НЕЛИНЕЙНО-ОПТИЧЕСКИЕ ЯВЛЕНИЯ

Исследование динамики нелинейного оптического отклика в стеклообразных халькогенидных полупроводниках методом «накачка-зондирование»

Е.А.Романова, Ю.С.Кузюткина, В.С.Ширяев, С.Гизар

На основе анализа результатов измерений методом «накачка–зондирование» с фемтосекундным временным разрешением и компьютерного моделирования кинетики носителей заряда выявлены два типа нелинейного оптического отклика в образцах халькогенидных стекол системы As-S-Se при их облучении лазерными импульсами длительностью 50 фс на длине волны 0.79 мкм. Различие нелинейной динамики обусловлено характером фотовозбуждения, поскольку поглощение лазерного излучения может идти через связанные состояния в запрещенной зоне или без их участия, в зависимости от отношения энергии фотона накачки к ишрине запрещенной зоны.

Ключевые слова: фемтосекундные лазерные импульсы, фотоиндуцированные эффекты, оптическая нелинейность, халькогенидные стекла, экситоны.

1. Введение

Халькогенидные стекла (ХГС) с их низкими оптическими потерями в области длин волн 0.5-15 мкм, хорошей химической стабильностью, высокой оптической нелинейностью третьего порядка - это перспективный материал для информационно-оптических систем среднего ИК диапазона, осуществляющих мониторинг окружающей среды, медицинскую диагностику, контроль производственных процессов в режиме реального времени [1-3]. Для спектроскопических датчиков среднего ИК диапазона нужны как сенсорные элементы, так и компактные широкополосные источники когерентного излучения, что требует развития технологий обработки ХГС. Для создания волноводных структур на поверхности и в объеме ХГС может быть использована технология фемтосекундных лазерных модификаций (ФЛМ) [4-6]. Однако химические и физические явления, приводящие к изменению оптических свойств ХГС под воздействием фемтосекундных лазерных импульсов большой интенсивности, еще мало изучены. Для развития технологии ФЛМ в ХГС необходимы фундаментальные знания о фотоиндуцированных процессах в стеклах разных составов. Исследование нелинейного оптического отклика в образцах ХГС важно в связи с тем, что технология ФЛМ по сути является нелинейной, т.к. условия распространения импульса и поглощение энергии импульса в образце зависят от значений керровской постоянной и коэффициента многофотонного поглощения стекла [7].

Е.А.Романова, Ю.С.Кузюткина. Саратовский национальный исследовательский государственный университет им. Н.Г.Чернышевского, Россия, 410012 Саратов, ул. Астраханская, 83; e-mail: elena_rmnv@yahoo.co.uk, romanova@optics.sgu.ru

В.С.Ширяев. Институт химии высокочистых веществ РАН им. Г.Г.Девятых, Россия, 603950 Н.Новгород, ул. Тропинина, 49; e-mail: shiryaev@ihps.nnov.ru

S.Guizard. Ecole Polytechnique, 91128, Palaiseau, France

Поступила в редакцию 5 октября 2017 г., после доработки – 14 но-ября 2017 г.

Отметим, что в настоящее время нет строгой теории, описывающей нелинейный оптический отклик в топологически неупорядоченных структурах, в частности в стеклообразных полупроводниках, к каковым относятся ХГС. В ряде работ для оценки нелинейных оптических коэффициентов ХГС использовались результаты теории нелинейного оптического отклика в кристаллических полупроводниках [8-10]. Между тем, результаты систематизированных эмпирических исследований позволили выявить взаимосвязь между составом, структурой и нелинейными оптическими свойствами для некоторых систем ХГС [2,11-14]. Такие исследования включают как измерения нелинейных оптических коэффициентов (керровская постоянная, коэффициент многофотонного поглощения, коэффициент рамановского усиления), так и структурный анализ стекол методами комбинационного рассеяния, фурье-спектроскопии, рентгеновской спектроскопии, рентгеновского дифракционного анализа, ядерной магнитно-резонансной спектроскопии. Было установлено, что, поскольку межатомные связи в ХГС слабее, чем в оксидных стеклах, ширина запрещенной зоны в ХГС обычно меньше 3 эВ, а температура стеклования $T_{\rm g}$ < 200 К. При этом плотность (3.2-5.0 г/см³) и показатель преломления (2.3-3.4) ХГС значительно выше, чем у оксидных стекол. Значения керровской постоянной ХГС на 2-3 порядка больше, чем у кварцевого стекла.

Для оптимизации технологии ФЛМ важно исследовать характер протекания во времени фотоиндуцированных процессов, приводящих к измерениям показателя преломления стекла. Ранее нами исследовалась временная динамика нелинейного оптического отклика в стеклах системы As-S-Se методом «накачка-зондирование» [15] с фемтосекундным временным разрешением. Нелинейные оптические коэффициенты преломления и поглощения были определены в [10] при относительно малых интенсивностях импульса накачки, когда плотностью фотоиндуцированных носителей заряда можно пренебречь. Результаты измерений при больших интенсивностях накачки показали [16, 17], что характер нелинейного отклика, включающего кинетику носителей заряда, на временных интервалах до 10 пс зависит от того, насколько частота лазерного импульса близка к краю полосы фундаментального поглощения исследуемого ХГС.

