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Abstract.  We report results of numerical simulation of the nonlinear 
dynamics of SRS fibre lasers with linear and ring cavity configura-
tions and of the specific features of manifestation of instabilities 
of steady-state lasing in fibres with length-periodic modulation of 
dispersion. The simulation is performed within the approach based 
on solving transport equations. The dynamics of the SRS laser with 
linear configuration is found to depend strongly on the coupling 
of  counterpropagating waves at the fibre end faces and radically 
changes in the presence of reflections at the left or right end faces 
under asymmetric pumping. The existence of signal beatings in the 
absence of nonreciprocity (rotation) of the cavity and the presence 
of coupling between counterpropagating waves is demonstrated for 
the ring laser. A specific feature of instabilities of the propagation 
regime of a constant-intensity signal in a fibre with a group-velocity 
dispersion periodically modulated over length is their occurrence 
at an arbitrary dispersion sign.

Keywords: stimulated Raman scattering, counterpropagating waves, 
transport equations, instabilities, laser gyroscope, group-velocity 
dispersion, pulse sequence generation.

1. Introduction 

The dynamics of fibre lasers has been studied for a long time. 
These studies were determined in many respects by new experi-
mental results and possibilities provided by fibres and laser sys-
tems of new types. All the time, an important line of research 
was the analysis of the dynamics of fibre lasers using SRS or 
SBS pump conversion [1]. In contrast to the lasers based on 
activated fibres, lasing in SRS or SBS lasers may occur even in 
the absence of feedback in the cavity (single-pass lasing), 
because SBS and SRS gains are high even at moderate pump 
powers, while the loss in fibre is small. The main dynamic 
effects in SRS or SBS fibre lasers with linear asymmetric con-
figuration (fibre excitation from one end face) are related to the 
relaxation oscillations arising due to the action of the wave 
propagating towards the pump wave (SBS lasers) or the Stokes 
wave copropagating with the pump wave (SRS lasers) [2 – 4].

These oscillations occur generally with a period equal to the 
round-trip time of light in the cavity, when the cavity length 

coincides with the fibre length, or with a period determined 
by  some effective length, when the cavity length is smaller 
(because of the absorption of pump power) [2]. The fibre 
dispersion is generally disregarded, since the pulse duration 
is  sufficiently long; however, an important circumstance is 
that the equations describing lasing are partial differential 
equations, which cannot be reduced to a system of ordinary 
equations of low dimension. Therefore, analytical results can be 
obtained only under rather stringent approximations, which 
often are not satisfied in experiments [3].

Specifically for this reason numerical experiments play an 
important role in the analysis of dynamic phenomena [1, 2]. 
Within the conventional approach, the equations are sup
plemented with boundary conditions at the fibre end faces 
(two-point boundary problem, which calls for rather compli-
cated integration methods), and multiple runs over the fibre 
length are often used to satisfy boundary conditions. All these 
factors require a long calculation time and analysis of the 
convergence of successive approximation procedures.

SRS lasers based on long (several tens or hundreds of kilo-
metres) fibres are applied in telecommunication systems as dis-
tributed amplifiers [5]. Ring configurations of long fibre lasers 
are of particular interest, because optical gyroscopic devices 
can be designed on their basis; note also that, using a long 
fibre, one can design a cavity with a large scale coefficient, 
relating the phase delay (caused by rotation) or the difference 
in the frequencies of counterpropagating waves with the angu-
lar rotation speed [6]. In conventional ring lasers, due to the 
amplitude – phase lasing conditions, the linear coupling of 
counterpropagating waves with slightly differing frequencies 
leads to a frequency locking, which impedes the measurement 
of low rotation speeds, at which the beat frequency becomes 
comparable with the lock-in zone width.

The lock-in zone width is estimated as Rc/L, where c is the 
speed of light; c /L is the mode spacing; L is the ring cavity 
perimeter; and R is the coupling coefficient of counterpropa-
gating waves, which ranges from 10–5 to 10–6 in gas lasers. In 
optical fibres, due to the Rayleigh scattering, this coefficient 
is approximately 10–4 (for 1-km-long fibres). However, as was 
noted above, the SRS generation is not so sensitive to the 
phase relations for the cavity field; therefore, one can hope to 
obtain data about rotation even under the conditions of such 
high backscattering.

