ВОЛОКОННО-ОПТИЧЕСКИЕ ДАТЧИКИ

Температурная эволюция видности интерферометра датчика тока с волоконным контуром малого радиуса

С.К.Моршнев, В.П.Губин, Н.И.Старостин, Я.В.Пржиялковский, А.И.Сазонов

Экспериментально обнаружены периодические осцилляции видности интерферометра датчика тока при изменении температуры чувствительного контура малого радиуса из spun-волокна. Установлено, что наблюдаемый эффект зависит от величины изгибного линейного двулучепреломления, индуцированного в spun-волокне при укладке волокна в магниточувствительный контур, и температурных свойств встроенного в волокно линейного двулучепреломления. С использованием модели spun-волокна на основе спиральной структуры осей встроенного линейного двулучепреломления показано, что действие указанных выше факторов приводит к периодическому изменению эллиптичности поляризованного излучения на концах чувствительного контура, что и является причиной температурных осцилляций видности интерферометра датчика тока. Обнаруженный эффект может быть причиной погрешности волоконно-оптического датчика тока с малогабаритным чувствительным контуром.

Ключевые слова: волоконно-оптический датчик тока, spun-волокно, видность интерференционной картины, угол эллиптичности поляризационных состояний, радиус изгиба волокна в магниточувствительном контуре.

1. Введение

Волоконно-оптический метод измерения тока с помощью эффекта Фарадея [1-4] требует использования чувствительной интерферометрической схемы с равными оптическими путями для интерферирующих волн [5]. Чаще всего используется схема линейного отражательного интерферометра [6] (например, интерферометра Рэлея), где указанные волны при обратном прохождении меняются оптическими путями, что позволяет скомпенсировать значительные фазовые набеги между ними, полученные при прямом прохождении, и обеспечить их интерференцию с нулевой разностью хода в широком диапазоне длин волн. Разность фаз, возникающая из-за эффекта Фарадея, при этом не компенсируется, а удваивается [1,4,6] вследствие векторного характера магнитного поля. В качестве чувствительного контура, намотанного вокруг проводника с измеряемым током, используют контур из spun-волокна [2,4]. Как известно [7-9], spun-волокно не сохраняет состояние циркулярной поляризации распространяющихся волн, но может сохранить направление вращения вектора электрического поля этих эллиптически поляризованных волн, обеспечивая тем самым накопление фазового сдвига из-за эффекта Фарадея по длине spun-волокна [4].

В ряде применений необходимо использовать чувствительные контуры малого радиуса, в частности при ограниченном пространстве для размещения чувствительного элемента. При малом радиусе изгиба волокна *R* в нем появляется наведенное линейное двулучепреломление (ДЛП) с длиной биений L_{ind} , пропорциональной R^2 . Это приводит к снижению магнитооптической чувствительности волоконного контура [2, 4, 8, 9], которое, вообще говоря, можно скомпенсировать увеличением числа витков волокна, и к уменьшению видности интерферометра [10, 11], что обуславливает ухудшение пороговой чувствительности датчика тока и, соответственно, уменьшение динамического диапазона измеряемых токов. Причиной этих изменений является уменьшение эллиптичности излучения в spun-волокне [10,11]. Влияние параметров spun-волокна и радиуса изгиба волокна на видность интерферометра изучалось в ряде работ [10, 11], в которых были предложены способы улучшения видности при малой эллиптичности излучения в волокне. В [4,12] были обнаружены пространственные вариации магнитооптической чувствительности по длине волокна в контуре малого радиуса. В настоящей работе сообщается о наблюдении вариаций видности отражательного интерферометра датчика тока при изменении температуры чувствительного контура малого радиуса. Исследование физических причин этих вариаций является целью нашей работы.

2. Эксперимент

Схема экспериментальной установки, представляющей собой взаимный отражательный интерферометр, приведена на рис.1. Излучение волоконно-оптического суперлюминесцентного источника *l* с неоднородной шириной спектра ~20 нм, пройдя через ответвитель *2* и линейный поляризатор *3*, возбуждает в HiBi-волокне для каждой спектральной компоненты две ортогональные линейно поляризованные волны одинаковой интенсивности, что достигается сваркой *6* при ориентации осей поляризатора под углом 45° к осям ДЛП HiBi-волокна на входе пьезокерамического волоконного модулятора *4*, который вводит разность фаз $\Phi = \Phi_0 \cos \omega t$ между этими волнами. Далее волны распространяются по линии фазовой

С.К.Моршнев, В.П.Губин, Н.И.Старостин, Я.В.Пржиялковский, А.И.Сазонов. Фрязинский филиал Института радиотехники и электроники им. В.А.Котельникова РАН, Россия, Московская обл., 141190 Фрязино, пл. Акад. Введенского, 1; e-mail: nis229@ire216.msk.su

Поступила в редакцию 20 ноября 2017 г., после доработки – 19 января 2018 г.

Рис.1. Схема оптической части экспериментальной установки: *I* – эрбиевый волоконный суперлюминесцентный источник; *2* – волоконный ответвитель; *3* – волоконный поляризатор; *4* – пьезокерамический фазовый модулятор; *5* – линия задержки из HiBiволокна; *6* – сварка под углом 45°; *7* – волоконная четвертьволновая пластинка; *8* – контур, намотанный spun-волокном; *9* – проводник с измеряемым током; *10* – зеркало; *11* – термокамера; *12* – фотоприемник.

задержки 5 длиной ~1200 м, изготовленной также из НіВі-волокна. Волна, поляризованная вдоль медленной оси X (Х-волна), получает при распространении по одному и тому же отрезку НіВі-волокна больший набег фазы, чем волна, поляризованная вдоль медленной оси Y (Y-волна). В результате на выходе длинной линии задержки 5 волны становятся некогерентными.

