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Abstract.  A theory of spontaneous four-wave mixing in a ring 
microcavity is developed. The rate of emission of biphotons for 
pulsed and monochromatic pumping with allowance for the disper-
sion of group velocities is analytically calculated. In the first case, 
pulses in the form of an increasing exponential are considered, 
which are optimal for excitation of an individual resonator mode. 
The behaviour of the group velocity dispersion as a function of the 
width and height of the waveguide is studied for a specific case of a 
ring microcavity made of silicon nitride. The results of the numeri-
cal calculation are in good agreement with the experimental data. 
The ring microcavity is made of two types of waveguides: com-
pletely etched and half etched. It is found that the latter allow for 
better control over the parameters in the manufacturing process, 
making them more predictable. 

Keywords: spontaneous four-wave mixing, ring microcavity, silicon 
nitride. 

1. Introduction 

The development of integrated sources of single-photon and 
entangled two-photon states of light is an important issue of 
quantum optics and quantum informatics [1, 2]. One promis-
ing approach to designing such sources is to use nonlinear 
optical effects in CMOS-compatible materials, such as silicon 
nitride [3]. In particular, spontaneous four-wave mixing 
(SFWM) in a microcavity allows one to combine a number of 
useful properties in one device [4 – 10]. First, the rate of the 
nonlinear process can be substantially increased due to the 
small volume of modes and high finesse of the resonator, 
which allows the requirements to the pump power to be low-
ered [4, 6, 10], while an increase in the dispersion region in 

small resonators makes it possible to facilitate frequency 
demultiplexing and pump field filtering [9]. Second, an 
increase in the rate of generation of photon pairs by means of 
a resonator simultaneously reduces their spectral width [8], 
making quantum states of light more suitable for recording in 
quantum memory devices. Third, the CMOS-compatible 
manufacturing process and high material stability allow one 
to embed sources into scalable photonic integrated circuits [9] 
and to approach the deterministic emission of single photons 
using spatial multiplexing [11]. Compared with the integred 
sources based on spontaneous parametric down-conversion, 
in the case of SFWM all optical wavelengths are in a relatively 
narrow range near the telecommunication wavelength, which 
simplifies the development of integrated optical elements and 
the phase matching of the interacting waves. 

The SFWM theory in ring microcavities was developed in 
a number of papers [10, 12 – 19]. In this case, the monochro-
matic pumping was usually considered, which is often used in 
experiments, but is not suitable for multiplexing and fabricat-
ing scalable optical circuits. In the case of pulsed pumping, 
the authors of Refs [12, 19] showed that using short and 
broadband pump pulses, it is possible to reduce the frequency 
correlations between the emitted photons or even completely 
eliminate them, which is critical for the conditional prepara-
tion of pure single-photon states. In addition, as shown by 
Vernon et al. [18], the critical coupling, usually used in the 
case of continuous pumping, is not optimal from the point of 
view of the efficiency of the conditional preparation of pho-
tons. To achieve high efficiency, it is necessary to use an over-
coupled resonator. However, in this case, the generation rate 
for a given input power of the pump is reduced. In this paper, 
we analyse SFWM, considering pulses in the form of an 
increasing exponential, which are optimal for the excitation 
of a single-mode resonator at any ratio of radiative and non-
radiative losses. 

2. Model and basic equations 

The SFWM process involves the action of a laser pump beam 
on a nonlinear material characterised by third-order nonlin-
earity in the electric field, ( )3c . The nonlinear interaction 
inside a crystal leads to the annihilation of two photons in the 
pump modes at random time instants and to the creation of 
two photons, usually called signal and idler photons, in other 
modes of the electromagnetic field. In this paper we consider 
a single-port racetrack microring resonator (Fig. 1), charac-
terised by finesse 
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where t is the self-coupling coefficient and a is the transmis-
sion amplitude per round trip, and the rate of field decay is

2
Ln
c
F
1

g

pk = ,	 (2)

where L is the resonator length and ng is the group refractive 
index. 

The created two-photon states can be calculated within 
the framework of the first-order perturbation SFWM theory 
in an optical waveguide or fibre (see, for example, Ref. [20]), 
modified taking into account the input – output formalism for 
open cavities [21]. This approach was used for the analysis of 
SFWM in a resonator in Refs [13, 22]. 