Some recent studies, devoted to the dynamics of long fibre 
lasers, were stimulated by the concept of random feedback in 
optical fibre [7 – 10], when generation may occur practically 
in a single pass in the absence of mirrors upon symmetric fibre 
excitation [11]. The role of Rayleigh scattering and sponta-
neous Raman scattering is in the formation of seed fields for 
SRS, due to which various instabilities may develop.
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Many problems are related to the analysis of the dynamics 
of short pulses in long fibre lasers. A number of studies have 
been published quite recently, where mode locking was obtained 
in a fibre laser with cavity elements having significantly dif
ferent dispersions, which leads to the occurrence of the regimes 
caused by instabilities similar to Faraday (parametric) ones 
[12]. The propagation regimes of short (picosecond) light pulses 
in fibres with a dispersion periodically changing over length 
are also interesting for generating entangled soliton-like pulses 
[13]. The propagation of waves with constant intensity in 
optical fibres is known to be accompanied by instability in the 
case of negative group-velocity dispersion (GVD) [14]; how-
ever, similar instabilities are observed for counterpropagating 
waves and cross-phase modulation even at positive GVD. 
Modulation of fibre dispersion parameters may also lead to 
parametric-type instability [15].

To study the processes occurring in these lasers and develop 
their adequate physical models, it is convenient to consider 
simplified cavity configurations. Specifically this approach is 
used in this work. In addition, numerical simulation is per-
formed by solving the transport equations for the field ampli-
tudes of counterpropagating waves applying grid methods 
and the Courant – Isaacson – Rees algorithm [16], which made 
it possible to study the laser dynamics for a large number of 
passes through fibre without applying iterative algorithms.

2. Dynamics of a long SRS laser

2.1. Lasing equations

The equations for the amplitudes of Stokes waves (subscript s) 
and pump waves propagating along the z (F) axis and in the 
opposite direction (B), with allowance for the dispersion, 
have the form [11]
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where gRr  = gRws /wp is the Stokes wave gain (in km–1 W–1); 
gp and gs are the loss factors at the pump (wp) and Stokes 
wave (ws) frequencies, respectively (in km–1); ug = (db/dwp(s))–1 
is the group velocity; b(wp(s)) is the propagation constant; 
Dp(s) = (d2b/dw2p(s))–1 is the dispersion coefficient; and C(z) is 
the wave coupling coefficient due to the Rayleigh scattering. 
Since C(z) is proportional to exp(2ibszj ), where zj is a random 
coordinate of the jth scatterer [17], for an integration step in z 
of about 1 m, one can assume this coefficient to have a random 
phase.

These equations were derived by expanding the waveguide 
field in spatial harmonics exp(i bz), in contrast to the con
ventional approach implying expansion in frequency. This 
approach makes it possible to solve numerically the Cauchy 

problem with the initial conditions Fs(z, 0), Bs(z, 0) and avoid 
complex computational schemes when setting the input pulse 
at z = 0: Fs(0, t), Bs(0, t). The boundary conditions must be 
written separately for linear and ring cavities.

The field amplitudes are normalised so as to make the unit 
amplitude correspond to a power of 1 W.

2.2. Linear cavity 

Let us assume that a fibre segment of length L is excited on 
the left and on the right and that reflection of Stokes waves 
may occur on its right and left ends. Then we have 

Fs(0, t) = Rleft Bs(0, t),   Bs(L, t) = Rright Fs(L, t),	 (5)

F(0, t) = Rleft B(0, t) + Pleft ,   

B(L, t) = Rright F(L, t) + Pright .	
(6)

Here, Rleft and Rright are power reflectances on the segment 
left and right ends, respectively; and Pleft and Pright are pump 
powers.

2.3. Ring cavity

Let us assume that a fibre segment of length L is rolled into a 
ring and excited (through a WDM coupler) by waves propa-
gating clockwise (F, Fs) and counterclockwise (B, Bs). We 
assume also that the coupler is not ideal. As a result, counter-
propagating Stokes waves are coupled, and there are no 
reflections at the pump frequency. Then,

Fs(0, t) = R Bs(0, t) + R1- Fs(L, t),

Bs(L, t) = – R Fs(L, t) + R1- Bs(0, t),	 (7)

F(0, t) = F(L, t) + Pleft ,   B(L, t) = B(0, t) + Pright .