Пройдя через сварку 6 и четвертьволновую пластинку 7, волны преобразуются в циркулярные, например X-волна становится правополяризованной R-волной, а Y-волна – левополяризованной L-волной. Затем они распространяются в виде эллиптических волн \mathcal{E}_{XR} и \mathcal{E}_{YL} в spun-волокне, намотанном в контур 8, сохраняя исходные направления вращения. В случае контура большого радиуса эти волны близки к циркулярным: \mathcal{E}_{XR} к C_{XR} и *E*_{YL} к C_{YL}. Между волнами продолжает накапливаться разность фаз. Фаза C_{XR} -волны достигает величины φ_1 , а фаза C
уL-волны – величины φ_2 к тому моменту, когда они подходят к зеркалу 10, причем $\varphi_1 \gg \varphi_2$. Эти волны попрежнему некогерентны. К указанным разностям фаз добавится разность фаз, возникающая из-за эффекта Фарадея, который обусловлен магнитным полем, создаваемым измеряемым током в медном проводнике (соленоиде) 9. Зеркало 10 преобразует циркулярно поляризованные волны: волна с левым вращением становится правополяризованной (C_{YL} → C_{YLR}), а волна с правым вращением – левополяризованной (C_{XR} → C_{XRL}). Выбранные нами индексы напоминают об исходной волне.

Поскольку направление вращения спиральной структуры spun-волокна не зависит от направления распространения света, то разность фаз волн с ортогональными поляризациями, обусловленная взаимными эффектами, при обратном распространении волн по spun-волокну будет теперь уменьшаться, а разность фаз, вызванная эффектом Фарадея, - увеличиваться из-за векторного характера магнитного поля (разность фаз указанных волн, возникающая из-за эффекта Фарадея, меняет знак в зависимости от направления распространения волн - вдоль поля или в противоположном направлении). Проходя через четвертьволновую пластинку 7 при обратном распространении, правополяризованная волна превращается в X-волну (C_{YLR} → X_{YLR}), а левополяризованная – в Y-волну ($C_{XRL} \rightarrow Y_{XRL}$). Индексы показывают, что исходная Ү-волна превратилась в Х-волну, а Х-волна – в Ү-волну. Таким образом, после обратного распространения обе волны будут иметь одинаковые набеги фаз (φ_1 + φ_2), станут когерентными и, пройдя через поляризатор 3 и ответвитель 2, смогут интерферировать между собой на фотодетекторе 12.

В экспериментах для изготовления магниточувствительных контуров использовался один и тот же отрезок spun-волокна длиной $L_f = 4.83$ м. Исследовались два магниточувствительных контура. Контур А содержал 8 витков волокна радиусом 95 мм в виде свободной бухты внутри кварцевой трубки, расположенной в соленоиде с 1100 витками медного провода диаметром 1 мм, по которому пропускался ток в 2 А. Контур В содержал 56 витков spun-волокна радиусом 14 мм, намотанного на картонную трубку. Контур охватывали 66 витков медного провода диаметром 1 мм, по которому пропускался ток в 2 А.

Мощность, выделяемая в обмотках из медного провода, была незначительной и составляла 1.28 и 0.06 Вт для контуров А и В соответственно. Френелевским зеркалом 10 служил скол spun-волокна. Четвертьволновая пластинка длиной 1.7 мм была изготовлена из HiBi-волокна с пониженным температурным коэффициентом ДЛП (~10⁻⁵ 1/°C). Магниточувствительный контур 8 с медным соленоидом 9, зеркало 10 и четвертьволновая пластинка 7 помещались в термокамеру, температура в которой стабилизировалась на уровне $\pm 0.1^{\circ}$ C. Скорость изменения температуры камеры была установлена равной 30 °C/ч. При данной скорости теплоемкость контура (вместе с медным соленоидом) не вызывала задержки реакции контура на изменение температуры камеры.

Видность интерференционной картины вычислялась в реальном времени по двум компонентам модуляционного сигнала: постоянной составляющей и второй гармонике частоты модуляции. Результаты измерения зависимости функции видности (контраста) от температуры приведены на рис.2,*a* для контура A и на рис.2,*б* для контура B. Видны существенные различия в эволюции видности для этих контуров. Видность для контура A почти не меняется с температурой, тогда как для контура B ее зависимость от температуры имеет вид гармонических колебаний с периодом $\Delta T \approx 34$ °C и амплитудой ~8% от максимального значения видности. Для объяснения этих

Рис.2. Экспериментальные зависимости функции видности V интерференционной картины от температуры T при большом (R = 95 мм) (a) и малом (R = 14 мм) (δ) радиусах намотки.

зависимостей мы привлекаем модель, описанную в следующем разделе.

3. Теория

3.1. Интерференция световых волн в отражательном интерферометре с магниточувствительным контуром из spun-волокна

Излучение, распространяющееся по spun-волокну, в общем случае является эллиптически поляризованным [4,9,10]. Рассмотрим, как влияет эллиптичность, приобретаемая волной в магниточувствительном контуре 8 из spun-волокна, на видность интерференционной картины. В базисе линейных поляризаций запишем в самом общем виде выражение для вектора Джонса эллиптически поляризованной волны [13]:

$$\begin{vmatrix} E_{\rm X} \\ E_{\rm Y} \end{vmatrix} = \begin{vmatrix} \cos\theta\cos\varepsilon - i\sin\theta\sin\varepsilon \\ \sin\theta\cos\varepsilon + i\cos\theta\sin\varepsilon \end{vmatrix} \sqrt{\frac{T}{2}},\tag{1}$$

где θ – азимутальный угол эллипса поляризации; ε = arctan (b/a) – угол эллиптичности; b и a – малая и большая оси эллипса поляризации; I – интенсивность волны. В двух точках оптического пути, рассмотренного выше (при отражении от зеркала I0 и при обратном проходе через четвертьволновую пластинку 7), существенным является исходное состояние поляризации волны – циркулярная она или эллиптическая. В первой точке циркулярная волна при прямом распространении по контуру не меняет направления своего вращения и, отразившись от зеркала, преобразуется в волну с циркулярной поляризацией, ортогональной исходной. Во второй точке циркулярная волна преобразуется в линейно поляризованную.

