Твердотельный усилитель на основе кристалла Yb: YAG с одномодовой лазерной накачкой на длине волны 920 нм

И.В.Обронов, А.С.Демкин, Д.В.Мясников

На основе кристалла Yb: YAG с осевой лазерной накачкой на длине волны 920 нм, имеющей одномодовое поперечное распределение лазерного излучения, предложена схема оптического усилителя для ультракоротких импульсов с длиной волны излучения 1030 нм. Продемонстрировано усиление по малому сигналу до 40 дБ за один проход с высоким качеством выходного пучка. Максимальная средняя мощность составила 14 Вт с дифференциальной эффективностью свыше 50%.

Ключевые слова: Yb: YAG, кристаллический стержень, ультракороткие импульсы, одномодовая накачка, неодимовый волоконный лазер, CPA.

1. Введение

Благодаря тому, что при взаимодействии оптических ультракоротких импульсов (УКИ) с веществом происходят нелинейные процессы (например, многофотонное поглощение), а также тому, что длительность импульса меньше времени электрон-фононного взаимодействия, УКИ востребованы при точной обработке материалов, в том числе прозрачных [1,2].

Наиболее надежными и недорогими излучателями для получения и усиления УКИ являются гибридные лазеры. В таких лазерах задающим генератором служит волоконный лазер, работающий в режиме пассивной самосинхронизации мод, излучение которого усиливается в волоконном каскаде. Использование в качестве выходного каскада усиления объемного кристаллического усилителя позволяет существенно увеличить пиковую мощность и энергию импульсов по сравнению с волоконными каскадами. В таких схемах часто используют одно- и двухпроходные объемные усилители на основе кристаллических стержней. Усилители подобного типа позволили получить импульсную энергию свыше 20 мкДж при длительности импульсов 800 фс и средней мощности до 160 Вт [3]. Основными проблемами таких усилителей являются низкая эффективность и значительный нагрев активной среды.

В настоящей работе представлена схема усилителя, использующего усиление лазерных УКИ в цилиндричес-

И.В.Обронов. ООО НТО «ИРЭ-Полюс», Россия, Московская обл., 141190 Фрязино, пл. Введенского, 1, корп. 3; Национальный исследовательский ядерный университет «МИФИ», Россия, 115409 Москва, Каширское ш., 31; e-mail: iobronov@ntoire-polus.ru

А.С.Демкин. ООО НТО «ИРЭ-Полюс», Россия, Московская обл., 141190 Фрязино, пл. Введенского, 1, корп. 3; Московский физикотехнический институт (государственный университет), Россия, Московская обл., 141700 Долгопрудный, Институтский пер., 9; e-mail: ademkin@ntoire-polus.ru

Д.В.Мясников. ООО НТО «ИРЭ-Полюс», Россия, Московская обл., 141190 Фрязино, пл. Введенского, 1, корп. 3

Поступила в редакцию 25 декабря 2017 г., после доработки – 12 февраля 2018 г.

ком кристалле Yb:YAG в условиях одномодовой (по поперечному распределению) накачки излучением неодимового волоконного лазера на длине волны 920 нм [4]. Одномодовая лазерная накачка позволяет обеспечить большие значения как коэффициента усиления в кристалле, так и параметра качества пучка усиленного лазерного излучения на выходе кристалла Yb:YAG. Кроме того, данный тип накачки позволяет получить высокую эффективность рассматриваемого кристаллического усилителя.

2. Результаты экспериментов

На рис.1 изображена оптическая схема экспериментальной установки. Использовался метод усиления чирпированных импульсов (СРА), позволяющий достичь больших энергий лазерного излучения. Усиление лазерных УКИ с длиной волны 1030 нм осуществлялось в кристаллическом стержне Yb:YAG (5 мол.% Yb³⁺) длиной 17 мм и диаметром 1 мм, который размещался в медном радиаторе с водяным охлаждением. Кристаллический стержень накачивался излучением волоконного неодимового лазера мощностью 35 Вт. После усиления оптический импульс сжимался с помощью объемной брэгговской решетки (ОБР-компрессор).

В качестве задающего генератора использовался волоконный лазер с синхронизацией мод, излучающий импульсы длительностью 5 пс с частотой следования

Рис.1. Схема экспериментальной установки.

14 МГц. Импульсы излучения задающего лазера растягивались до 40 пс с помощью оптического волокна длиной 120 м, затем усиливались в двухкаскадном иттербиевом волоконном усилителе с оптической накачкой лазерными диодами ЛД1 и ЛД2 и фокусировались в кристалл Yb:YAG. Акустооптический модулятор (AOM), установленный до кристаллического усилителя, использовался для прореживания частоты следования импульсов задающего генератора до 2 МГц. Параметры импульсов сигнала на входе в кристалл Yb:YAG приведены ниже.