В настоящей работе на основе анализа результатов измерений, полученных при больших интенсивностях накачки, определяются теоретические модели кинетики носителей заряда в стеклах системы As-S-Se, проводится компьютерное моделирование динамики нелинейного отклика. В результате согласования расчетных и измеренных зависимостей определяются параметры, характеризующие электронные свойства исследуемых стекол. В работе также дается краткое описание структурных особенностей стекол данной системы, характер кинетики носителей заряда соотносится с возможными фотоиндуцированными изменениями молекулярной сетки.

2. Халькогенидные стекла системы As-S-Se

Структура стекол стехиометрических составов $As_{40}S_{60-x}Se_x$ хорошо исследована с использованием различных экспериментальных методик [1, 2, 11-14, 18-20]. Характер молекулярных связей в этой системе преимущественно ковалентный. Рентгенографические исследования показали, что структура стекол представляет собой гофрированные слои, причем степень гофрированности увеличивается с размером атома халькогена. В структуре стекол As₂S₃ и As₂Se₃ выделяют тригональные пирамиды [AsS₃] и [AsSe₃] с атомом мышьяка в вершине, которые соединены через двухкоординированный халькоген. При частичном замещении, например, серы в стекле As₂S₃ селеном появляются пирамиды [As(S, Se)₃] смешанного типа. Так, в работе [21] была показана возможность сосуществования в аморфной системе As₄₀S_{60-x}Se_x гетеропирамид $[AsSSe_2]$ и $[AsS_2Se]$, а также гомопирамид $[AsS_3]$ и [AsSe₃]. Исследования методами ядерной магнитно-резонансной спектроскопии и комбинационного рассеяния показали [11], что в такой системе атомы S и Se равномерно распределены в объеме стекла, когда концентрация атомов Se равна или превышает концентрацию атомов S. При меньшей концентрации Se атомы халькогенов образуют кластеры.

При воздействии света электронная поляризуемость атома Se больше, чем у атома S, поскольку валентные электроны в более тяжелом атоме Se слабее связаны с ядром. Поэтому при частичной замене серы селеном растет электронная восприимчивость среды и увеличивается показатель преломления в области нормальной дисперсии стекла. В ХГС всегда имеются гомополярные связи, однако в стехиометрическом составе концентрация таких связей минимальна. При частичном замещении серы селеном образование пирамид смешанного типа сопровождается появлением связей Se–Se и S–S и нарушением слоистости структуры стекла, что, предположительно, также служит одним из факторов усиления нелинейного оптического отклика [14].

Отметим, что значения оптических параметров стекол обусловлены степенью связности узлов молекулярной сетки, а другие макроскопические характеристики – плотность, температура стеклования, коэффициент теплового расширения – обусловлены связностью структурных единиц [As(Ch)₃], причем зависимость этих параметров от концентрации Se в составах стекол As₄₀S_{60-x}Se_x является линейной. Зависимость оптической ширины запрещенной зоны E_g от концентрации Se также близка к линейной.

Согласно правилу Мосса [2], вдали от края полосы фундаментального поглощения показатель преломления в аморфных полупроводниках растет при уменьшении E_g . Соответственно увеличивается керровская постоянная n_2 . В отношении исследуемой системы ХГС такие особенности электронных и оптических свойств обусловлены ослаблением межатомных связей при частичной замене серы селеном и изменении соотношения энергий всех ковалентных связей: As–S, As–Se и S–Se.

Для изучения фотоиндуцированных процессов в некристаллических полупроводниках необходимо включить в рассмотрение экситонные энергетические зоны (области связанных состояний в запрещенной зоне), появление которых обусловлено отсутствием дальнего порядка в молекулярной сетке стекла. В ХГС связанные состояния соответствуют таким структурным особенностям, как гомополярные и оборванные связи, неподеленные пары р-электронов на внешней оболочке атомов халькогенов [1, 2]. Поскольку в этих стеклах велико электрон-фононное взаимодействие [18], такие связанные состояния можно отнести к самозахваченным экситонам. Вследствие наличия экситонных зон край полосы фундаментального поглощения ХГС имеет область экспоненциального спадания коэффициента поглощения α (область Урбаха), переходящую в область слабого поглощения ($\alpha < 1$ см⁻¹).

Слабая связность сетки стекла и неподеленные пары электронов, энергетические состояния которых находятся наверху валентной зоны, определяют специфику фотоиндуцированных процессов в ХГС, в частности эффект фотопотемнения [2], когда изменения в молекулярной сетке стекла приводят к уменьшению ширины запрещенной зоны и изменению показателя преломления в облученной области.

3. Метод и результаты измерений

Источником излучения при исследованиях нелинейного оптического отклика в составах ХГС служил титансапфировый лазер, генерирующий импульсы с полной длительностью на половине высоты $\tau = 50$ фс и пиковой длиной волны $\lambda_0 = 0.79$ мкм. Оптическая схема установки [10] представлена на рис.1.

Составы образцов стекол системы $As_{40}S_{60-x}Se_x$ подбирались таким образом, чтобы центральная частота v_0 импульса накачки приходилась на область слабого поглощения (x = 0, 15, 20, 30) или область Урбаха (x = 40, 45, 60). Соответствующие значения $R = hv_0/E_g$ приведены в табл.1. Образцы стекол в виде тонких дисков различной толщины (d = 0.5 - 1.2 мм) изготавливались по стандартной ме-

Рис.1. Оптическая схема установки для исследования нелинейного оптического отклика трехимпульсным интероферометрическим методом «накачка – зондирование».