Для исходного эллиптического состояния поляризации все не так просто. Запишем вектор Джонса (1) в базисе циркулярных поляризаций, что для эллиптически поляризованной волны означает разложение на две ортогональные циркулярные волны – правую и левую [13]:

$$\begin{vmatrix} E_{\rm R} \\ E_{\rm L} \end{vmatrix} = \begin{vmatrix} E_{\rm X} \\ E_{\rm Y} \end{vmatrix} \begin{vmatrix} 1 & -i \\ 1 & i \end{vmatrix}.$$
 (2)

Подставив (1) в (2), получим

$$\begin{vmatrix} E_{\rm R} \\ E_{\rm L} \end{vmatrix} = \begin{vmatrix} (\cos\varepsilon + \sin\varepsilon)\exp(-i\theta) \\ (\cos\varepsilon - \sin\varepsilon)\exp(i\theta) \end{vmatrix} \sqrt{\frac{1}{2}}.$$
 (3)

Видно, что любое состояние эллиптической поляризации ($|\varepsilon| < 45^{\circ}$) порождает по две ортогональные циркулярно поляризованные волны C_J^R и C_J^L , где J – индекс исходной эллиптически поляризованной волны \mathcal{E}_J с правым (J = R) или левым (J = L) направлением вращения. В процессе распространения по spun-волокну исходные ортогональные циркулярно поляризованные волны превращаются в эллиптически поляризованные с одинаковыми углами эллиптичности $|\varepsilon|$, различающимися только знаками [4,7–9].

Циркулярно поляризованная волна формируется четвертьволновой пластинкой 7 из линейно поляризованной волны с электрическим вектором, параллельным быстрой или медленной оси HiBi-волокна линии задержки 5 (рис.1). В результате при подходе к зеркалу правая эллиптическая волна имеет полную (от поляризатора до зеркала) фазовую задержку φ_1 , а левая – φ_2 . Как было отмечено в разд.2, $\varphi_1 \gg \varphi_2$, при этом волны некогерентны. После отражения от зеркала происходит их поляризационная конверсия: правополяризованные волны превращаются в левополяризованные, а левополяризованные - в правополяризованные. Пусть Г_R – амплитуда эллиптически поляризованной волны \mathcal{E}_{R} с правым вращением, \mathcal{E}_{R}^{R} и \mathcal{E}_{R}^{L} – амплитуды волн C_R^R и C_R^L с правой и левой циркулярными поляризациями, на которые можно разложить волну \mathcal{E}_{R} . После отражения от зеркала волна С $_{R}^{K}$ становится левополяризованной волной C_{RL} с амплитудой E_{RL} , а волна С_R^L – правополяризованной волной С_{RR} с амплитудой $E_{\rm RR}$. Аналогично, пусть $\Gamma_{\rm L}$ – амплитуда эллиптически поляризованной волны \mathcal{E}_{L} с левым вращением, E_{L}^{R} и E_{L}^{L} – амплитуды волн C^R_L и C^L_L с правой и левой циркулярными поляризациями, на которые можно разложить волну \mathcal{E}_{L} . После отражения от зеркала правополяризованная волна С^R_L становится левополяризованной волной С_{LL} с амплитудой E_{LL} , а левополяризованная волна C_{L}^{L} – правополяризованной циркулярной волной C_{LR} с амплитудой E_{LR} .

После обратного прохождения через четвертьволновую пластинку волны C_{RR} , C_{LR} становятся линейно поляризованными вдоль оси X, а волны C_{RL} , C_{LL} – поляризованными вдоль оси Y НіВі-волокна линии задержки, т. е. на обратном пути (через spun-волокно и линию задержки) волны C_{RR} , C_{LR} приобретут, как и ранее правополяризованная компонента, фазовый набег φ_1 , а волны C_{RL} , C_{LL} – набег φ_2 . Суммарные фазовые набеги $\Delta \varphi$ будут следующими: $2\varphi_1$ для волны C_{RR} ; $\varphi_1 + \varphi_2$ для волны C_{RL} ; $\varphi_2 + \varphi_1$ для волны C_{LR} и $2\varphi_2$ для волны C_{LL} . Если учесть невзаимный фазовый сдвиг 2Φ между исходными волнами \mathcal{E}_L и \mathcal{E}_R , вносимый эффектом Фарадея и модуляцией, то четыре волны можно описать следующими выражениями:

$$\Gamma_{\rm R} \rightarrow$$

$$E_{\rm R}^{\rm R} \to E_{\rm RL} = \frac{\sqrt{I_0}}{2} (\cos\varepsilon + \sin\varepsilon) \exp\left[i(\omega t + \varphi_1 + \varphi_2 - \theta + \Phi)\right],$$

$$E_{\rm R}^{\rm L} \to E_{\rm RR} = \frac{\sqrt{I_0}}{2} (\cos\varepsilon - \sin\varepsilon) \exp\left[i(\omega t + 2\varphi_1 + \theta + \Phi)\right],$$

$$\Gamma_{\rm L} \rightarrow$$
 (4)

$$E_{\rm L}^{\rm R} \to E_{\rm LL} = \frac{\sqrt{I_0}}{2} (\cos\varepsilon - \sin\varepsilon) \exp\left[i\left(\omega t + 2\varphi_2 + \theta - \Phi\right)\right],$$

$$E_{\rm L}^{\rm L} \to E_{\rm LR} = \frac{\sqrt{I_0}}{2} (\cos\varepsilon + \sin\varepsilon) \exp\left[i\left(\omega t + \varphi_1 + \varphi_2 - \theta - \Phi\right)\right].$$

