 
all the results are preserved. The absorption in the surround-
ing dielectric medium leads mainly to losses of the trans-
ferred energy and has little effect on the phase relationships 
that dictate the properties of the mode. As usual, the losses 
lead to the finite propagation length of the radiation in the 
waveguide. 

7. Conclusions 

In this paper, the properties of the guided TM modes of a 
planar hyperbolic waveguide are theoretically investigated. 
The planar waveguide is formed by a nondissipative dielectric 
layer and is surrounded by a hyperbolic medium with an 
anisotropy axis directed along the normal to the interfaces 
between media. The main attention is paid to the role of the 
cubic-nonlinear response of the dielectric layer. 

A dispersion relation for guided modes of a symmetric 
nonlinear hyperbolic waveguide is obtained. It is shown that 
if the permittivity of the waveguide layer exceeds the extraor-
dinary component of the permittivity tensor of the surround-

ing media, then each TM mode is characterised by two cut-off 
frequencies, as in the cases considered previously [18, 19]. 
This leads to the fact that each mode can be excited only in a 
certain frequency interval. In contrast to the waveguide con-
sidered in [19], in the present work the main part of the energy 
of the guided radiation is concentrated in a nonlinear dielec-
tric medium. For this reason, the mode density per unit of 
reduced thickness hk0 depends on the radiation intensity in 
the waveguide. In the case of a focusing medium, the mode 
density increases with the field intensity, and in the case of a 
defocusing medium, it decreases. 

In the case of a defocusing medium, the mode propaga-
tion constant decreases with increasing electromagnetic field 
intensity. In addition, for some of its values, the propagation 
constant vanishes. With a further increase in the field inten-
sity, the mode under consideration becomes exponentially 
damped and ceases to propagate in the waveguide. Thus, we 
can talk about a new mechanism of the light deceleration, 
which is realised in a nonlinear hyperbolic waveguide. The 
degree of deceleration is controlled by the radiation intensity 
in the waveguide. An optically controlled mode density can 
form the basis for optical modulation devices and switches. 

Dependences of the mode width and cut-off frequencies 
on the density of the energy transferred by the wave are also 
analysed. It is shown that the width of the transverse mode 
distribution decreases with increasing electromagnetic field 
energy. In the case of a conventional dielectric waveguide, 
this dependence is inverse. 

The effect of dissipation in the hyperbolic medium of the 
covering layer of a planar waveguide was discussed in [19]. 
Both in [19] and this paper it is shown that the presence of 
losses leads to a decrease in the amplitude of the guided wave. 
The effect of energy losses in the considered hyperbolic wave-
guides is in many respects similar to the effect that takes place 
in the case of waveguides with metal walls [27 – 30].

For practical implementation of the waveguide structure 
in question, it is necessary to fulfil a number of basic require-
ments. Energy losses in the hyperbolic cladding should be 
small (Im eo, e < 0.1Re eo, e), the linear permittivity of the core 
should exceed the main unusual component of the permeabil-
ity of the hyperbolic medium (ei > ee), and the core should be 
a cubically nonlinear medium with a sufficiently large modu-
lus of the Kerr constant eK. The considered waveguide can be 
realised, for example, using the following media: As a hyper-
bolic cladding of the waveguide, use can be made of the meta-
materials discussed in [11], formed by alternating sub-wave-
length Ag/SiO2 layers with a silver volume fraction of 0.4. In 
this case, the permittivities are as follows: ee = 3.7 + 0.01i, eo 
= – 8.8 + 0.24i (at l = 0.75 mm). Additional cut-off frequen-
cies exist if the permittivity of the core exceeds ee. 
Semiconductors possess sufficiently high values of permit-
tivities, for example, ei = 11.68 (Si), 13.1 (GaAs), 9.2 (ZnSe), 
10 (SiC) (values are given for low frequencies). In addition, 
semiconductors have a significant nonlinear response: eK ~ 
10–10 – 10–9 cgs units (10–19 – 10–18 m2 V–2), which allows us to 
consider them as a possible core of the hyperbolic waveguide. 
At the same time, the required radiation power densities will 
be 50 – 500  MW  cm–2. 
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