2.4. Integration method 

It is convenient to perform calculations using normalised 
coordinates Z = z/L and T = tug /L. In this case, the equa-
tions contain dimensionless linear gains gRr Pleft(right)L and 
gRPleft(right)L and absorption gp(s)L.

Equations (1) – (4) are ‘transport’ equations:

¶
¶

¶
¶ ( , ) ( , )

t z
U z t V z t! =` j .

It is reasonable to integrate them numerically using the 
Courant – Isaacson – Rees scheme [16], which can be written as

U(z, t) ® U(zm, tn) = Um n ,

zm – zm  – 1 = dz,   tn – tn  – 1 = dt,   s = dt /dz,   s £ 1,

Um  n + 1 = (1 – s)Um n + sUm ± 1  n + Vm n dt.

3. Calculation results

Numerical calculations were performed with the following 
values of parameters: gR= 0.6 km–1 W–1, gp = 0.055 km–1, 
gs = 0.046 km–1, and L = 22.5 km. At this fibre length and 
moderate pump intensities (no higher than the occurrence 
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threshold for second-order Stokes waves), one can reach 
values gRPleft / gp » 100 and implement regimes in which the 
pump power is almost completely absorbed in fibre; in addi-
tion, this length corresponds to that used in the experiment 
[11]. At smaller fibre lengths, higher pump intensities are nec-
essary to induce relaxation oscillations [2]. At large lengths, the 
observed regimes are qualitatively similar to those at a chosen 
length. Since spontaneous Raman scattering is significant 
only in the regions characterised by low Stokes-wave intensity 
(i.e., at the fibre ends), its contribution was modelled by ‘illu-
mination’ (with a power of 10–5 W) of the corresponding fibre 
end faces (left for t wave Fs and right for the wave Bs).

It was verified that variations in the illumination power 
at this level do not affect the dynamics of the system. It was 
also found that scattering on the order of ~10–4 at a fibre 
length of 1 km does not affect much the dynamics, and the 
influence of scattering is similar to that of illumination. 
Therefore, the C(z) value was assumed to be zero. At the 
same time, a significant factor for the dynamics is the wave 
reflections at the fibre end faces. First, if the pump radiation is 
not completely absorbed throughout the fibre length, a reflected 
pump wave and the corresponding gain on the counterpropa-
gating wave arise. Second, the power of the Stokes wave 
reflected from the end face may exceed the illumination power, 
a circumstance significant for the development of relaxation 
oscillations.

It was assumed that the pump field is switched on instan-
taneously at t = 0. The pump wave propagates along the 
z axis, and a copropagating Stokes wave (continuously ampli-
fied) travels jointly with it. A counterpropagating Stokes wave 

is generated in the regions the pump wave arrives at. Both 
Stokes waves deplete the pump wave. The transient process 
lasts for ~10 passes through the fibre.

Since the characteristic times and spatial scales of field 
variation in long fibres (on the order of 1 km or more) under 
pumping with a constant intensity at the fibre input lie in 
the ranges of several microseconds and several hundreds of 
meters, respectively, one can neglect dispersion and assume 
that Dp, Ds = 0.

3.1. Linear SRS laser

Let us consider asymmetric pump regimes, where Pright = 0. 
Figure 1 shows time dependences of |F(0.04L, t)|2, |Fs(L, t)|2, 
and |Bs(0, t)|2 for four reflectances on the right end face.

It can be seen that the increase in the reflectance on the 
right end face leads first to the occurrence of relaxation 
damping oscillations, which then become regular (an increase 
in the pump intensity makes them chaotic); however, their 
period is not equal to that of the cavity round trip. To demon-
strate this effect, the pump intensity was modulated at the 
round-trip frequency. The corresponding beatings can be seen 
well in Fig. 1d. The intensity oscillation period is about 0.6 of 
the round-trip time; i.e., a perturbation propagates through 
a  fibre with a velocity exceeding ug. This occurs when the 
perturbation penetrates a region with a higher gain amplifi-
cation, which is characteristic of a Stokes wave counter-
propagating with respect to the pump wave.

Figure 2 shows the spatial dependences of intensities at 
different instants after the transient process for two reflec-
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Figure 1.  Time dependences of the intensities of forward (solid lines) and backward (short-dash lines) Stokes waves and pump waves (long-dash 
lines) at Rright = (a) 0, (b) 0.0001, (c) 0.005, and (d) 0.0025. The pump modulation depth in Fig. 1d is 0.05; Rleft = 0; Pleft = 1.5 W (a – d).
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tances; one of them corresponds to stationary intensities, and 
the other corresponds to intensity oscillations. In the latter 
case, the recording interval is 0.3 of the round-trip time, i.e., 
approximately half oscillation period.

