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Abstract.  The features of the generation dynamics of a laser with 
an acousto-optic modulator are studied. The light field injection 
with a frequency shift from the previous mode to the subsequent one 
ensures mode locking, and in many cases contributes to the instabil-
ity and self-oscillations at the laser relaxation frequency. The 
amplitude and frequency characteristics of the emerging regime, 
along with the features of the regimes realised under external mod-
ulation of the diffraction coupling coefficient, are analysed.

Keywords: laser, mode locking, Q-switching, acousto-optic modu-
lator, self-oscillations, relaxation frequency.

1. Introduction

Trains of short optical pulses with a high peak power are used 
in time-resolution spectroscopy, optical tomography for 
high-precision material processing, measurement technology 
and other fields. Promising sources of such radiation are 
solid-state, simultaneously Q-switched and mode-locked 
lasers or so-called QML lasers. Simultaneously mode-locked 
and Q-switched lasers have significant advantages in the 
applications requiring precise synchronisation of generated 
pulses with other devices.

In the first QML lasers, two acousto-optic modulators 
(AOMs) were used in the resonator [1]. Mode-locking was 
provided by means of a standing acoustic wave AOM, while 
Q-switching was ensured by a travelling wave AOM. 
Kornienko et al. [2] proposed to use the return of the wave 
diffracted in the AOM back to the acousto-optic interaction 
region, which substantially increased the modulation effi-
ciency and allowed one to implement the stationary mode-
locking when the travelling wave AOM was used in the reso-
nator [3, 4]. Thus, Kravstov et al. [3] used additional mirrors 
to return the diffracted radiation to the resonator, while 
Nadtocheev and Nanii [4] applied a V-shaped resonator of 
special design for the same purpose. The possibility of com-
bining the mode-locking and Q-switching regimes using a 
single travelling wave AOM is demonstrated in paper [5], in 
which the QML regime was observed at a high transmission 
of the resonator plane output mirror in a Nd : YVO4 laser.

A stable QML regime in a Nd : YAG laser has been imple-
mented experimentally with a single travelling wave AOM 
located at the curvature centre of a highly reflecting spherical 
mirror [6, 7] under a double Bragg angle qB relative to the 
resonator axis (Fig. 1). A wave that has not experienced dif-
fraction with a frequency n0 and also a wave that has experi-
enced double diffraction with a frequency n0 + 2f ( f is the 
modulator operating frequency) return to the resonator. 
Mode-locking emerges at the modulator operating frequency 
f equal to half the intermode interval. Waves with frequencies 
n0 ± f, which have only experienced a single diffraction, leave 
the resonator, thus determining additional losses associated 
with the AOM. A rapid decrease in additional losses occurs 
during the attenuation process of the sound wave. Thus, when 
the AOM operating frequency is switched off, the resonator 
Q-factor is modulated. It was later found experimentally [8] 
that the Q-switching regime may occur ‘spontaneously’ at the 
laser relaxation frequency at a constant amplitude of the 
acoustic wave. These experimental studies have shown that 
under certain conditions a steady-state mode-locking regime 
becomes unstable, and a build-up of relaxation oscillations 
becomes possible.

In this paper, we investigate the QML-generation dynam-
ics in a solid-state laser with a travelling wave AOM in a 
scheme similar to that shown in Fig. 1. The developed numer-
ical model makes it possible to establish the build-up limits of 
self-oscillations at the relaxation frequency and to study the 
main properties of the generation dynamics of an active QML 
laser.

2. Model and equations

The proposed model uses a modal approach based on funda-
mental works on the theory of stimulated amplitude modula-
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Figure 1.  Scheme of the QML regime implementation in a Nd : YAG 
laser.
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tion [9, 10]. The amplification line is assumed uniformly broad-
ened, and the amplification saturation is assumed homogeneous 
over space. Provided that the main mode frequency ( j = 0) coin-
cides with the amplification line centre, this makes it possible 
to take into account the dependence of the cross section of 
the optical transition sj only on the mode number j : sj /s0 = 
(1 + j2b2), b = dnc /dng, where dnc = c/(2L) is the intermode 
interval, and dng is the amplification line width. 

It is accepted that the active medium is characterised by 
a unified inversion relaxation time, and the medium satura-
tion is determined by the total intensity Ir  of modes, aver-
aged over a time being much longer than the round-trip time 
of light in the resonator. In the calculations of the dynamic 
generation regimes, it is assumed that the radiation intensity 
cannot fall below the level of spontaneous emission into a 
mode.