Следует обратить внимание на то, что интерферировать между собой могут только компоненты с равными фазовыми набегами $\Delta \varphi = \varphi_1 + \varphi_2$. Остальные компоненты некогерентны и дают только фоновую засветку интерференционной картины. После прохождения через анализатор ортогональные компоненты получают возможность интерферировать. Интенсивность излучения на детекторе

$$\langle I \rangle = \frac{1}{2} (E_{\rm RL} + E_{\rm RR} + E_{\rm LR} + E_{\rm LL}) (E_{\rm RL}^* + E_{\rm RR}^* + E_{\rm LR}^* + E_{\rm LL}^*).$$
 (5)

С учетом условий интерференции в правой части (5) остаются только шесть ненулевых членов и (5) принимает вид

$$\langle I \rangle = \frac{1}{2} (E_{LR} E_{LR}^* + E_{LR} E_{RL}^* + E_{RR} E_{RR}^* + E_{RL} E_{LR}^* + E_{RL} E_{RL}^* + E_{LL} E_{LL}^*).$$
(6)

Подставляя в (6) соответствующие выражения из (4), получаем

$$\langle I \rangle = \frac{I_0}{8} [2(\cos\varepsilon + \sin\varepsilon)^2 + 2(\cos\varepsilon - \sin\varepsilon)^2 + 2(\cos\varepsilon + \sin\varepsilon)^2 \times \cos 2\Phi] = \frac{I_0}{2} \Big[1 + \frac{(\cos\varepsilon + \sin\varepsilon)^2}{2} \cos 2\Phi \Big],$$
(7)

откуда следует соотношение для функции видности:

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{(\cos\varepsilon + \sin\varepsilon)^2}{2}.$$
 (8)

Таким образом, чем меньше угол эллиптичности ε для эллиптически поляризованной волны перед зеркалом, тем хуже контраст интерференционной картины. Аналогичный результат можно получить и для другого случая – эллиптического поляризационного состояния (ПС) излучения на выходе из контура (при обратном проходе перед четвертьволновой пластинкой 7).

3.2. Эволюция ПС вдоль spun-волокна при большом радиусе контура

Как показано в работах [4, 7-9], в рамках модели винтовой спиральной структуры осей встроенного линейного ДЛП для spun-волокна с радиусом изгиба R, помещенного в продольное по отношению к оси волокна магнитное поле, в базисе линейных поляризаций получаем выражение [8, 9]

$$\begin{vmatrix} dE_{\rm X}/dz \\ dE_{\rm Y}/dz \end{vmatrix} = \frac{1}{2}$$

$$\times \begin{vmatrix} i[\Delta\beta\cos 2\xi z + \delta\cos 2\varphi_0] & -\gamma + i[\Delta\beta\sin 2\xi z + \delta\sin 2\varphi_0] \\ \gamma + i[\Delta\beta\sin 2\xi z + \delta\sin 2\varphi_0] & -i[\Delta\beta\cos 2\xi z + \delta\cos 2\varphi_0] \end{vmatrix}$$

$$\times \Big| \frac{E_{\rm X}}{E_{\rm Y}} \Big|,\tag{9}$$

где E_X , E_Y – компоненты поля световой волны; $\Delta\beta = 2\pi/L_b$ – удельная фазовая задержка между модами с линейными поляризациями; L_b – длина биений встроенного линейного ДЛП spun-волокна; $\xi = 2\pi/L_{tw}$ – удельная скорость вращения осей при смещении вдоль спиральной структуры; L_{tw} – шаг спирали; γ – удельная фазовая задержка между модами с циркулярными поляризациями, обусловленная внешним магнитным полем; $\delta = 2\pi/L_{ind}$ – удельная фазовая задержка между модами с диркулярными поляризациями, обусловленная внешним магнитным полем; $\delta = 2\pi/L_{ind}$ – удельная фазовая задержка между модами с линейными поляризациями, индуцированная изгибом spun-волокна с радиусом изгиба R; φ_0 – угол между вектором линейной поляризации и осью X спиральной структуры; z – координата вдоль оси волокна.

Длина биений индуцированного изгибом линейного ДЛП *L*_{ind} определяется выражением [14]

$$L_{\rm ind} = \frac{4\pi}{C_{\rm s}} \frac{R^2}{r^2},\tag{10}$$

где *г* – внешний радиус волокна; *C*_s – коэффициент, определяемый согласно [14] выражением:

$$C_{\rm s} = 0.5k_0 n_0^3 (p_{11} - p_{12})(1 - v_{\rm P}), \tag{11}$$

в котором k_0 – модуль волнового вектора; n_0 – средний показатель преломления волокна; p_{11} , p_{12} – компоненты упругооптического тензора материала волокна; $v_{\rm P}$ – ко-

эффициент Пуассона. Для кварцевого волокна диаметром 125 мкм и длины волны $\lambda = 1550$ нм формула (10)

имеет вид $L_{\rm ind} \approx (3/1 \, {\rm MM}) R^2$. На рис.3 показана эволюция ПС на сфере Пуанкаре, широта места на которой равна удвоенному углу эллиптичности, а долгота – удвоенному азимутальному углу ПС. Северное полушарие содержит все состояния с правым вращением вектора поляризации, Южное - все состояния с левым вращением. Экватор занимают все состояния с линейной поляризацией. Северный полюс отведен ПС с правой циркулярной поляризацией, Южный-ПС с левой циркулярной поляризацией. Результаты получены путем численного решения уравнения (9) [4,8,9]. Эволюция ПС на рис.3 соответствует исходному правому циркулярному состоянию в прямолинейном spun-волокне $(\delta = 0, L_{\rm b} = 12$ мм). Для того чтобы витки эволюции ПС не накладывались друг на друга, шаг спиральной структуры L_{tw} был выбран равным 6 мм – в два раза большим стандартного шага L_{tw} = 3 мм. Из рис.3 видно, что ПС распространяющейся волны принимают участие в двух видах движений: в «быстром», которое мы называем нутацией по аналогии с движением гироскопа, и в «медленном», названным прецессией. После завершения витка прецессии ПС приходит в исходное положение. Для рис.3 $(L_{\rm b} = 12 \text{ мм})$ при нутации один виток соответствует распространению излучения на расстояние l = 3 мм, т.е. половине шага спиральной структуры, тогда как виток прецессии заканчивается при l = 96 мм. Для стандартного шага $L_{tw} = 3$ мм витки нутации и прецессии завершаются при l = 1.5 и 183 мм соответственно.