Состав стекла	Плотность (г/см ³)	Показатель преломления n_0 ($\lambda_0 = 0.79$ мкм)	Температура стеклования T_{g} (°C)	Оптическая ширина запрещенной зоны Eg (3B)	$R = hv_0/E_{\rm g}$
As40S60	3.20	2.52	215	2.35	0.66
As40S45Se15	3.56	2.65	207	2.20	0.71
As40S30Se30	3.92	2.80	202	2.0	0.78
As40S15Se45	4.27	2.95	196	1.90	0.82
As40Se60	4.59	3.02	191	1.75	0.90

Табл.1. Основные характеристики стекол системы As₄₀S_{60-x}Se_x.

тодике плавления исходных веществ в ампуле из кварцевого стекла. Образцы были отполированы с обеих сторон до чистоты поверхности 0.25 мкм (детальное описание технологии изготовления образцов дано в [10, 22]).

Энергия импульса накачки в экспериментах варьировалась в пределах 0.2–12 мкДж. С целью исключения кумулятивного эффекта образец в ходе эксперимента перемещался так, чтобы в одну точку на поверхности образца попадал только один импульс накачки.

Численные значения сдвига фазы $\Delta \varphi$ и поглощательной способности пробного импульса записывались в виде матрицы во всем диапазоне временных задержек Δt пробного импульса относительно импульса накачки с заданным временным интервалом и в «точках» поперечного сечения пробного пучка, размеры которых (3.6 мкм) определяются размером пикселей в ССD-камере. Усредненные по сечению пучка значения сдвига фазы и поглощательной способности во всем диапазоне Δt записывались в отдельный файл.

В результате анализа нелинейного отклика в исследуемых образцах выявлено два разных типа временной динамики. В составах стекол с x = 0, 15, 20 точки пересечения кривых $\Delta \varphi(\Delta t)$ с осью абсцисс зависят от энергии импульса накачки. Такой тип динамики показан на рис.2,*a* для образца состава As₄₀S₆₀, у которого энергия *hv*₀ фотона накачки приходится на низкочастотный край области слабого поглощения (R = 0.66; табл.1), $\alpha_0 = 0.1$ см⁻¹. Для каждого из составов с x = 30, 40, 45 кривые $\Delta \varphi(\Delta t)$ пересекают ось абсцисс при одной и той же временной задержке независимо от энергии *E* импульса накачки, как показано на рис.2,*б* для образца состава As₄₀S₃₀Se₃₀. У этого образца энергия *hv*₀ приходится на область слабого поглощения рядом с низкочастотным краем области Урбаха (R = 0.78; табл.1), $\alpha_0 = 0.4$ см⁻¹.

Значения *E* на рис.2 соответствуют следующим пиковым интенсивностям I_0 импульса накачки на передней поверхности образца $As_{40}S_{60}$: 450 ГВт/см² (E = 4.1 мкДж), 1 ТВт/см² (E = 9.2 мкДж), а для образца $As_{40}Se_{30}S_{30}$ они таковы: 125 ГВт/см² (E = 1.7 мкДж), 190 ГВт/см² (E = 2.6 мкДж), 380 ГВт/см² (E = 5.1 мкДж). Интенсивность импульса накачки определялась по формуле $I_0 = E_{in}/(\tau S)$, где E_{in} – энергия импульса накачки с учетом френелевского отражения от поверхности образца, $S = \pi w^2$. Радиус пучка накачки *w* определялся по профилю сдвига фазы пробного пучка в поперечном сечении пучка накачки при малых значениях *E*.

Как видно из рис.2, характерный пик на кривых в области $\Delta t \approx 0$ появляется вследствие эффекта кросс-модуляции фазы пробного импульса при его перекрытии с импульсом накачки. Переход $\Delta \varphi(\Delta t)$ в область отрицательных значений указывает на рост плотности электронов в зоне проводимости. Далее $\Delta \varphi$ уменьшается по модулю до нуля вследствие рекомбинации носителей заряда. Вре-

менная задержка, при которой $\Delta \varphi = 0$, характеризует время Δt_0 перехода носителей заряда в связанные состояния в запрещенной зоне. Для состава $As_{40}S_{60}$ величина Δt_0 зависит от *E*. В работе [15] аналогичная динамика наблюдалась в кристаллическом образце NaCl и объяснялась тем, что сразу же после разделения зарядов происходил самозахват дырок. Свободные электроны могли некоторое время перемещаться в образце до образования связанного состояния с дыркой (самозахваченный экситон). Образование экситонов происходит быстрее с увеличением *E* изза большей плотности электронно-дырочных пар.

Для образцов $As_{40}Se_{30}S_{30}$, напротив, величина Δt_0 не зависит от *E*. Аналогичная временная динамика нелинейного отклика наблюдалась в [15] в кристаллическом кварце и объяснялась тем, что после фотовозбуждения происходит прямой переход носителей заряда в экситонные состояния.

Рис.2. Сдвиг фазы пробного импульса, усредненный по поперечному профилю пучка, в зависимости от временной задержки пробного импульса относительно импульса накачки для образцов $As_{40}S_{60}(a)$ и $As_{40}Se_{30}S_{30}(\delta)$ при различных энергиях импульса накачки *E* (точки – измеренные значения, сплошные кривые – результаты расчета).

