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Abstract.  Based on the exponential representation of signal ampli-
fication along an active fibre, we construct an analytical approxi-
mation of the solution to a system of balance equations describing 
the dynamics of an average signal power and pump inside a linear 
cavity. The output power of the signal at the ends of the linear cav-
ity is estimated. The output power is optimised for a linear-cavity 
ytterbium fibre laser. 
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1. Introduction 

Currently, there exist many types of fibre lasers, and their fur-
ther development increasingly requires the use of numerical 
methods aimed at multiparametric optimisation of character-
istics [1 – 3]. This optimisation requires very expensive compu-
tations, which, in spite of the active development of numerical 
modelling, from a practical point of view cannot be performed 
for a wide range of parameters even with the use of distrib-
uted computer systems [3]. 

An alternative to numerical modelling of laser systems is 
an analytical description of the evolution of the light in laser 
cavities of various types [4, 5]. In this paper, an analytical 
approximation is constructed for the output power of an opti-
cal signal in order to find the optimal regimes for the genera-
tion of a linear-cavity laser. 

In this paper, we consider a continuous wave (cw) laser 
with a Fabry – Perot cavity [6]. Usually, in solving the prob-
lem of finding stable generation regimes in a fibre laser, vari-
ous methods for solving the nonlinear Schrödinger equation 
are used in conjunction with a two-level model of signal 
amplification inside the cavity. The latter is a boundary value 
problem consisting of four first-order nonlinear differential 
equations, 
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with the boundary conditions at the edges of the computa-
tional domain 

P0
+ = P+(0),   P –L = P – (L),	

(3)
S0+ = S+(0),   S –L = S – (L),

where S = S + + S –; P = P + + P –; P = Pp /Pp
sat; and S = Ps /Ps

sat 
are the pump and signal powers, respectively; the signs ‘+’ 
and ‘–’ indicate the light propagation direction; Ps

sat and Pp
sat 

are the signal and pump saturation powers; and L is the length 
of the active fibre. 

The system of equations (1) and (2) is an alternative writ-
ing for the widely used equations given in [2]. Formulas (1) 
and (2) take into account in explicit form the dependences of 
the populations of the energy levels on the pump and signal 
powers to illustrate the development of saturation processes 
of signal amplification and pump depletion. Despite the fact 
that this system does not explicitly contain a number of 
parameters observed in experiments, it is more convenient for 
developing theoretical approaches. A detailed description of 
the relationship between theoretical coefficients and coeffi-
cients obtained in experimental studies is given in [6].

The signal wavelength at the output is ls = 1083 nm, the 
pump wavelength is lp = 910 nm, and the coefficients of the 
signal (as) and pump (ap) absorption by the fibre cross section 
are chosen to be 0.062 and 0.115 m–1, respectively [6]. The 
signal and pump saturation powers Ps

sat and Pp
sat are 0.055 

and 4.9 W, respectively, and therefore, the dimensionless 
parameter is 
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Despite the fact that the presence of unsaturated losses qs and 
qp considerably complicates the system of equations in ques-
tion, they significantly affect the result and, therefore, it is 
impossible to neglect these quantities. The values of unsatu-
rated losses are chosen as follows: qp = 0.8 dB m–1 [7] and qs = 
0.25 dB m–1 [8, 9]. 

For the presented boundary value problem, it is expedient 
to apply a theoretical analysis of the dynamics of the laser 
light and energy balance in an active medium with the aim of 
developing approximate analytical solutions that allow one to 
abandon laborious calculations. 
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2. Formulation of the boundary value problem 
for a linear configuration 

The system of equations (1) and (2) makes it possible to 
obtain the following integrable relations: 
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We denote the distribution of the amplification of the sig-
nal power along the fibre through the function 
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Then the total gain of the signal per round trip along the 
active fibre will be determined by the expression Gs = G(L). 
We define the general form of the solution: 
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From all that has been said above, the boundary conditions 
follow 

G(0) = 1,  G(L) = Gs.

With allowance for all the notations introduced and the 
integral relations obtained, it is possible to reduce problem 
(1), (2), consisting of four nonlinear differential equations, to 
a boundary value problem of the form 
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G(0) = 1,  G(L) = Gs, 

where 
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Above we investigated the boundary-value problem (1), 
(2) with the boundary conditions (3). However, in practice, 

the laser output power is unknown. In other words, the values 
of S+(0) and S –(L) are unknown. On the other hand, it is pos-
sible to initially determine the signal gain Gs per round trip 
along the active fibre, which, generally speaking, is different 
for different configurations of the cavities. 

We denote the total intracavity losses by S; this value 
describes the total power losses of the signal in the device: 
thermal losses on various structural elements, optical losses 
inside the fibre, losses on the output devices (WDM couplers, 
lenses and optical gratings), etc. Note that a necessary condi-
tion for a stable generation regime in an optical cavity, regard-
less of its type, is compensation for the loss by amplification. 

In the active medium of a linear cavity, the signal propa-
gates in both directions; therefore, for a configuration of this 
type, according to Fig. 1, the following relations hold: S +(0) = 
S +(0)Gs

2S = S +(0)Gs
2 R +R – and S –(L) = S –(L)Gs

2S = S –(L) ´ 
Gs
2 R –R +. Consequently, 
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In what follows we need the write (8) in the integral form: 
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where ( ) ( ) ( / )expG z G z zp f z= -
z- . 