Изгиб spun-волокна с указанными выше стандартными параметрами при намотке его в контур большого радиуса ($\delta \ll \Delta\beta$ вплоть до $R \approx 25$ мм ($L_{ind} = 1875$ мм $\gg L_b =$ 12 мм)) не влияет на характер прецессии – движение вокруг полюса с отклонением ПС, не превышающим 41°. Поляризационные состояния не только не меняют своего направления вращения, но и вообще близки к состоянию циркулярной поляризации ($\varepsilon_{av} > 41^\circ$). Кроме того, мы используем широкополосный источник света, и, как показано в работе [15], усредняем нутационные движения по

Рис.3. Эволюция ПС на сфере Пуанкаре для волны с правой циркулярной поляризацией в прямолинейном spun-волокне. Широта места – удвоенный угол эллиптичности 2ε , долгота – удвоенный азимутальный угол 2θ . Параметры волокна: $L_b = 12$ мм, $L_{tw} = 6$ мм.

длинам волн и получаем среднее значение ε_{av} . Оценка по формуле (8) при $\varepsilon_{av} > 41^{\circ}$ дает V = 0.99. Таким образом, при больших радиусах контура ($R \gg 25$ мм) можно пренебречь влиянием на видность интерферометра эллиптичности ПС на зеркале и (при обратном распространении) на выходе из контура.

3.3. Эволюция ПС волн вдоль spun-волокна при малом радиусе контура

Характер эволюции ПС при малых радиусах изгиба (R < 25 мм) существенно меняется. Прецессия совершается теперь не вокруг полюса сферы Пуанкаре, а вокруг вектора, определяемого радиусом изгиба [14,8,9]. На рис.4,*а* показана эволюция ПС в spun-волокне с параметрами, используемыми в дальнейшем: длина биений встроенного ДЛП $L_b = 12$ мм, шаг спиральной структуры $L_{tw} = 3$ мм, радиус изгиба R = 14 мм, длина биений наведенного изгибом ДЛП $L_{ind} = 588$ мм, длина отрезка волокна $L_f = 150$ мм. Длина прецессии L_{pr} , соответствующая замкнутому циклу, равна 183 мм. Видно, что радиус прецессии существенно превышает радиусы нутаций, из-

Рис.4. Эволюция ПС на сфере Пуанкаре при R = 14 мм ($L_{ind} = 588$ мм) для spun-волокна с $L_f = 150$ (*a*) и 60 мм (δ). Указаны координаты расчетных величин ε_1 , ε_2 , ε_{av} , ε_{max} и ε_{min} (точки). Параметры spun-волокна: $L_{tw} = 3$ мм, $L_b = 12$ мм.

Рис.5. Углы эллиптичности ε_1 , ε_2 , ε_{av} ПС излучения в зависимости от нормированной на длину прецессии длины волокна L_f ($L_f < L_{pr}$), а также функция $F(L_f/L_{pr})$ (см. текст).

за чего ПС могут иметь малые значения угла эллиптичности (по сравнению с углом эллиптичности в начальной точке прецессии), и усреднение по спектру широкополосного источника света теперь не будет приводить к близким средним значениям ε_{av} по всему циклу прецессии. На рис.4, б приведены составляющие ε_1 и ε_2 средних углов эллиптичности $\varepsilon_{av} = (\varepsilon_1 + \varepsilon_2)/2$, а также максимальные (ε_{max}) и минимальные (ε_{min}) значения этих средних углов, используемые в дальнейшем. Из рис.5 видно, что величина $\varepsilon_{av}(L_f/L_{pr})$ зависит от того, какая часть длины прецессии L_{pr} пройдена в spun-волокне, и что угол эллиптичности изменяется в диапазоне $\varepsilon_{min} \leq \varepsilon_{av}(L_f/L_{pr}) \leq \varepsilon_{max}$. Величина ε_{min} достигается при $L_f/L_{pr} = N + 1/2$, а $\varepsilon_{max} -$ при $L_f/L_{pr} = N$, где N – целое число.

Мы вычислили значения ε_1 и ε_2 в зависимости от $L_f/L_{\rm pr}$ в диапазоне $0 \le L_f \le L_{\rm pr}$, а также величину $\varepsilon_{\rm av}(L_f/L_{\rm pr})$ и привели полученные результаты на рис.5. Попытка представить $\varepsilon_{\rm av}(L_f/L_{\rm pr})$ в виде функции

$$F\left(\frac{L_{\rm f}}{L_{\rm pr}}\right) = \frac{\varepsilon_{\rm max} + \varepsilon_{\rm min}}{2} + \frac{\varepsilon_{\rm max} - \varepsilon_{\rm min}}{2} \cos\left(2\pi \frac{L_{\rm f}}{L_{\rm pr}}\right) \tag{12}$$

удалась лишь частично (сплошная кривая на рис.5) – положение величин ε_{max} и ε_{min} (точки на рис.5) данная функция отражает правильно. Это позволило нам использовать ее в дальнейшем для первоначального определения указанных величин и их положения. Основной вывод из данных, приведенных на рис.5, заключается в том, что угол эллиптичности ε при R = 14 мм может принимать значения, существенно меньшие 45°, т. е. испытывать значительные колебания. В рассматриваемом случае угол эллиптичности $\varepsilon_{min} = 23^\circ$, что снижает видность (8) интерференционной картины до 0.74 (учтены зеркало и пластинка $\lambda/4$).