Рис.3. Зависимость абсолютного значения сдвига фазы пробного импульса от пиковой интенсивности импульса накачки в минимуме зависимости $\Delta \varphi(\Delta t)$ (о) и в области $\Delta t > 100$ пс (Δ) для образцов As₄₀S₆₀ (a) и As₄₀S₃₀Se₃₀ (δ).

В настоящей работе результаты исследования кинетики носителей заряда, полученные в [15], были использованы для анализа фотоиндуцированных процессов в образцах ХГС. Характер процесса (однофотонный или многофотонный) можно оценить, построив зависимость сдвига фазы $\Delta \varphi_{\min}(I_0)$ в минимуме кривой $\Delta \varphi(\Delta t)$. Для обоих образцов эта зависимость (кружки на рис.3) хорошо аппроксимируется квадратичной функцией, что говорит о преимущественной роли двухфотонных процессов при фотовозбуждении носителей заряда. Изменение характера зависимости при больших I_0 соответствует функциональной зависимости интенсивности излучения при двухфотонном поглощении: $I(I_0) = I_0/(1 + I_0\beta_2 z)$.

Теперь рассмотрим зависимость сдвига фазы $\Delta \varphi_{c}$ от I_{0} в области больших задержек ($\Delta t > 100$ пс), когда величина $\Delta \varphi_c$ уже не зависит от Δt . Для образца As₄₀S₆₀ зависимость $\Delta \varphi_{\rm c}(I_0)$ при интенсивностях импульса накачки от 350 до 700 ГВт/см² также является квадратичной, а для образца As₄₀S₃₀Se₃₀ эта зависимость близка к линейной (треугольники на рис.3). Отметим, что при $I_0 < 300 \ \Gamma B T/cm^2$ в образце $As_{40}S_{60}$ не наблюдается перехода $\Delta \varphi$ в область положительных значений вплоть до $\Delta t \approx 1$ нс, что указывает либо на наличие порога по интенсивности для наблюдаемых фотоиндуцированных изменений, либо на очень медленный процесс таких изменений. Линейная зависимость $\Delta \varphi_{\rm c}(I_0)$ для образца As₄₀S₃₀Se₃₀ свидетельствует о том, что экситоны появляются в результате однофотонного процесса, поскольку двухфотонное поглощение может идти через энергетические уровни в запрещенной зоне, т.е. является двухступенчатым.

Анализ временных зависимостей поглощательной способности [17] указывает на остаточное поглощение в образце при больших временных задержках пробного импульса.

4. Компьютерное моделирование динамики нелинейного оптического отклика

Изменение усредненной по поперечному сечению пучка фазы φ_2 пробного импульса при его распространении в образце в направлении *z* определяется из уравнения

$$\frac{\partial \varphi_2(t,z)}{\partial z} = k_0 \Delta n(t,z), \tag{1}$$

где $k_0 = 2\pi/\lambda_0$. Для фотоиндуцированного изменения показателя преломления в [15] в приближении плоской волны получено выражение

$$\Delta n \approx p n_2 I_1 + \frac{e^2}{2n_0 \varepsilon_0} \left[-\frac{N_{\rm e} f_{\rm CB}}{m^* \omega^2} + \frac{N_{\rm te} f_{\rm tr}}{m(\omega_{\rm tr}^2 - \omega^2)} \right]. \tag{2}$$

Здесь коэффициент p = 1 или 2, если плоскости поляризации импульса накачки и пробного импульса соответственно ортогональны или параллельны; n_2 – керровская постоянная; I_1 – интенсивность импульса накачки; n_0 – показатель преломления материала; ε_0 – электрическая постоянная; e, m и m^* – заряд, масса электрона и эффективная масса электрона в зоне проводимости; $f_{\rm CB}$ и $f_{\rm tr}$ – силы осциллятора для переходов из валентной зоны соответственно в зону проводимости и в экситонную зону; ω – частота лазерного излучения; $\omega_{\rm tr}$ – частота экситонного перехода; $N_{\rm e}$ – плотность свободных электронов; $N_{\rm te}$ – плотность экситонов.

При выводе (2) в [15] предполагалось, что вкладом дырок в Δn можно пренебречь, а плотность возбужденных электронов мала по сравнению с плотностью электронов в валентной зоне. Первый член в правой части (2) соответствует эффекту кросс-модуляции фазы пробного импульса, два слагаемых в квадратных скобках описывают изменение показателя преломления, обусловленное разделением зарядов: первое, пропорциональное плотности электронов проводимости, всегда имеет отрицательный знак; второе, пропорциональное плотности экситонов, имеет положительный знак, если $\omega_{tr} > \omega$.

Уменьшение интенсивности пучка накачки в образце происходит в основном за счет одно- и двухфотонного поглощения в стекле, а также вследствие джоулевых потерь при поглощении энергии излучения свободными электронами:

$$\frac{\partial I_1(t,z)}{\partial z} = -[\alpha_1 + \beta_2 I_1(t,z) + \gamma_e n_e(t,z)]I_1(t,z), \tag{3}$$

где α_1 и β_2 – коэффициенты одно- и двухфотонного поглощения; $\gamma_e = \omega^2 \tau_{col} m^* / \{2cm[1 + (\omega \tau_{col})^2]\}; \tau_{col}$ – время между столкновениями электронов; $n_e(t,z) = N_e(t,z)/N_{cr}; N_{cr} = \omega^2 \varepsilon_0 m^* / e^2$ – критическая плотность свободных электронов.