Next, we define the boundary conditions for the linear 
configuration in Fig. 1. Using (9), the boundary conditions 
for the linear cavity are written in the form: 

( )P P 00 =+ + ,    ( )P P LL =- - ,	
(11)

(0) ( )S G R S Ls =+ + - ,    ( ) (0)S L G R Ss =- - + .

From equation (10) and boundary conditions (11) we obtain 
the expression
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Figure 1.  Scheme of a linear optical cavity. 
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3. Construction of the analytic approximation 

In Section 2, we describe two statements of the boundary 
value problem for equation (8); on their basis we construct 
numerical methods that make it possible to find solutions to 
these problems in an acceptable time. However, it is difficult 
to perform optimisation over many parameters using iterative 
methods with a large number of degrees of freedom that this 
model has. A good solution to this problem is the use of any 
suitable analytic approximation of the unknown function 
G(z) described by Eqn (8). In this paper, an exponential 
approximation is chosen, and this choice is explained by an 
attempt to develop an analytical method that allows one to 
optimise the parameters of the model, significantly reducing 
the computation time, while maintaining acceptable accu-
racy. 

Assume that the function G(z) is exponential. Taking into 
account the conditions from equation (8), we obtain G(z) = 
exp(z lnGs /L). Such a choice of the functional dependence 
makes it possible to obtain analytically simpler expressions 
for the integrals in Eqn (12), eliminating the need for numeri-
cal integration. Substituting this approximation into (12), we 
obtain an expression for the signal power in the cavity: 
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Finally, this analytic approximation allows us to quickly 
approximate the solution to problem (8) for the conditions 
corresponding to different parameters of laser cavities. 

To answer the question of the accuracy of the constructed 
analytic signal power approximation, we consider (12) in the 
absence of unsaturated losses, i.e., for qs = qp = 0. In this case, 
system (8) has an analytic solution [10, 11]: 
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This solution coincides exactly with the constructed approxi-
mation (13) for zero linear losses (qs = qp = 0). 

Below we compare the analytical expression obtained 
with the results of direct numerical simulation of the initial 
system. We define the relative error of the signal power by the 
expression 

| |
S

S S
num

num anal
se =

- ,

where Snum = S +(0) + S –(L) and Sanal = S +(0) + S –(L) are the 
sums of the signals at the boundaries, calculated using a 
numerical algorithm and an analytical approximation, respec-
tively. Figure 2 shows the dependences characterising the 
accuracy of the approximation obtained using the example of 
a linear cavity. 

One can see that the magnitude of the uncertainty depends 
on the unsaturated loss, with qs more significantly affecting 
the uncertainty than qp. This fact is explained by the differ-
ence in the values of the analytical expressions for the inte-
grals in front of qs and qp, which introduce th uncertainty. 
Comparison of the obtained analytical expression with direct 
numerical simulation of the initial system showed the corre-
spondence of the results to an accuracy of 0.1 %, which indi-
cates the possibility of effective application of analytical 
results in solving optimisation problems.

4. Optimisation of a cw laser  
with a Fabry – Perot cavity 

The goal of optimisation is to maximise the output power of 
the signal. Therefore, we solve the boundary value problem 
(8) with boundary conditions of form (11) corresponding to 
the linear configuration. A pump device with a power of up to 
150 mW is used in the simulation [10]. The output power of 
the light for the resonator schematically shown in Fig. 1 is 
determined by expressions 
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s
2
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One can see from Fig. 3a that at a low pump power, stable 
lasing is possible only at small losses. The maximum output 
power obtained is also small and in this case is 6.02 mW at the 
right end of the cavity. For the simulated pump device, the 
position of the optimum point is also quite obvious: it corre-
sponds to the minimum total losses and the maximum pump 
power in the cavity and is in the upper right corner of the las-
ing region in Fig. 3a. 

During the second stage of optimisation, use is made of 
the pump device from [6], with a maximum power being equal 
to 23 W. One can see from Fig. 3b that an increase in the 
pump power allows not only an increase in the output power 
of the signal, but also a significantly expansion of the genera-
tion area, which makes it possible to achieve stable lasing at 

qs = 0.2, qp = 0
qs = 0, qp = 0.9
qs = 0.1, qp = 0

0

1

2

3

4

5

6

7

es/10–4

0.10 0.15 0.20 Pin/W

Figure 2.  Uncertainties of the analytical approximation for a linear 
cavity as functions of the input pump power for various values of un-
saturated losses and L = 2.5 m. 
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larger losses than previously. In addition, the maximum out-
put power of the signal increases to 2.55 W. The optimum 
output power is achieved at a maximum pump power and the 
reflection coefficient R+ = 0.7 at the right end.

Figure 4 shows the dependence of the output power of the 
signal as a function of the length of the active ytterbium fibre 
segment in a linear cavity. With an optimum reflection coef-
ficient R+ = 0.7 and a pump power of 23 W, the maximum 
output power is reached, which is twice as large as the analo-
gous experimental value from [6]. 

5. Conclusions 

We have constructed an analytical approximation of the out-
put signal power. The accuracy of this approximation is esti-
mated and its applicability in determining the lasing region 
and optimal laser light parameters in cavities of different con-
figurations is shown. On its basis, a region of stable lasing for 
a linear laser configuration is determined and the losses at the 
cavity coupler, pump radiation power and active fibre length 

are optimised in order to achieve the maximum output signal 
power. 

The obtained analytical results can be successfully used to 
optimise laser systems and also construct various numerical 
algorithms for solving complex problems on finding the 
dynamics of the average power of the pump and the signal in 
the active medium inside the laser cavity.
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