3.4. Зависимость длины прецессии от температуры

Длина прецессии $L_{\rm pr}$ зависит от шага $L_{\rm tw}$ спиральной структуры осей встроенного ДЛП spun-волокна и длины биений $L_{\rm b}$ того же ДЛП. Длина биений $L_{\rm b}$ зависит от температуры T (см., напр., [16, 17]): $L_{\rm b}(T) = L_{\rm b0}[1 + \alpha(T - T_0)]$, где в нашем случае $L_{\rm b0} = 12$ мм, $T_0 = 0$, $\alpha = 7 \times 10^{-4}$ 1/°С. Зависимость шага $L_{\rm tw}$ от температуры для кварцевых во-

Рис.6. Расчетная зависимость длины прецессии $L_{\rm pr}$ от температуры T.

локон по сравнению с температурной зависимостью длины биений является слабой, поэтому ею можно пренебречь.

Для расчета зависимости длины прецессии $L_{\rm pr}$ от температуры T использовались только длины волокна, кратные периодам нутации и приводящие к циркулярному ПС, совпадающему с исходным состоянием. Результаты расчета приведены на рис.6. Видно, что эта зависимость линейная:

$$L_{\rm pr} = L_{\rm pr0} [1 + \alpha_1 (T - T_0)], \qquad (13)$$

причем $\alpha_1 = 0.00127$ 1/°С, а $L_{\rm pr0} = 183$ мм. При вариации длины биений в пределах 11 мм < $L_{\rm b}$ < 13 мм величина α_1 оставалась неизменной.

3.5. Эволюция видности в условиях меняющейся длины прецессии

Магниточувствительный контур получен из spun-волокна с фиксированной длиной $L_{\rm f}$. Коэффициент теплового расширения кварца $\alpha_{\rm sil}$ равен 4×10^{-6} 1/°С, поэтому в диапазоне изменения температур ~100 °С длину $L_{\rm f}$ можно считать постоянной, тогда как длина прецессии $L_{\rm pr}$ заметно меняется с температурой ($\alpha_1 = 0.00127$ 1/°С). Spunволокно длиной $L_{\rm f}$ можно представить в виде суммы N участков длиной $L_{\rm pr}$ и участка длиной $L_{\rm res}$ ($L_{\rm res} < L_{\rm pr}$):

$$L_{\rm f} = N L_{\rm pr} + L_{\rm res} \,. \tag{14}$$

На входе в контур формируется волна с циркулярной поляризацией. Пройдя N полных циклов прецессии (длину $NL_{\rm pr}$) ПС снова оказывается циркулярно поляризованным. Эллиптически поляризованной волна может стать только на оставшемся участке волокна длиной $L_{\rm res}$. Из рис.5 (сделав замену $L_{\rm f} \rightarrow L_{\rm res}$) легко определить угол эллиптичности $\varepsilon(L_{\rm res}/L_{\rm pr})$ волны на выходе spun-волокна. При изменении температуры контура будут изменяться длина прецессии (см. формулу (13)), а также длина оставшегося участка $L_{\rm res}$ и, следовательно, угол эллиптичности на выходе из контура. Некоторое представление об этой модели может дать функция (12), правильно отражающая период, максимальные и минимальные значения ε и их положение в зависимости от $L_{\rm res}/L_{\rm pr}$. После подстановки в (12) длины $L_{\rm pr}$ (13) получаем

$$F(L_{\rm f}/L_{\rm pr}) = \frac{\varepsilon_{\rm max} + \varepsilon_{\rm min}}{2} + \frac{\varepsilon_{\rm max} - \varepsilon_{\rm min}}{2} \times$$

$$\times \cos\left\{2\pi \frac{L_{\rm f}}{L_{\rm pr0}[1+\alpha_1(T-T_0)]}\right\}.$$
 (15)

Видно, что угол эллиптичности является периодической функцией температуры. Период этой функции ΔT определяется из выражений

$$\frac{L_{\rm f}}{L_{\rm pr0}[1+\alpha_1(T_1-T_0)]} = N,$$

$$\frac{L_{\rm f}}{L_{\rm pr0}[1+\alpha_1(T_2-T_0)]} = N-1,$$
(16)

$$\Delta T = T_2 - T_1 = \frac{L_{\text{pr0}}}{\alpha_1 L_f}.$$
(17)

Причиной периодических колебаний видности интерферометра при изменении температуры контура может быть меняющаяся с температурой эллиптичность волны перед отражением ее от зеркала или перед преобразованием ее четвертьволновой пластинкой. Изменяющаяся эллиптичность возникает, вообще говоря, из-за нецелого числа длин прецессии, укладывающихся на длине spunволокна в контуре при заданной температуре.

3.6. Неидеальность четвертьволновой пластинки

Четвертьволновая пластинка 7 (рис.1), формирующая циркулярно поляризованные волны, изготовлена из HiBiволокна с малым температурным коэффициентом ДЛП $(\alpha \approx 10^{-5} \, \text{l/°C}, \text{термокомпенсированное волокно}).$ Как показано выше, данная пластинка приваривалась к выходу линии задержки на основе HiBi-волокна с соответствующей ее ориентацией. Отклонение угла между осью четвертьволновой пластинки и осью ДЛП линии задержки от 45° при сварке могло привести к заметному уменьшению величины ε_{in} на входе в магниточувствительный контур [17]. На рис.7 приведены расчетные зависимости величины $\varepsilon_{\rm av}$ на выходе spun-волокна от $L_{\rm res}/L_{\rm pr}$ для различных углов ε_{in} на его входе. Видно, что уменьшение ε_{in} ведет к уменьшению разности $\varepsilon_{\max} - \varepsilon_{\min}$ вплоть до нуля при $\varepsilon_{\rm in} = 32.4^{\circ}$ и далее снова к увеличению $\varepsilon_{\rm max} - \varepsilon_{\rm min}$, но теперь максимальная величина $\varepsilon_{\rm av}$ достигается при $L_{\rm res}$ = $1/_2L_{\rm pr}$, а не на границах участка длиной $L_{\rm pr}$, как ранее

Рис.7. Расчетные зависимости угла эллиптичности $\varepsilon_{\rm av}$ на выходе spun-волокна от нормированной на длину прецессии длины $L_{\rm res}$ при различных углах эллиптичности $\varepsilon_{\rm in}$ на входе.