Огибающая импульса накачки в численной модели аппроксимировалась гауссовой функцией. Дисперсионное уширение импульса оценивалось приближенно [10].

Для удобства сравнения рассчитанных и измеренных (при p = 1) зависимостей выражение (2) было записано в следующем виде:

$$\Delta n(t,z) = n_2 I_1(t,z) + \frac{-n_{\rm e}(t,z) f_{\rm CB} + n_{\rm te}(t,z) F}{2n_0},\tag{4}$$

где

$$F = \frac{f_{\rm tr}}{(m/m^*)(\omega_{\rm tr}^2/\omega^2 - 1)};$$
(5)

 $n_{\rm e}$ и $n_{\rm te}$ – плотности свободных электронов и экситонов, нормированные на $N_{\rm cr}$.

Предположим, что в стекле $As_{40}S_{60}$ в кинетике носителей заряда участвуют те же процессы, что и в образце NaCl [15], а именно: после разделения зарядов вследствие двухфотонного поглощения происходит самозахват дырок с последующим захватом дырками электронов и формированием самозахваченных экситонов. Соответствующая система кинетических уравнений имеет следующий вид:

$$\frac{\partial n_{\rm h}(t,z)}{\partial t} = \sigma_2 I_1^2(t,z) - \frac{n_{\rm h}(t,z)}{\tau_{\rm h}},$$

$$\frac{\partial n_{\rm th}(t,z)}{\partial t} = \frac{n_{\rm h}(t,z)}{\tau_{\rm h}},$$

$$\frac{\partial n_{\rm e}(t,z)}{\partial t} = \sigma_2 I_1^2(t,z) - \sigma_{\rm cr} n_{\rm e}(t,z) [n_{\rm th}(t,z) - n_{\rm te}(t,z)],$$

$$\frac{\partial n_{\rm te}(t,z)}{\partial t} = \sigma_{\rm cr} n_{\rm e}(t,z) [n_{\rm th}(t,z) - n_{\rm te}(t,z)],$$
(6)

где $n_{\rm h}$ и $n_{\rm th}$ – плотности свободных и захваченных дырок, нормированные на $N_{\rm cr}$; $\tau_{\rm h}$ – время самозахвата дырок; $\sigma_2 = \beta_2/(2hvN_{\rm cr})$; $\sigma_{\rm cr} = \sigma_{\rm cap}vN_{\rm cr}$; $\sigma_{\rm cap}$ – сечение захвата дырками электронов проводимости; v – средняя скорость электронов проводимости.

Система уравнений (3), (6) решалась численно с начальными условиями $n_{\rm h} = n_{\rm th} = n_{\rm e} = n_{\rm te} = 0$. Нелинейные коэффициенты n_2 и β_2 были получены в [10]. Значения $\tau_{\rm h}$, $\sigma_{\rm cap}$ и *F* подбирались в процессе анализа результатов численного решения и сравнения сдвига фазы, полученного из (1) с подстановкой (4), с кривыми на рис.2,*a*. Поскольку величина m^* для As₄₀S₆₀ известна [23], а частота $\omega_{\rm tr}$ незначительно отличается от частоты $2\pi E_g/h$, по значению *F* можно определить $f_{\rm tr}$. Значения параметров, при которых расчетные кривые на рис.2,*a* показывают хорошее согласие с результатами измерений для Δt в диапазоне 0–4 пс, приведены ниже.

Керровская постоянная n_2 (см ² /Вт) 0.8 × 10 ⁻¹⁴
Коэффициент двухфотонного
поглощения β ₂ (см/Вт)
Коэффициент однофотонного
поглощения α_0 (см ⁻¹) 0.1
Время самозахвата <i>т</i> _h (фс)
Эффективная масса электрона
в зоне проводимости <i>m</i> [*]
Сила осциллятора для перехода
в зону проводимости f_{CB}
Сила осциллятора для перехода
в экситонную зону $f_{ m tr}$
Частота перехода в экситонную
зону $\omega_{\rm tr}$ (рад/с)З × 10 ¹⁵

Поскольку для данного стекла величина *v* неизвестна, в расчетах задавался параметр $\sigma_{cap}v$. Оказалось, что полученное значение $\sigma_{cap}v$ зависит от n_e (т. е. от энергии *E*): $\sigma_{cap}v = 2.2 \times 10^{-6} \text{ см}^3 \cdot \text{c}^{-1}$ (E = 4.1 мкДж) и $5.8 \times 10^{-6} \text{ см}^3 \cdot \text{c}^{-1}$ (E = 9.2 мкДж).