For simplicity, we consider a degenerate pump scheme. It 
is assumed that the pump field corresponds to the resonator 
mode in the zero-dispersion region of the ring microcavity. In 
this case, the signal and idler photons are emitted into the 
adjacent modes of the resonator (Fig. 1), which are separated 
from the pump mode, in general, by different frequency inter-
vals due to the dispersion of the group velocities. Since we are 
interested in an over-coupled resonator, we can put a = 1. 

Spontaneous four-wave mixing in a resonator is described 
by the effective Hamiltonian: 

( ) ( ) ( , ) ( , )dH t E t E tr r r r
4
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Here, the positive and negative-frequency parts of the electric 
field operator have the form 
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where u = s, i, p is the mode index; ( ) ( ) /n cb w w w=u u  is the 
propagation constant; nu(w) is the effective refractive index;  
wu0 is the centre field frequency corresponding to the resona-
tor mode; nu0 = nu(wu0); ngu(w) = c(d bu /dw) is the group refrac-
tive index of the mode; ngu0 = ngu(wu0); uu(x, y) is the mode 
function describing the transverse spatial distribution of the 
field and normalised | ( , ) | 1d du x y x y2

=y ; and FNL is the 
nonlinear contribution of self-modulation and cross-modula-
tion [23]. 

The annihilation operators of photons in resonator 
modes, au(w), and in free-field modes, au,in(w), au,out(w), are 
related by the expressions: 
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For simplicity, we assume that s i pk k k k= = =  and an analo-
gous relation holds for the finesse of the resonator, Fu. 

The state vector of the SFWM field in the first order of 
perturbation theory is calculated from the formula 

| yñ = | 0ñ| añ – ( )di tH t
'

-
3
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where | 0ñ º | 0sñ| 0i ñ is the vacuum state of the signal and idler 
fields; and | añ is the coherent state of the pump field with a 
complex amplitude a. Since the pump is assumed to be classi-
cal, we can replace the ( )0p'w a w  by ( )W pa w , where W is 
the pump pulse energy and | ( ) | 1dp

2a w w =y . Substituting 
(3) – (6) into formula (7), we obtain 
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where
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is the convolution of the spectral amplitude of the pump field 
in the resonator; 
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is the effective nonlinearity, corresponding to SFWM; 
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Figure 1.  Scheme of a nonlinear racetrack microring resonator con-
nected with a waveguide (bus). The coefficients r and t are the cross-
coupling and self-coupling probability amplitudes (|r|2 + |t|2 = 1), the 
coefficient a is the transmission amplitude of the ring resonator per one 
round trip. 
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is the effective area of interaction;
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is the phase-matching function; and 

( ) ( ) ( ) ( )p s i p s ib b w b w w w b w b wD F= + + - - - + NL 	 (13)

is the phase mismatching. Next, we consider the pump power, 
for which the value of FNL can be neglected. 

Knowing the state vector of the biphoton field (8), it is 
possible to calculate the number of pairs of photons gener-
ated per one pump pulse 

| | ( ) ( )| |d dN a as i out s out i 2
2w w w w y= 0yy ,	 (14)

which gives

c
( )

( ) ( /2)sinN n n
n F LW L

8
1

2p

s i

s i

p
2

0
2
0 0

0 0

0
2 4

2 2
0p pw

w w k g bD= b l

	 | ( ) ( ) ( , ) |d d B B Is i s s i i p s i
2

# w w w w w wyy .	 (15)

Here it is taken into account that the function 2D| ( ) |h b  is a 
slowly varying function within the profile of the resonator 
line and can be taken outside the integral sign in the form 
sinc2(D b0L /2), where D b0 = 2 b(wp0) – b(ws0) – b(wi0). The 
remaining integral can be calculated analytically for certain 
forms of the pump pulse, which are discussed in the next sec-
tion. 