Dependences of the Stokes-wave intensities on the pump 
level are shown in Fig. 3 for different reflectances of the right 
fibre end face. The wave intensities were recorded at a specified 
pump level after the transient process in the interval L/ug , 
equal to the wave pass time through the fibre with a step of 
L/(20 ug). With a change in the pump intensity, the initial con-
ditions for the fields corresponded to the fields in the previous 
step. One can see well that, beginning with certain pump 
intensities, the steady-state generation regime becomes unstable, 
and the intensity of the counterpropagating Stokes wave sig-
nificantly exceeds that of the wave copropagating with the 
pump wave.

Figure 4 presents a map of dynamic regimes in the pump 
level – reflectance plane at the end face, where the boundary 
between the regimes of steady-state generation and intensity 
oscillations is shown. The maximum and minimum powers (for 
the pass time through the fibre) were calculated at a specified 
pump level and reflectance. When these values coincide, one 
observes the steady-state regime, while their difference charac-
terises the modulation level. The boundary between the 
regimes was taken to be the difference between the maximum 
and minimum powers (in 10–4 W). The steady-state regime 
occurs at pump levels near the threshold; an increase in the 
pump intensity gives rise to oscillations. Note that the observa-
tion threshold for pump intensity oscillations depends weakly 
on the reflectance. At high intensities, steady-state regimes are 
observed only at small (on the order of 10–4 of less) reflectance 
values.

Since the feedback necessary for the occurrence of oscilla-
tions is formed due to the waves B (counterpropagating pump 
wave) and Bs upon reflection at the right end face, it is interest 
to consider the reflection at the left end face, when the counter-
propagating pump wave does not arise.

It was found that in this case, despite the similarity of 
dynamic regimes, oscillations occur at much higher pump 
intensities, and the regions of steady-state and non-steady-
state regimes exchange places. This situation is shown in 
Fig.  5. It was also found that, at identical reflectances at the right 
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and left end faces, the regime map virtually completely coin-
cides with that for the reflection at only the left end face; i.e., 
the reflection at the left end face leads to stabilisation.

To explain this strong asymmetry, we should note the 
following: in the case of reflection at the right end face, the 
initial intensity of the counterpropagating Stokes wave Bs is 
determined by the illumination and reflection of rather strong 
wave Fs. An increase in the initial intensity leads to a rise in 
the wave intensity at the left fibre end face and a decrease 
in the pump wave intensity (generally near the left end face, 
because the pump intensity at the fibre input is maintained 
constant). In the absence of reflection at the left end face, the 
initial wave intensity Fs is determined by only the illumination 
(spontaneous Raman scattering and Rayleigh scattering). 

Therefore, the intensity of this wave at the right end face is 
determined by the amplification under pumping, whose intensity 
changes both in time and along the fibre length. Any pump 
wave perturbations propagate jointly with the copropagating 
Stokes wave; under these conditions, the counterpropagating 
Stokes wave is generally subjected to the length-integrated 
pump effect. Thus, a positive feedback is formed to give rise 
to intensity perturbations. In the absence of reflections at the 
right end face, the feedback is negative, and oscillations arise 
only at high pump levels.

These results correspond to the results of numerical simula-
tion and experimental observations in the case of long mirror-
less SRS laser [11].

3.2. Ring laser

Let us analyse a ring laser under symmetric pumping, a case 
where Pright = Pleft. We will also take into account the possible 
nonreciprocity of counterpropagating waves due to the fibre 
coil rotation. The rotation can be taken into account in the 
simplest way by supplementing the equation with terms 
responsible for the nonreciprocal phase delay, ±(i/2)DwF (Fs) 
and ±(i/2)DwB(Bs). The frequency shift Dw is proportional to 
the rotation speed W : Dw = 8pugSW/(clL), where S is the 
fibre coil area and l is wavelength [6]. The frequencies of the 
counterpropagating waves are different for the pump waves 
and Stokes waves.