Отметим, что энергия излучения передается образцу преимущественно через двухфотонное поглощение. Так, при E = 9.2 мкДж параметр $\beta_2 I_0 \approx 2000$ см⁻¹, а при E = 4.1 мкДж $\beta_2 I_0 \approx 900$ см⁻¹. В результате быстрого уменьшения интенсивности при распространении импульса в образце изменение фазы пробного пучка в условиях мягкой фокусировки пучка накачки происходит на передней поверхности образца в приповерхностном слое толщиной в несколько десятков микрометров. Поскольку максимальное значение n_e для E = 9.2 мкДж не превышает $0.1N_{\rm cr}$ ($N_{\rm cr} = 9 \times 10^{20}$ см⁻¹), вклад джоулевых потерь при такой энергии приводит к небольшому (порядка 1% - 2%) изменению сдвига фазы в минимуме зависимости $\Delta \varphi(\Delta t)$. Разрушение поверхности образца наблюдалось при $E \approx 16$ мкДж ($I_0 \approx 1.6$ TBT/см²).

Поскольку характер динамики нелинейного отклика в стекле $As_{40}S_{30}Se_{30}$ такой же, как и в образце кварца в [15], запишем систему кинетических уравнений как

$$\frac{\partial n_{\rm e}(t,z)}{\partial t} = \sigma_2 I_1^2(t,z) + \sigma_{\rm b} n_{\rm te}(t,z) I_1(t,z) - \frac{n_{\rm e}(t,z)}{\tau_{\rm e}},$$

$$\frac{\partial n_{\rm te}(t,z)}{\partial t} = \sigma_1 I_1(t,z) - \sigma_{\rm b} n_{\rm te}(t,z) I_1(t,z) + \frac{n_{\rm e}(t,z)}{\tau_{\rm e}}.$$
(7)

Здесь $\sigma_1 = \alpha_0 / (hv N_{cr}); \sigma_b = \sigma_{ex} / (hv)$, где σ_{ex} – сечение однофотонного поглощения самозахваченного экситона; $\tau_{\rm e}$ – время перехода электронов проводимости в экситонные состояния. В этом стекле, в отличие от стекла $As_{40}S_{60}$, процесс фотовозбуждения может идти через уровни экситонной зоны посредством двухступенчатых переходов при нелинейном поглощении. В модели (7) учтены и одноквантовые переходы в экситонную зону, а также переходы из экситонной зоны в зону проводимости. Однако вклад этих эффектов невелик, и энергия излучения передается образцу преимущественно через двухфотонное (двухступенчатое) поглощение. Так, при Е = 5.1 мкДж параметр $\beta_2 I_0 \approx 1000 \text{ см}^{-1}$, при $E = 2.6 \text{ мкДж } \beta_2 I_0 \approx 500 \text{ см}^{-1}$, а при E = 1.7 мкДж $\beta_2 I_0 \approx 300$ см⁻¹ (n_2 и β_2 были получены в [10]). Максимальная величина n_e для E = 5.1 мкДж не превышает 0.06N_{сг}, поэтому влияние джоулевых потерь незначительно. Разрушение поверхности образца наблюдалось при $E \approx 10$ мкДж ($I_0 \approx 720 \ \Gamma BT/cm^2$).

Ниже приведены значения параметров для стекла $As_{40}S_{30}Se_{30}$, при которых расчетные кривые на рис.2, *б* показывают хорошее согласие с результатами измерений ($\Delta t = 0-4$ пс).

Керровская постоянная n_2 (см ² /Вт) 0.4 × 10 ⁻¹⁴
Коэффициент двухфотонного (двух-
ступенчатого) поглощения β_2 (см/Вт)
Коэффициент линейного
поглощения α_0 (см ⁻¹)
Сечение линейного поглощения
экситона $\sigma_{\rm ex}$ (см ²)
Время захвата электронов τ_e (фс)
Эффективная масса электрона
в зоне проводимости <i>m</i> [*]

Сила осциллятора для перехода
в зону проводимости <i>f</i> _{CB}
Сила осциллятора для перехода
в экситонную зону <i>f</i> _{tr}
Частота перехода в экситонную
зону $\omega_{\rm tr}$ (рад/с)

5. Обсуждение результатов

Выявлены два типа динамики нелинейного отклика в стеклах системы $As_{40}S_{60-x}Se_x$ после облучения лазерным импульсом длительностью 50 фс на длине волны 0.79 мкм. При частичной замене серы селеном величина *R* варьировалась от 0.66 (*x* = 0) до 0.82 (*x* = 45).

В образце $As_{40}S_{60}$ (R = 0.66) разделение носителей заряда происходит в результате двухквантовых переходов из валентной зоны в зону проводимости, а релаксационный процесс идет через последовательный захват носителей заряда с образованием самозахваченных экситонов, причем время образования экситонов зависит от начальной плотности фотоиндуцированных электронно-дырочных пар, т.е. от энергии накачки. До перехода в связанное состояние электроны проводимости могут перемещаться по молекулярной сетке. Такой же тип динамики наблюдался в образцах составов с x = 15, 20, причем при одной и той же энергии импульса накачки образование экситонов происходило быстрее, чем в образце $As_{40}S_{60}$, а задержка Δt_0 была меньше при большем x. Так, при E =6 мкДж в образце As₄₀S₆₀ время перехода электронов проводимости в экситонное состояние составило 2.3 пс, а в образце $As_{40}S_{45}Se_{15} - 0.5$ пс. Если при E = 3 мкДж в образце $As_{40}S_{60}$ такой переход не наблюдался вплоть до 100 пс, то в образце $As_{40}S_{45}Se_{15}$ переход электронов в экситонное состояние происходил за 1.3 пс, а в образце $As_{40}Se_{20}$ – за 0.5 пс.