281

(рис.5). К аналогичным результатам может привести и погрешность определения длины четвертьволновой пластинки [17].

3.7. Зависимость функции видности от температуры

Для того чтобы полностью объяснить наблюдавшуюся (рис.2,б) зависимость видности от температуры, нужно подобрать такие значения периода прецессии $L_{\rm nr}(T)$, при которых теоретические и экспериментальные функции видности совпадут по периоду, «температурной фазе» и амплитуде (кавычки приведены для того, чтобы отличать «температурную фазу» функции видности от фазы оптической волны). Вначале по формулам (15) и (17) мы определили $L_{\rm pr0} = 207$ мм и $\alpha_1 = 0.00127$ 1/°С. Далее точный расчет проводился следующим образом. По температуре T из (15) находилась длина прецессии $L_{pr}(T)$ и с учетом полной длины волокна $L_f = 4.83$ м по формуле (14) вычислялась длина $L_{\rm res}(T)$ для той же температуры. Затем использовалась программа эволюции ПС с параметрами $L_{\text{tw}} = 3 \text{ MM}, L_{\text{ind}} = 588 \text{ MM}, L_{\text{b}}(T) = L_{\text{b0}}[1 + \alpha(T - T_0)] (L_{\text{b0}} =$ 12.85 мм, $\alpha = 7 \times 10^{-4}$ 1/°С) и длиной $L_{\rm res}(T)$. На входе задавалась волна с циркулярной поляризацией ($\varepsilon_{in} = 45^{\circ}$). Варьируя $L_{\rm res}$ в пределах 0 – 0.75 мм, мы получали максимальное и минимальное значения ε_1 и ε_2 и усредняли их $(\varepsilon_{av} = (\varepsilon_1 + \varepsilon_2)/2;$ см. рис.3). В п.3.1 указаны две точки оптического пути – перед зеркалом (точка 1) и перед пластинкой $\lambda/4$ при обратном проходе (точка 2), в которых отличие ПС от циркулярного состояния ($|\varepsilon| < 45^{\circ}$) может привести к уменьшению видности интерференционной картины. Обозначим множители видности, обусловленные эллиптичностью волны в точках 1 и 2, через V_1 и V_2 (V_1 = V_2). Все остальные причины уменьшения видности отразим в аппаратурном множителе $V_{\rm ap}$. Тогда окончательно получаем

$$V = V_1 V_2 V_{\rm ap}.$$
 (18)

Подставляя ε_{av} в формулу (8), получаем множитель видности V_1 . Результаты расчета и экспериментальные данные представлены на рис.8. Экспериментальные значения видности получены выборкой из результатов, приведенных на рис.2, б. Сплошные кривые на рис.8 – результаты расчета при $V_{ap} = 86\%$. Видно, что период и «температурная фаза» колебаний соответствуют экспериментальной картине, а «теоретическая» амплитуда колебаний при ε_{in}

Рис.8. Экспериментальная (точки) и теоретические (сплошные кривые) функции видности при различных углах эллиптичности ε_{in} .

= 45° превышает «экспериментальную» более чем в два раза.

Для объяснения уменьшения амплитуды колебаний видности V(T) несовершенством пластинки $\lambda/4$ мы повторили точный расчет для эллиптически поляризованной волны на входе с углом эллиптичности $\varepsilon_{\rm in} = 37^{\circ}$. Результаты приведены на рис.8. Видно, что амплитуда колебаний теоретической кривой стала соизмеримой с амплитудой экспериментальной кривой. Уменьшение амплитуды колебаний можно объяснить эллиптической поляризацией волны на входе. Уменьшив угол эллиптичности $\varepsilon_{\rm in}$ до 35°, мы получили полное совпадение теоретической и экспериментальной кривых видности по «температурной фазе», периоду и амплитуде. Приведем параметры spun-волокна, использованные при расчете: $L_{\rm b0} =$ 12.85 мм, $\alpha = 7 \times 10^{-4}$ 1/°C, $L_{\rm tw} = 3$ мм, $L_{\rm pr0} = 207$ мм, $\alpha_1 =$ 0.00127 1/°C, R = 14 мм, $V_{\rm ap} = 85.5\%$.

4. Обсуждение

Как следует из изложенного в п.3.1, видность отражательного интерферометра определяется углом эллиптичности излучения на концах чувствительного контура (перед зеркалом и на выходе из контура). Представление на сфере Пункаре результатов анализа эволюции поляризации излучения при распространении его в spun-волокне (пп.3.2, 3.3) показывает, что в случае контура малого радиуса (R = 14 мм) эволюция ПС при распространении волны по spun-волокну происходит по окружности (витку прецессии) на сфере Пуанкаре с центром, смещенным относительно полюса, и диаметром, который тем больше, чем меньше радиус намотки контура [8,9]. Следовательно, ПС излучения может достигать широты на сфере Пуанкаре, близкой к экватору, и, соответственно, приобретать малые углы эллиптичности (для наших параметров контура вплоть до $\varepsilon_{\rm av} \approx 23^{\circ}$ при начальном угле эллиптичности 45°). Угол эллиптичности на выходе spun-волокна (концах чувствительного контура) зависит, как показано в п.3.5, от длины $L_{\rm res}$, равной разности длины spun-волокна и целого числа длин прецессии $L_{\rm pr}$ (см. формулу (14)). Поскольку $L_{\rm pr}$ зависит от температуры (п.3.4), длина $L_{\rm res}$ и, соответственно, угол эллиптичности излучения на выходе волокна также зависят от температуры (п.3.5), обеспечивая периодическую зависимость видности от температуры с периодом, определяемым выражением (17).