Figure 6 shows the time dependences of wave intensities. 
It can be seen that nonreciprocity gives rise to a beat signal, 
while weak reflection at the coupling element causes periodic 
power transfer between counterpropagating waves. Generally, 
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Figure 5.  Dynamic-regime map in the case of wave reflection at the left 
fibre end face. 
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an increase in the coupling coefficient leads to an increase 
in the oscillation frequency (Fig. 7). It can also be seen that 
relaxation oscillations occur at frequencies close to the cavity 
round-trip frequency, especially in the beginning of the tran-
sient process; however, as in the case of a linear cavity, the 
frequency of relaxation oscillations by the end of the transient 
process exceeds the round-trip frequency.

The intensity oscillations due to the linear coupling of 
counterpropagating waves and the beat signal due to the non-
reciprocity (rotation) are interrelated, because not only wave 
amplitudes but also phases are important under conditions of 
coherent addition of waves at the coupling element in case of 
reflection. Figure 8 shows the time dependences of intensities 
after the transient process. It can be seen that the beat signal 
exists even in the absence of rotation and that the beat frequency 
increases when rotation occurs. A change in the rotation sign 
leads to a rise in the beat frequency. This situation significantly 
differs from the case of a ring laser, where the beat frequency 
in the presence of wave coupling is generally lower than in the 
absence of coupling, and beatings are absent at low rotation 
speeds (counterpropagating-wave frequencies are locked in). 
This behaviour is determined by the difference in the condi-
tions for self-excitation and steady-state generation in a con-
ventional laser (where the field returning to the active atom 
after the cavity round trip should be phase-coupled with the 
emitted field) and in the case of SRS gain (where the presence 
of a pump field, whose nonlinear conversion provides Stokes 
waves, is sufficient). Due to the large SRS-gain linewidth, the 
phase relations are automatically satisfied for the Stokes modes 
in a high-Q cavity.

3.3. Dispersion effects

The influence of dispersion manifests itself when the disper-
sion length ld = t2/b2, where t is the pulse duration and b2 = 
d2b/dw2 characterises the GVD ([1], Ch. 5), becomes com
parable with the fibre length. For the pulses propagating in a 
fibre laser cavity, an important factor is that the cavity elements 
periodically affect the pulses multiply passing through the 
cavity. Recently, Tarasov et al. [13] theoretically and experi-
mentally investigated the operation regimes of an SRS fibre 
laser in which generation of a sequence of picosecond pulses 
is observed (with a large number of pulses per cavity length). 
The cavity of this laser was formed by a fibre with a positive 
GVD and Bragg fibre gratings having a negative GVD and 
bias (symmetrically with respect to the frequencies at which 
spectral reflection bands were generated by centres), so that 
the cavity GVD was positive as a whole. The occurrence of 
pulses was interpreted as a parametric (Faraday) instability 
of the constant-intensity generation regime.

Let us consider the propagation of pulses in a fibre charac-
terised by GVD and Kerr nonlinearity. We assume the GVD 
to be a periodic function of longitudinal coordinate; this 
approach models in a sense a laser cavity of the above-con
sidered type. The equation describing the pulse propagation 
[nonlinear Schrödinger equation (NSE)] can be presented in 
the conventional form [1]:
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Figure 7.  Time dependences of wave intensities and interference signal 
in a ring laser at Rright = Rleft = (a, b) 0.01 and DwL /ug = (a) 0 and 
(b) 0.2. The curve designations are the same as in Fig. 6.
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Here, a is the nonlinearity coefficient; D(z) is a parameter 
responsible for GVD; and the inequality D > 0 corresponds to 
normal dispersion. The propagation of a beam with constant 
intensity corresponds to the solution to NSE in the form 
A(z, t) = Pleft exp(iaPleftz).

3.4. Instability of steady-state solutions for a fibre  
with periodic dispersion

Let us consider the stability of this solution. The equations 
for small deviations

A(z, t) = A0(z, t){1 + [x(z) exp[iy(z)]] cos(W t)}

have the form

2y’(z) = W2D(z)x(z) + 4Pax(z),

2x’(z) = –W2D(z)y(z),	
(9)

which is equivalent to the second-order equation

x’’ = –K2(z)x + Q(z)x,	 (10)

where 

( ) ( ) ( ); ( )
( )
( )
.