Средняя мощность (мВт).	·						. ().:	5-	- 1	35	0
Длина волны (нм)										1	03	0
Частота следования (МГц)												2
Ширина спектра (нм)												3
Длительность (пс)											.4	0

В результате экспериментов были получены импульсы излучения со средней мощностью свыше 14 Вт на длине волны 1030 нм при средней мощности входных импульсов 1.4 Вт с дифференциальной эффективностью η по поглощенной накачке более 50%. Достигнутая выходная мощность была ограничена уровнем доступной мощности накачки. В случае, когда усилитель работал в режиме усиления малого сигнала, входная мощность $P_{in} =$ 0.5 мВт, средняя выходная мощность составляла 5 Вт (рис.2) с коэффициентом усиления до 40 дБ (рис.3), который, согласно литературным данным, является рекордным

Рис.2. Измеренные зависимости средней выходной мощности излучения от поглощенной мощности накачки при входной средней мощности $P_{\rm in} = 1350$ (*I*) и 0.5 мВт (*2*).

Рис.3. Зависимость коэффициента усиления в кристалле Yb: YAG от средней входной мощности излучения.

для однопроходной схемы усилителей на кристаллических стержнях Yb:YAG. После усиления была измерена сжимаемость импульса с использованием ОБР-компрессора. Длительность сжатого импульса составила 980 фс, что довольно близко к теоретическим оценкам для спектрально-ограниченного импульса.

При максимальной выходной средней мощности параметр качества пучка $M^2 = 1.01$, а в режиме усиления малого сигнала $M^2 = 1.3$. Ухудшение качества выходного пучка при большом усилении может быть вызвано «инверсионной» линзой, роль которой возрастает по мере увеличения коэффициента усиления. Эффект «инверсионной» линзы связан с изменением показателя преломления кристалла в зависимости от концентрации ионов иттербия Yb³⁺, находящихся в возбужденном состоянии. Этот эффект был исследован теоретически и экспериментально в работе [5]. Для используемого в нашей работе кристаллического стержня с концентрацией активных ионов Yb³⁺ 5 мол.% и при инверсии населенности лазерного уровня (терм ²F_{5/2}) порядка 60% нелинейная добавка к собственному коэффициенту преломления среды равна приблизительно 10⁻⁴ [5]. С другой стороны, изменение показателя преломления среды, вызванное эффектом термолинзы, можно оценить следующим образом. Известно, что термооптический коэффициент в кристалле Yb: YAG равен 8.4 \times 10⁻⁶ °C⁻¹ [6]. Рассчитанный нами температурный градиент в кристалле составил около 15°C, поэтому добавка к коэффициенту преломления от эффекта «инверсионной» линзы будет сравнима с добавкой, вызванной эффектом термолинзы, что может приводить к искажению выходных оптических характеристик усилителя.

Параметр качества пучка измерялся с помощью прибора DataRay BeamMap2, перетяжка лазерного излучения в котором формировалась оптической линзой с фокусным расстоянием 100 мм, установленной на расстоянии 150 мм от выходного торца кристалла. Кроме того, измерялся сдвиг перетяжки при различных мощностях входного сигнального излучения. Большой интерес с точки зрения использования кристаллического усилителя в оптических схемах представляет измерение сдвига перетяжки пучка в зависимости от коэффициента усиления в кристалле. Измеренная нами зависимость сдвига перетяжки лазерного излучения с длиной волны 1030 нм (рис.4) имела ярко выраженный экстремум. Мы полага-

Рис.4. Экспериментально измеренная зависимость положения перетяжки усиленного лазерного излучения от средней мощности входных импульсов после фокусировки линзой. Мощность лазера накачки 35 Вт.

ем, что при больших (свыше 25 дБ) коэффициентах усиления в кристалле Yb:YAG сдвиг перетяжки пучка обусловлен преобладанием эффекта «инверсионной» линзы, а при более низких коэффициентах усиления – доминированием эффекта термолинзы.

Итак, впервые представлена схема одномодовой накачки с длиной волны 920 нм стержневых усилителей на кристаллах Yb:YAG. Максимальное значение средней выходной мощности импульсов на длине волны 1030 нм составило 14 Вт при дифференциальной эффективности более 50%. Продемонстрирована возможность применения данной схемы в качестве усилителя малых сигналов, что позволило получить максимальный однопроходной коэффициент усиления малого сигнала до 40 дБ.

- 1. Albelo J.A. et al. Intern. Soc. Opt. Photon., 6871, 687122 (2008).
- 2. Sugioka K. Nanophotonics, 6 (2), 393 (2017).
- 3. Markovic V. et al. Opt. Express, 23 (20), 25883 (2015).
- 4. Gapontsev V.P., Zaytsev I., Vyatkin M. High Power Neodymium Fiber Lasers and Amplifiers. Patent USA No. 9716365, 2017.
- 5. Moncorgé R. et al. Opt. Commun., 281 (9), 2526 (2008).
- Furuse H., Yasuhara R., Hiraga K. Opt. Mater. Express, 4 (9), 1794 (2014).