В случае контура радиусом 95 мм эволюция ПС происходит вокруг полюса сферы Пуанкаре с отклонением от него не более чем на 10° . При изменении температуры из-за изменения длины прецессии также должны изменяться длина $L_{\rm res}$ и, следовательно, ПС на выходе spunволокна. Однако эти температурные изменения ПС практически не влияют на видность интерференционной картины, потому что указанные ПС имеют в любой точке витка прецессии примерно одинаковые углы эллиптичности, близкие к максимальному, а согласно п.3.1 (формула (8)) видность интерферометра зависит только от этого угла.

Обнаруженный в работе эффект может в условиях изменяющейся температуры окружающей среды приводить к погрешностям измерений с использованием волоконного датчика тока с малогабаритным чувствительным контуром на основе spun-волокна. Как следует из сказанного выше, этот дестабилизирующий фактор можно минимизировать, принимая меры по уменьшению разности углов эллиптичности ПС излучения в пределах витка прецессии. В принципе, для этого есть две возможности:

1. Сформировать на входе в чувствительный контур не циркулярное, а эллиптически поляризованное излучение, аналогично тому, как это сделано в работе [10]. Оценка, проведенная в п.3.6, показывает, что для используемого в наших экспериментах чувствительного контура с радиусом изгиба волокна R = 14 мм минимальный полученный эффект будет иметь место при угле эллиптичности ПС излучения ~32.4°.

2. Использовать для малогабаритного чувствительного контура spun-волокно с пониженным температурным коэффициентом ДЛП, например микроструктурное волокно [18].

5. Заключение

Экспериментально получены и исследованы периодические осцилляции видности интерферометра датчика тока при изменении температуры чувствительного контура малого радиуса на основе spun-волокна. Установлено, что наблюдаемый эффект зависит от величины изгибного линейного ДЛП, индуцированного в spun-волокне при его укладке в магниточувствительный контур, и от температурных свойств встроенного в волокно линейного ДЛП. Для объяснения этого эффекта были использованы периодический характер эволюции ПС в spun-волокне на характерной длине прецессии $L_{\rm pr}$ и зависимость этой длины от температуры.

Отмечено, что обнаруженное влияние температуры на видность интерферометра может быть причиной погрешности волоконного датчика тока с малогабаритным контуром при работе в условиях изменяющейся температуры окружающей среды. Даны рекомендации по возможной минимизации влияния полученного эффекта на точность измерений с использованием датчика тока.

- Enokihara A., Isutsu M., Sueta T. J. Lightwave Tehnol., 5, 1584 (1987).
- 2. Laming R.I., Payne D.N. J. Lightwave Tehnol., 7 (12), 2084 (1989).
- Bohnert K., Gabus P., Nehring J., Brandle H. J. Lightwave Tehnol., 20, 267 (2002).
- Губин В.П., Исаев В.А., Моршнев С.К., Сазонов А.И., Старостин Н.И., Чаморовский Ю.К., Усов А.И. Квантовая электроника, 36 (3), 287 (2006) [*Quantum Electron.*, 36 (3), 287 (2006)].
- 5. Born M., Wolf E. *Principle of Optics* (Cambridge: Cambridge University Press, 2002).
- 6. Frosio G., Dändliker R. Appl. Opt., 33 (25), 6111 (1994).
- Моршнев С.К., Губин В.П., Исаев В.А., Старостин Н.И., Чаморовский Ю.К. Труды Всероссийской конференции по волоконной оптике (ВКВО) (Пермь, 2007, Б7-4); Фотон-экспресс, 6 (62), 167 (2007).
- Morshnev S.K., Gubin V.P., Isaev V.A., Starostin N.I., Sazonov A.I., Chamorovsky Yu.K., Korotkov N.M. Optical Memory and Neural Networks (Information Optics), 17 (4), 258 (2008).
- Моршнев С.К., Губин В.П., Воробьев И.Л., Старостин Н.И., Сазонов А.И., Чаморовский Ю.К., Коротков Н.М. Квантовая электроника, **39** (3), 287 (2009) [Quantum Electron., **39** (3), 287 (2009)].
- Пржиялковский Я.В., Моршнев С.К., Старостин Н.И., Губин В.П. Квантовая электроника, 44 (10), 957 (2014) [Quantum Electron., 44 (10), 957 (2014)].
- Пржиялковский Я.В., Моршнев С.К., Старостин Н.И., Губин В.П. Квантовая электроника, 45 (11), 1075 (2015) [Quantum Electron., 45 (11), 1075 (2015)].
- 12. Polinkin P., Blake J. J. Lightwave Tehnol., 23, 3815 (2005).
- Azzam R.M.A., Bashara N.M. *Ellipsometry and Polarized Light* (Amsterdam–New York–Oxford: North-Holland Publishing Company, 1977).
- 14. Rashleigh S.C. J. Lightwave Tehnol., 1 (2), 312 (1983).
- Пржиялковский Я.В., Моршнев С.К., Старостин Н.И., Губин В.П. Квантовая электроника, 43 (2), 167 (2013) [Quantum Electron., 43 (2), 167 (2013)].
- 16. Некрашевич Е.С., Рябко М.В. Нелинейный мир, 5 (5), 292 (2007).
- Shayne X.S., Tselikov A.A., de Arruda J.U., Blake J.N. J. Lightwave Technol., 16 (7), 1222 (1998)
- 18. Mishie A., Canning J., Bassett I., et al. Opt. Express, 15, 1811 (2007).