'
K z D z P D z Q z

D z
D z

4
1 4 2 2aW W= + = 	 (11)

For a dispersion constant along the fibre length, D(z) = D0, 
and a(z) = a0, we obtain the well-known result [1]: at negative 
GVD (D0 < 0), the wave number of perturbation is imaginary, 
which corresponds to perturbation amplification (modulation 
instability). We assume that D(z) = D0 + d cos(2pkz).

Let us determine the perturbation increment from the 
formula g = (2/z0) ln [x(z0)/x(0)] for a sufficiently large value 
z  = z0. Having solved numerically the system of equations 
(10) and (11), one can obtain a frequency dependence for the 
increment.

The calculation results for D0 = ±1 ps2 km–1, a = 1 km–1 W–1, 
Pleft = 1 W, and d = 1 ps2 km–1 are presented in Fig. 9. For 
comparison, the increment for the case of modulation insta-
bility is also shown (grey curve). It can clearly be seen that 
periodic modulation leads to the occurrence of additional 
domains of existence of instabilities for both negative and 
positive GVDs.

Figure 10 shows the calculation results for a more realistic 
model of dispersion evolution, corresponding to study [13], 
where a fibre with constant positive dispersion and Bragg 
fibres with negative GVD were used; i.e., the GVD stepwise 
changed in the laser. For definiteness, we assume that the 
negative dispersion region with GVD D1 covers 10 % fibre 
length:

( )
, . ,
, . .

D z
D z L
D L z L

0 0 9
0 9

0

1 1

G G

G
= )

It can be seen that instability occurs near a frequency of 
10 GHz, which is consistent with the experimental data of [13]. 
To estimate the characteristic frequency values, it is useful to 
find the characteristic spatial rate of variation in the param-
eters of the field modulated at the frequency W specified 
by  formula (11) and compare it with the spatial dispersion 
modulation frequency. At W/(2p) = 10–2 THz, we obtain a 

spatial modulation period of about 3 km, which is also con
sistent with the experimental data of [13].

Figure 11 shows the spatiotemporal dynamics of instability 
development, which was obtained by solving numerically 
Eqn (8) with conventional normalisation of the longitudinal 
coordinate to the dispersion length and the time to the pulse 
width. The dispersion was assumed to be varied along the 
fibre length. Under this normalisation, one can assume that 
D0 = 1 or –1. The modulation amplitude was sufficiently large 
(d = 2), a situation corresponding to the formation of regions 
with different GVD signs over fibre length; the spatial modu-
lation frequency was k = 0.2p. The frequency of perturbations 
(time modulation against the constant intensity background) 
was taken to be equal to k (ug = 1). It can be seen that an 
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Figure 9.  Dependences of the perturbation increment g on frequency f 
for (a) negative and (b) positive GVDs at D0 = ±1 ps2 km–1, aPleft = 
1 km–1, and d = 1 ps2 km–1. The grey and black curves correspond to 
constant (d = 0) and alternating dispersions, respectively. 
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Figure 10.  Dependence of the instability increment g on frequency f for 
a step dispersion at L = 2.2 km, D0 = 25 ps2 km–1, D1 = –240 ps2 km–1, 
and aPleft = 6 km–1. 
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instability at positive GVD leads to the generation of pulses 
that periodically change places when propagating against the 
background of a large constant signal. In the case of negative 
GVD, soliton-like pulses are generated.

4. Conclusions

We performed a numerical simulation of the nonlinear dynamics 
of SRS fibre lasers with linear and ring cavity configurations 
and the specific features of manifestation of instabilities of 
the  steady-state generation regime in fibres with dispersion 
periodically modulated over their length. The use of transport 
theory approaches in the simulation allowed us to propose 
and implement an efficient numerical algorithm, making it 
possible to trace the laser system dynamics for long times, 
corresponding to several tens or hundreds of passes through 
the cavity.

It was shown for a linear laser that the dynamics of an 
asymmetrically pumped system depends strongly on which of 
the fibre end faces the counterpropagating Stokes waves are 
coupled.

The ring laser demonstrated the presence of a beat signal 
in the absence of rotation and a change in the beat frequency 
with a change in the angular rotation speed.

The instabilities of the constant-intensity signal propagation 
regime in a fibre with GVD periodically modulated over length, 
which exist at an arbitrary dispersion sign, were analysed.
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Figure 11.  Spatiotemporal dynamics of instability development for D0 = 
(a) 1 and (b) –1, d = 2, and k = 0.2p.