It is also accepted that the field attenuation rate in the 
resonator is determined by the constant losses g and the vari-
able losses gd that are AOM-associated. The magnitude of the 
constant losses is g = – ln(1 – q)/Tc, where q is determined by 
the losses on the resonator’s optical elements, and Tc is the 
round-trip time of light in the resonator. The value of gd is 
found from the balance of the wave intensities schematically 
shown in Fig. 1: gd = – ln(1 – kd

2)/Tc. Here, kd is the diffraction 
coupling coefficient equal to the fraction of the light field 
reflected from the acoustic wave in the AOM. The same coef-
ficient determines the rate of diffraction injection of the field 
from the mode j – 1 into the mode j: x = kd

2 /Tc. 
Within the framework of the assumptions made, the equa-

tions for the normalised complex amplitudes of the fields Eju  
have the form (see [11]):
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Here, t = t/T1 is the normalised time (T1 is the inversion relax-
ation time). In the equation for the fundamental mode, j = 0, 
x = 0 and sj = s0.

The intensity I as a function of time t is calculated as the 
square of the complex field modulus:
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where 2 Tc c 1d pdw n=| ; and jj is the mode field phase with the 
number j.

A system of equations for normalised real quantities is 
used in numerical calculations:
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Here, j j j1dwt j jF = + --
|  determines the phase shift due to 

the AOM detuning from the intermode frequency interval (j0 
= 0 was assumed in in the calculations), and 2 T1pddw n=|  is 
the value of detuning.

A balance equation for the normalised inversion n is 
added to the field equations:
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where h is the pump parameter, which determines the inver-
sion excess over the threshold corresponding to the level of 
the constant losses in the resonator.

Most calculations are performed for the numerical values 
of the parameters typical for a Nd : YAG laser: T1  = 2 ´ 
10–4 s, 1/g = 4 ´ 10–7 s, dnc = 200 MHz, dng = 100 GHz.

3. Results and discussion

3.1. Dynamics of the averaged intensity with an unchanged 
diffractive coupling coefficient kd

The implementation of the QML regime is associated with the 
dynamics of averaged intensity

( ) | |I Ej
j

j

2

0
t s

s
=r / ,

since it is this value that determines the dynamics common for 
all inversion modes (hereafter the results of calculations are 
given under the condition that the AOM operating frequency 
is accurately tuned to resonances). The behaviour of ( )I tr  
depends on the number and composition of the modes par-
ticipating in lasing. A characteristic feature of the system 
under study is an unusual distribution of the intensities of the 
modes E j

2  over the spectrum: the spectrum maximum is 
shifted relative to the amplification maximum, and the offset 
value depends nonmonotonically on the normalised coeffi-
cient kd. Such distributions calculated for stationary solutions 
of Eqns (3) – (6) are shown in Fig. 2. For each value of kd, the 
presence of a maximum is stipulated by the existence of two 
competing factors – field injection into subsequent modes and 
a decrease in amplification with increasing mode number j. 
With increasing kd, diffraction losses also increase and, there-
fore, the intensities of all modes fall, and the shift of the distri-
bution maximum to the right (towards larger j ) slows down 
and then changes to a shift to the left. This peculiarity allows 
us to limit the number of modes considered in the numerical 
experiment. The calculations do not take into account the 
fields of modes, the amplitude of which is less than one thou-
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Figure 2.  Stationary frequency profiles Ej
2 for different values of kd 

(pump parameter h = 6).
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sandth of the maximum amplitude. In most calculations, this 
condition was satisfied for jmax = 400. 

Our calculations performed for the sets of parameters 
given in work [8] show that the stationary solutions of expres-
sions (3) – (6) are unstable, and self-oscillations ( )I tr  arise at 
the relaxation frequency. This agrees with the experimental 
data of [8], with the instability zone turning out sufficiently 
wide with respect to the system parameters.

Figure 3 shows the instability zone ( )I tr  in the coordinates 
h, kd with the other parameters unchanged. This zone expands 
with increasing h. It can be assumed that the instability is 
associated with the process of successive field injections. The 
equilibrium between the field of the fundamental mode E0, 
operating in the amplification saturation regime, and the 
fields of the remaining modes operating in the regenerative 
amplification regime, turns out unstable. For example, a 
small disturbance of the stationary field E0 contributes to the 
process of field injection into the subsequent modes. The 
effect on the inversion common for all the modes may prove 
to be such that an even greater opposite-sign perturbation 
arises. In this case, small oscillations at the laser relaxation 
frequency increase, thereby forming a saturated self-oscilla-
tory regime. In this case, the stabilising factor near the lower 
(relative to the value of kd) boundary of the instability zone is 
a deep saturation of the medium, which occurs in the case of 
stationary generation. On the upper boundary, the impact of 
the injection process can be weakened by an increased diffrac-
tion loss. Thus, the coefficient kd may serve as a control 
parameter, the change of which makes it possible to control 
the dynamic generation regimes.