3. Pulses in the form of an increasing 
exponential 

Let us consider the pump pulse in the form of an increasing 
exponential 
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If  e k= , then the pulse is optimal for excitation of the reso-
nator mode with the decay rate k. In this case, the pump-field 
spectrum inside the resonator, which is described by the func-
tion ( ) ( )Bp p p pw a w  in convolution (9), becomes a Lorentzian 
and corresponds to an excitation pulse in the form of a two-
sided exponent having a maximum value for a given input 
field energy. For the optimal pump pulse, the convolution 
function takes the form 
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and the integral in equation (15) can be written as 
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Here, D is the frequency detuning between two modes corre-
sponding to the signal and idler photons, which is due to the 
group velocity dispersion. If the signal and idler modes are on 
the same side of the wavelength corresponding to the zero 
group velocity dispersion, then the frequency detuning takes 
the form / ( )mFSR2 1

2b bD D=- , where b1 = ng /c; b2 = – [l2/(2pc)2] × 
dng /dl; DFSR = 2pc /(Lng); and m is the number of dispersion 
regions between the pump mode and the signal (or idler) 
mode. Assuming that the dispersion is small, and considering 
modes of the same type, we can put , n n0g g6n =u . Finally, 
after multiplying the number of emitted pairs of photons by 
the repetition rate of the pump pulses R, we arrive at the fol-
lowing emission rate of photon pairs: 
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where Pav = WR is the average pump power. 

4. Regime of monochromatic pumping 

Let us now consider SFWM in the case of cw pumping. It can 
be shown that with e 0"  in equation (9) and relations
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we obtain the convolution integral
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Next, by determining the cw pump power Pcw as the peak 
power of the pulse in the limit of infinite duration, Pcw = 

e( )lim We 0" , we arrive at the emission rate of photon pairs: 

2 (2 ) ( )'N G n n
n F

0

0 0

0 0

0
cw

p

s i

s i

p8
2

2 4

pk
w

w wD= - b l

	 c ( /2)LbD( ) sinLPcw
2 2

0# g .	 (26)



	 I.N. Chuprina, P.P. An, E.G. Zubkova, V.V. Kovalyuk, et al.890

Equations (19) and (25) give approximately the same gen-
eration rate when Pav = Pcw and the pulse repetition rate R is 
close to the decay rate k . However, when R decreases, the 
process of generating photon pairs in the case of the pulsed 
regime becomes more effective at the same average power of 
the pump field. In addition, comparing G(D) and G'(D), we 
can draw a conclusion that the SFWM rate in the monochro-
matic pulsed regime is more sensitive to the group velocity 
dispersion than in the case of the pulsed pump regime, as is 
expected.

5. Issues of experimental implementation 

Let us consider a ring microcavity formed by a silicon nitride 
waveguide (Si3N4 /SiO2). Waveguides made of this material 
form a promising CMOS-compatible platform for applica-
tions of integrated photonics [3]. In particular, Gondarenko 
et al. [24] demonstrated ring microresonators made of silicon 
nitride with a finesse exceeding 103 in the telecommunication 
C-band of wavelengths. To obtain a zero-dispersion wave-
length in this range, the waveguide must be sufficiently thick 
[25]. In this paper, a numerical simulation of the group veloc-
ity dispersion ( / ) /d dD c n2 2/ l l- , analogous to that carried 
out in Ref. [25], was performed, but we consider a microcavity 
formed of two straight and two semicircular waveguides (see 
Fig. 1). The numerical simulation was performed using a 
commercial program based on the FDTD method (Lumerical 
Mode Solutions). The Sellmeier formulas for silicon nitride 
and silicon dioxide were taken from [26] and [27], respectively. 

When a zero group velocity dispersion is reached, nonde-
generate SFWM becomes possible, which allows frequency-
entangled biphoton states to be generated and frequency-divi-
sion multiplexing of photons to be simplified. In accordance 
with the numerical calculation (Fig. 2), a waveguide with a 
height of approximately 500 nm is needed to realise this 
regime. To verify this conclusion, two ring microcavities with 
the same total length, the same waveguide width (1 mm), but 
with different heights (330 and 450 nm) were fabricated on 
commercially available silicon substrates. The manufacturing 
process included the stages of photo and electronic lithog-
raphy. 