В образце $As_{40}S_{30}Se_{30}$ (R = 0.78) становятся возможными одноквантовые переходы в экситонную зону под дном зоны проводимости, и, соответственно, двухфотонное поглощение может быть двухступенчатым. Поскольку верх валентной зоны заполнен энергетическими уровнями неподеленных пар электронов, при поглощении излучения в области Урбаха (или вблизи низкочастотного края этой области) электрон неподеленной пары вместе с дыркой может перейти в связанное состояние в экситонной зоне. Время образования экситонов не зависит от Е. Электрон может поглотить еще один фотон и на некоторое время перейти в зону проводимости, после чего вернуться в связанное состояние в тот же узел молекулярной сетки. Такой же тип динамики наблюдался в образцах составов с x = 40, 45. В образце с x = 40 переход электронов в связанное состояние происходил за 0.5 пс независимо от Е. В образце с x = 45 переход кривых $\Delta \varphi(\Delta t)$ в область отрицательных значений не наблюдался [17]. При всех значениях Е в диапазоне 0.4–6.1 мкДж в работе с этим образцом при различных Δt были получены только положительные значения $\Delta \varphi$, что указывает на возможное отсутствие электронов проводимости. Вместе с тем, керровский пик в зависимости $\Delta \varphi(\Delta t)$ не является симметричным, причем эта асимметрия растет с увеличением Е, что может быть связано с вкладом электронов проводимости и сверхбыстрым процессом их рекомбинации. При еще большем содержании Se в составе стекла (x = 60) растет вероятность одноквантовых переходов из валентной зоны в зону проводимости, и нелинейный отклик имеет более сложный характер. Так, для состава $As_{40}Se_{60}$ вместо керровского пика в зависимости $\Delta \varphi(\Delta t)$ в области $\Delta t \approx 0$ наблюдаются осцилляции, причем $\Delta \varphi$ принимает как положительные, так и отрицательные значения [16].

На основании известных представлений о фотоиндуцированных химических и структурных изменениях в ХГС [1,2,24-28] можно заключить, что двухфотонное поглощение в образце As₄₀Se₆₀ приводит к разрыву ковалентных связей между атомами, а вблизи оборванных связей образуются области положительного и отрицательного заряда (так называемые заряженные дефекты) [25-27]. В результате происходит изменение пространственной ориентации ковалентных связей и перемещение заряженных дефектов, что меняет топологию всей молекулярной сетки. При большой плотности фотоиндуцированных электронов проводимости эти изменения происходят быстрее, что может быть связано и с большим нагревом стекла. В процессе перегруппирования связей образуются экситоны. Поскольку при частичной замене серы селеном связанность узлов сетки уменьшается, такие фотоиндуцированные процессы протекают быстрее в образцах составов $As_{40}S_{60-x}Se_x$ с бо́льшим *x* (для *x* < 30).

При облучении образцов с x = 30, 40, 45 самозахват носителей заряда происходит уже при поглощении одного фотона, а второй фотон поглощается самозахваченным экситоном. Процесс образования экситонов не имеет порога по энергии импульса накачки, в отличие от образцов с x = 0, 15, 20. При возбуждении электрона неподеленной пары происходит изменение междуатомных потенциалов, что приводит к повороту атома халькогена и закручиванию связанных структурных единиц (пирамид [As(Ch)₃]) [26]. Согласно модели пар с чередующейся валентностью, образование самозахваченного экситона сопровождается появлением соседней неподеленной пары электронов [27, 28]. Эти структурные изменения в узле молекулярной сетки имеют место в ограниченной области с размерами порядка междуатомных расстояний. Поскольку плотность связанных состояний в запрещенной зоне зависит от степени чистоты стекла и условий его получения, в эксперименте не наблюдалось заметной корреляции между составом стекла с x = 30, 40, 45 и временем формирования экситонов.

6. Заключение

В стеклах системы $As_{40}S_{60-x}Se_x$ при облучении фемтосекундными лазерными импульсами могут наблюдаться два разных типа динамики нелинейного отклика в связи с тем, что фотовозбуждение носителей заряда может идти через связанные состояния в запрещенной зоне или без их участия. Если частота лазерного импульса находится далеко от области Урбаха (отношение энергии фотона накачки к ширине запрещенной зоны R < 0.78), фотовозбуждение носителей заряда происходит в результате двухфотонного поглошения, а самозахваченные экситоны формируются электронами проводимости и самозахваченными дырками. В этом случае структурные изменения, имеющие порог по энергии лазерного импульса, можно описать в рамках модели перемещения заряженных дефектов внутри молекулярной сетки стекла. Если частота лазерного импульса находится вблизи низкочастотного края области Урбаха ($0.78 < R \le 0.9$), самозахваченные экситоны образуются в результате прямых одноквантовых переходов носителей заряда в связанные состояния. Структурные изменения, не имеющие в этом случае порога по энергии лазерного импульса, происходят по типу пар с чередующейся валентностью и имеют локализованный характер.

Эти выводы основаны на хорошем согласии данных эксперимента и компьютерных моделей кинетики носителей заряда, а также на анализе известных представлений о фотоиндуцированных эффектах в ХГС. Для дальнейшего уточнения теоретической модели необходимо учесть нелинейные эффекты, приводящие к возможному преобразованию частоты лазерного излучения (в частности, комбинационное рассеяние).