Figure 4 shows the characteristics of the self-modulation 
regime for the pump parameter h = 5.5. At low values of kd, 
relaxation oscillations with low values of Imaxr , which weakly 
saturate the medium, are observed. Their frequency is rela-
tively high (nr » 8) due to a significant excess of amplification 
above the threshold. As the value of kd grows and the instabil-
ity develops, Imaxr  rapidly increases and self-oscillations satu-
rate the medium. In this case, the frequency of relaxation 
oscillations decreases sharply as a result of the medium satu-
ration (it is known that the frequency of the relaxation oscil-
lations saturating the medium is always lower than the fre-
quency of small oscillations). The presence of a maximum on 
the intensity curve is due to the impact of increasing diffrac-

tion losses. Their further increase leads to a decrease in the 
value of Imaxr  and the medium saturation depth, and, as a con-
sequence, to the growth of nr.

The transient process, to which a small instantaneous 
decrease in kd (by a value of ~10–3) leads inside the stability 
region, demonstrates an aperiodic ‘burst’ of intensity and is 
characterised by a rather short time (~10–1). In this case, the 
frequency profile changes insignificantly with time, although 
the maxima of the mode intensities are attained at different 
time moments. Figure 5 shows the transient process with a 
relatively smooth transition from the stability region with 
kd = 0.35 to the instability region with kd = 0.2 for h = 5.5. 
Significant inversion oscillations in this process lead to the 
appearance of pulses that saturate the medium. The establish-
ment time for saturated relaxation oscillations after the com-
pletion of the changes in kd is also sufficiently small and 
amounts to ~0.3t.

The short times of transient processes makes it possible to 
effectively change the dynamic generation regime. At the 
same time, it follows from Fig. 4 that for a given pump param-
eter, high values of Imaxr  are attained in a rather narrow range 
of kd values and pulse repetition rates. This narrows the pos-
sibilities of obtaining repetitively pulsed generation with a 
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Figure 3.  Boundaries of ( 1 ) generation and ( 2, 3 ) instability zones.
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high amplitude of pulses. It is possible to increase the value of 
Imaxr  and broaden the range of pulse repetition rates by peri-
odic ‘external’ Q-switching of the resonator. To this end, the 
coefficient kd is modulated at relatively low frequencies from 
high values (stable generation or its absence) to minimum val-
ues at which the AOM functions are still performed.

3.2. Dynamics of averaged intensity with kd modulation

We consider harmonic modulation of the diffraction coupling 
coefficient at the frequencies which are not too large com-
pared to the frequency nr: kd(t) = kd[1 + Asin(2pnmt)], where 
A is the modulation amplitude and nm is the modulation fre-
quency. Figure 6 shows the dependence of the pulse repetition 
rate np on the modulation frequency nm. Regular pulsations of 
Ir  appear in the frequency bands near nr » 2.2. These bands 
correspond to the ranges of nm variation, marked with num-
bers 1, 2 and 3. In the intervals between these ranges, the 
modes with a complicated period and chaotic generation are 
observed. The measured correlation dimensions rcor of the 
corresponding chaotic attractors turned out to be close to 1.5. 
For nm >> nr, the ranges of regular pulsations are narrowed, 
and then the pulses of a much smaller amplitude with a repeti-
tion frequency of nm appear at large modulation frequencies.

The relaxation frequency nr changes within a small range 
with variation of kd(t). In the case represented in Fig. 6, we 
can talk about the signal interaction at frequency np with a 
sufficiently broad relaxation resonance. In range 1, the value 
of nm varies near the resonance and, therefore, np = nm. The 
generation pulse periodically emerges at a time moment close 
to the minimum of kd(t), when the increasing inversion value 
n exceeds a threshold. Therefore, in the ranges of regular pul-
sations, the frequency ratio nm /nr is an integer. The transition 
of the frequency nm from one range to another (for example, 
from 2 to 3) leads to a decrease in the generation frequency by 
an integer factor and (with increasing range number) to a 
‘contraction’ of the regular generation band to the relaxation 
resonance. Figure 7 shows the time dependence of generation 
for nm = 6.6; the repetition rate is close to nr and equal to nm /3.

The possibilities of increasing the amplitude of the peri-
odic pulses Ir  are associated with a change in the AOM oper-
ating regime, for example, the replacement of the harmonic 
change kd(t) by a periodic sharp decrease in its magnitude. In 
this case, in order to ensure a sufficiently high inversion before 
the onset of each pulse, the frequency of such modulation 
must be reduced relative to the frequency nr. The generation 
pulse at such a change in kd is shown in Fig. 8a for the modu-
lation frequency nm = 1. One can see that the pulse amplitude 

is substantially higher than that under harmonic modulation 
when the medium is saturated deeper. The amplitude value of 
Ir  is reached during the time approximately equal to 3 ´ 10–2t; 
during this time interval the pulse rises from the level of spon-
taneous emission up to a maximum value of 600 (in the self-
oscillation regime this value is ~40, see Fig. 5). The spectral 
composition of such a pulse determines the characteristics of 
mode locking. The distribution of E j

2  in the modes cannot be 
established during the above-mentioned time interval. Such 
distributions are shown in Fig. 8b at the time moments t 
(indicated by numbers 1 – 6 in Fig. 8a), when Ir  is already not 
too small. The distribution maximum gradually shifts to the 
right, and the spectrum remains much narrower than that 
which would have occurred in the regime of stationary Ir  (cf. 
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with the data in Fig. 2). The results obtained indicate that the 
spectrum formation time corresponding to the new value of 
kd is approximately an order of magnitude greater than the 
pulse formation time in the Q-switching regime. 