At the first stage, alignment marks were made with the 
help of positive AZ1512 photoresist. Using thermal evapora-
tion, we sputtered about 5 nm of titanium as an adhesive layer 
and 200 nm of gold. To finalise the alignment marks, use was 
made of a list-off in acetone. At the second stage, waveguide 
structures were transferred to the Si3N4 layer by electron 
lithography to a ZEP 520A high-resolution resist and subse-
quent reactive ion etching using Ar + CHF3 plasma. The 
residual resist was then removed by plasma purification with 
oxygen. 

To couple radiation from single-mode fibre into a ring 
microcavity, we used focusing devices based on diffraction 
gratings [28], optimised for a wavelength of 1550 nm. The 
coupling loss did not exceed –10 dB. The transmission spec-
trum was measured by an FRL15DC temperature-tunable 
distributed-feedback laser module (Fitel) and an HP 70950A 
optical spectrum analyser. The calculated dispersion param-
eters D for waveguides of height 330 and 450 nm turned out 
to be equal to –1600 and –400 ps  km–1  nm–1, respectively. 
From the obtained data, it is possible to estimate the differ-
ence in the values of two adjacent regions of free dispersion, 
which amounted to 0.03 and 0.007 nm. The corresponding 
experimental values of 0.05 and 0.01 nm confirm the approxi-
mation to zero dispersion with increasing waveguide height. 
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Figure 2.  Calculated dependence of the group velocity dispersion D on 
the width and height of the waveguide for the fundamental TE mode at 
a wavelength of 1550 nm. The racetrack microring resonator has a 
length of 360 mm and contains two semicircles with a radius of 31 mm. 
The numbers at the curves are the values of D in ps km–1 nm–1.
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Figure 3.  Transmission spectra of racetrack microring resonators as a 
function of the wavelength: (a) with a gap between the bus and the ring 
( 1 ) 0.75, ( 2 ) 1.0 and ( 3 ) 1.4 mm for coupling lengths of 80, 100 and 80 
mm, respectively (the first resonator is made of a fully etched waveguide, 
the remaining two are made of a half-etched waveguide); (b) transmis-
sion spectra for a half-etched ring microcavity at a gap of ( 1 ) 0.6 and 
( 2 ) 1.4 mm (coupling length of 120 mm). In both cases, the waveguides 
had a height of 0.45 mm and a width of 1 mm, the total resonator length 
was 380 mm.
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As an example, let us consider a waveguide with a height 
of 500 nm and a width of 1050 nm. In this case, the effective 
interaction area Aeff is 0.5 mm2 and, assuming n2 = 2.4 10 19

# -  
m2  W–1 [29], we obtain an effective nonlinearity g = 3.7 
m–1 W–1. Then, assuming F = 100, L = 100 mm and the cw 
pump power Pcw = 10 mW, we obtain the creation rate of 
photon pairs, ~104 s–1.

Figure 3 shows the transmission spectra of a racetrack 
microring resonator of the same length (380 mm), but with 
different gaps and lengths of the coupling region. The increase 
in the gap, as expected, leads to an increase in the Q-factor, so 
that at a gap of 1.4 mm and a coupling region of 80 mm in 
length, we obtain a Q-factor of 13000. Thus, we have fabri-
cated resonators with two types of waveguides – completely 
etched and half-etched. We have found that the latter allow a 
better control over parameters during the manufacturing pro-
cess, making it more predictable. 

6. Conclusions 

Thus, we have studied spontaneous four-wave mixing in a 
dielectric ring resonator. An analytical expression is obtained 
for the rate of emission of photon pairs with cw and pulsed 
pumping. In the second case, exponential pulses are consid-
ered, which are optimal for the excitation of a single-mode 
resonator. In the particular case of silicon nitride waveguides, 
it is shown that the zero-dispersion region of the group veloc-
ity can be in the telecommunication C-band at suitable values 
of the width and height of the waveguide. Under such condi-
tions, nondegenerate SFWM becomes possible, which allows 
one to create frequency-entangled biphoton states and direct 
outgoing photons to different spatial channels. Ring micro-
resonators made of silicon nitride with different waveguide 
widths and heights are fabricated and it is shown that, at an 
optimum waveguide height, the dispersion of group velocities 
decreases. 
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