Полученные результаты могут быть непосредственно использованы для оптимизации технологии изготовления волноводных структур в объеме и на поверхности стекла методом лазерных модификаций.

Авторы благодарны Н.М.Битюрину и А.В.Афанасьеву, принявшим участие в обсуждении данной статьи.

Работа выполнена при частичной поддержке РФФИ (грант № 17-03-00655 А).

- Popescu M.A. Non-Crystalline Chalcogenides (New York-Boston-Dordrecht-London-Moscow: Kluwer Acad. Publ., 2002).
- Zakery A., Elliot S.R. Optical Nonlinearities in Chalcogenide Glasses and their Applications (Berlin, Heidelberg, New York: Springer-Verlag, 2007).
- Musgraves J.D., Danto S., Richardson K., Hu J., in *Amorphous Chalcogenides, Advances and Applications*. Ed. by R.Wang (Singapore: Pan Stanford Publ., 2014, pp 203–250).
- Misawa H., Juodkazis S. *3D Laser Microfabrication. Principles and Applications* (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006).
- Efimov O.M., Glebov L.B., Richardson K.A., Van Stryland E., Cardinal T., Park S.H., Couzi M., Bruneel J.L. *Opt. Mater.*, 17, 379 (2001).
- Hughes M., Yang W., Hewak D. Appl. Phys. Lett., 90, 131113 (2007).
- Romanova E.A., Konyukhov A.I., Furniss D., Seddon A.B., Benson T.M. J. Lightwave Technol., 27, 3275 (2009).
- Todorov R., Tasseva J., Bavera T., in *Photonic Crystals-Innovative* Systems, Lasers and Waveguides. Ed. by A.Massaro (InTech, 2012, pp 143–168).

- Blonskyi I., Kadan V., Shpotyuk O., Iovu M., Pavlov I. *Opt. Mater.*, 32, 1553 (2010).
- Romanova E., Kuzyutkina Y., Shiryaev V., Abdel-Moneim N., Furniss D., Benson T., Seddon A., Guizard S. J. Non-Cryst. Solids, 480, 13 (2018).
- Barney E.R., Abdel-Moneim N.S., Towey J.J., Titman J., McCarthy J.E., Bookey H.T., Kar A., Furniss D., Seddon A.B. *Phys. Chem. Chem. Phys.*, 17, 6314 (2015).
- 12. Harbold J.M., Ilday F.O., Wise F.W. Opt. Lett., 27, 119 (2002).
- 13. Wang T., Gai X., Wei W., Wang R., Yang Z., Shen X., Madden S., Luther-Davies B. *Opt. Mater. Express*, **4**, 1011 (2014).
- Cardinal T., Richardson K.A., Shim H., Schulte A., Beatty R., Le Foulgoc K., Meneghini C., Viens J.F., Villeneuve A. J. Non-Cryst. Solids, 256&257, 353 (1999).
- Martin P., Guizard S., Daguzan Ph., Petite G., D'Oliveira P., Meynadier P., Perdrix M. *Phys. Rev. B*, 55, 5799 (1997).
- Romanova E., Chumakov K., Mouskeftaras A., Guizard S., Abdel-Moneim N., Furniss D., Seddon A.B., Benson T.M. Proc. 15th Int. Conf. on Transparent Optical Networks (ICTON) (Spain, Cartagena, 2013, pp 1–4).
- Romanova E.A., Kuzyutkina Yu.S., Konyukhov A.I., Abdel-Moneim N., Seddon A.B., Benson T.M., Guizard S., Mouskeftas A. *Opt. Eng.*, 53, 071812 (2014).
- Xuecai Han, Haizheng Tao, Ruikun Pan, Yudong Lan, Chunli Shang, Xiaoming Xing, Qianyue Tu, Xiujian Zhao. *Phys. Procedia*, 48, 59 (2013).
- Alekberova R.I., Mekhtiyevaa S.I., Isayeva A.I., Fábiánb M. J. Non-Cryst. Solids, 470, 152 (2017).
- Поп М.М., Шпак И.И., Козак М.И., Семак Д.Г. Физика и химия стекла, 35, 202 (2009).
- Felty E.F., Lucovsky G., Myers M.B. Solid State Commun, 5, 555 (1967).
- 22. Abdel-Moneim N. PhD Thesis (University of Nottingham, 2013).
- 23. Singh J. J. Non-Cryst. Solids, 299-302, 444 (2002).
- Musgraves J.D., Richardson K., Jain H. Opt. Mater. Express, 1, 921 (2011).
- Kolobov A.V., Tanaka K., in *Handbook of Advanced Electronic and Photonic Materials and Devices*. Ed. by H.S.Nalwa (San Diego: Acad. Press, 2001, pp 47–90).
- Anheier N.C., Jr, Johnson B.R., Sundaram S.K., in *Non-Crystalline Materials for Optoelectronics, Optoelectronic Materials and Devices* (Bucharest: INOE Publ. House, 2004, vol. 1, pp 259–297).
- Kolobov A.V., Lyubin V.M., Yasuda T., Tanaka K. *Phys. Rev. B*, 55, 23 (1997).
- Kolobov A., Oyanagi H., Roy A., Tanaka K. J. Non-Cryst. Solids, 227–230, 710 (1998).