3.3. Characteristics of mode-locked pulses 

In the QML regime, the amplitude distribution in a series of 
mode-locked pulses separated by the time interval Tc coin-
cides in form with ( )I tr . In the self-oscillation regime, their 
maximum amplitude, with other conditions being equal, is 
determined by the magnitude of the diffraction coupling coef-
ficient. With increasing kd, the number of synchronising 
modes (according to Fig. 2) increases and at the same time the 
losses also increase. Therefore, just as for the value of Imaxr , 
there exists an optimal value of kd, at which the highest ampli-
tude Imax is attained. In this case, the effect of the increase in 
the number of modes is stronger, and the optimal value kd » 
0.17 is somewhat larger than that for Imaxr . At this value of kd 
and pumping h = 5.5, in the self-modulation regime we obtain 
Imax = 4.5 ´ 103. In the case of kd modulation (see Fig. 8), the 
result is higher:Imax = 5 ´ 104. A mode-locked pulse shown in 
Fig. 9 has a duration close to tp =5 ´ 10–7 in both cases (in 
absolute units with the chosen parameters Tp = 10–10 s). 
Comparison of the pulse width with the value of Tc shows 
that ~100 modes are synchronised.

The latter remark is connected with a possible detuning of 
the doubled AOM operating frequency from the intermode 
interval. As the detuning increases, the self-oscillation param-
eters change. Already for dw|  » 6.3 (which in absolute units 
corresponds to dn » 5 kHz), an increase in the relaxation fre-
quency, associated with a decrease in the medium saturation 
depth by each pulse, becomes noticeable. For this reason, the 
amplitude of the self-oscillation pulses ( )I tr  decreases and 
their duration increases. The frequency composition under-
goes significant changes. The value of DFj for each mode 
changes during the pulse (a smooth decrease in the difference 
Djj = jj –1 – jj with time is only approximately compensated 
for by the growth of dwt| ). Changes in DFj lead to the fact that 
in presence of detuning, changes in the E j

2  distribution with 
time are observed – minima and maxima appear, while the 

effective number of operating modes decreases. At dn » 
10 kHz, the regularity of the self-oscillation pulses is violated.

The scenario of the change in the structure of mode-
locked pulses with increasing dn has not been studied in detail. 
However, the changes in the E j

2  distribution occurring during 
the self-oscillation pulse significantly affect the characteristics 
of mode-locked pulses. The amplitudes decrease, and the 
pulse durations increase. At the detuning dn = 5 kHz, the 
pulse is broadened to Tp » 2 ´ 10–10 s, and a further increase 
in detuning leads to a virtually proportional increase in dura-
tion. Thus, the shape of pulses acquires ruggedness close to 
that obtained in the simulation of modes with a random phase 
variation from 0 to p/2 on both sides of zero.

4. Conclusions

A model is proposed for the description of a solid-state laser 
with a single travelling wave AOM in a resonator. Dynamic 
coupling of the modes is realised by means of the field injec-
tion from the previous mode to the subsequent one with a 
frequency shift equal to the intermode interval. It is found 
that in a fairly wide range of changes in the diffraction cou-
pling coefficient kd and the pump rate, the regime of genera-
tion with an averaged stationary intensity proves unstable. 
The instability leads to a self-oscillating QML regime with a 
pulse repetition rate close to the system’s relaxation frequency 
nr. It is shown that the coefficient kd is a control parameter 
that can drastically change the system dynamics with the 
other parameters being unchanged.

Control over the characteristics of the repetitively pulsed 
regime by means of external periodic modulation of the coef-
ficient kd at a relatively low frequency nm has certain features 
related to the impact of the relaxation resonance. Regular 
repetitively pulsed generation occurs in the frequency bands 
near nr when the frequency ratio nm /nr is an integer. These 
bands correspond to certain ranges of nm variation, in the 
intervals between which the regimes with a complicated 
period and chaotic generation are observed.

The coefficient kd not only determines the resonator loss 
and the injection rate, but also significantly affects the com-
position of mode generation, thereby to a large extent deter-
mining the shape and amplitude of the pulses of the synchro-
nised modes.
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