О продолжительности непрерывной работы оптического стандарта частоты на атомах стронция

О.И.Бердасов, Д.В.Сутырин, С.А.Стрелкин, А.Ю.Грибов, Г.С.Белотелов, А.С.Костин, Н.Н.Колачевский, С.Н.Слюсарев

Рассмотрены методы увеличения длительности автономной непрерывной работы оптических стандартов частоты. Реализована схема вторичного охлаждения атомов стронция без применения фазовой стабилизации при формировании пучков охлаждающего и перемешивающего излучения и предложен алгоритм стабилизации частоты «часового» лазера, компенсирующий нестабильность частоты его излучения из-за акустических шумов. Проведены серии экспериментов с двумя различными алгоритмами стабилизации частоты излучения лазера по частоте атомного перехода. При использовании первого алгоритма стабилизации максимальная длительность непрерывной автономной работы установки составила 25 000–50000 с, в случае второго алгоритма она достигала 70 000–200 000 с.

Ключевые слова: атом Sr, лазерное охлаждение, оптическая решетка, оптический стандарт частоты, часовой переход.

1. Введение

Более 60 лет назад Л. Эссен продемонстрировал первый атомный стандарт частоты, основанный на использовании перехода между сверхтонкими подуровнями основного состояния атомов ¹³³Cs [1]. Всего через десять лет после этого цезиевый стандарт частоты (СЧ) был принят Международным комитетом мер и весов (CIPM) в качестве первичного стандарта времени и частоты. К настоящему времени достижения в области управления холодными атомами привели к появлению прецизионных оптических атомных часов, или оптических стандартов частоты (ОСЧ), которые находят применение в различных областях метрологии, навигации и фундаментальной физики: при исследовании временной стабильности фундаментальных констант [2-5], для проверки принципа эквивалентности Эйнштейна [6, 7], при поиске темной материи [8], в навигационных системах [9] и радиоинтерферометрии со сверхдлинными базами [10].

По характеристикам относительной точности и стабильности частоты современные ОСЧ на несколько порядков превосходят лучшие современные цезиевые СЧ фонтанного типа. В настоящее время основу ОСЧ состав-

Поступила в редакцию 21 февраля 2018 г., после доработки – 20 марта 2018 г.

ладают близкими значениями относительной неопределенности частоты: 2.1×10⁻¹⁸ для оптических часов на нейтральных атомах Sr [11] и 3.2×10⁻¹⁸ для часов, работающих на октупольном (ЕЗ) переходе иона Yb⁺ [12].
Активное развитие ОСЧ является предпосылкой к переопределению значения секунды, которое активно обсуж-

реопределению значения секунды, которое активно обсуждается в CIPM [13, 14]. В связи с этим перед исследователями и разработчиками ОСЧ стоят несколько основных задач.

ляют ансамбли нейтральных атомов, загруженные в оптическую решетку, или одиночные ионы. Оба типа ОСЧ об-

1. Необходимо произвести оценку неопределенности частоты ОСЧ. Для нового определения секунды ОСЧ должны иметь меньшую погрешность, чем цезиевые СЧ. В настоящее время ОСЧ на атомах ⁸⁷Sr в оптической решетке [11,15], на одиночном ионе ¹⁷¹Yb⁺ (октупольный переход) [12] и на одиночном ионе ²⁷Al⁺ [16] имеют относительную неопределенность частоты на уровне 1×10^{-18} , что почти на два порядка меньше, чем у лучших цезиевых СЧ фонтанного типа [17, 18].

2. Требуется подтверждение эквивалентности ОСЧ и их надежности. Для этого предпочтительным является проведение сличений ОСЧ, основанных на одних и тех же частицах. В настоящее время многие национальные метрологические институты исследуют и сравнивают между собой ОСЧ на атомах ⁸⁷Sr. С этой целью созданы волоконные линии связи между РТВ (Physikalisch-Technische Bundesanstalt, Германия) и SYRTE (Sytèmes de Référence Temps Espace, Франция) [19], между RIKEN (Rikagaku Kenkyüsho, Япония) и UT (The University of Tokyo, Япония) [15], а также создан возимый ОСЧ на атомах ⁸⁷Sr в РТВ [20].

3. Необходимо исследовать возможность использования ОСЧ в качестве хранителей единицы частоты для улучшения точности TAI (International Atomic Time) – международной атомной шкалы времени. Здесь требуется подробный отчет о полученных в определенные периоды времени экспериментальных результатах, включающий в себя совокупность неисключенных систематических погрешностей, которые влияют на точность определения

О.И.Бердасов, С.А.Стрелкин, А.Ю.Грибов. Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, Россия, Московская обл., 141570 Менделеево; Национальный исследовательский ядерный университет «МИФИ», Россия, 115409 Москва, Каширское ш., 31; e-mail: berd_7@mail.ru Д.В.Сутырин, Г.С.Белотелов, А.С.Костин, С.Н.Слюсарев. Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, Россия, Московская обл., 141570 Менделеево

Н.Н.Колачевский. Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, Россия, Московская обл., 141570 Менделеево; Национальный исследовательский ядерный университет «МИФИ», Россия, 115409 Москва, Каширское ш., 31; Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53

единицы частоты. Необходимы непрерывные результаты сличений ОСЧ с цезиевыми СЧ фонтанного типа для обеспечения непосредственной связи между перспективным и текущим определением секунды.

Первые две из перечисленных задач успешно решаются метрологическим сообществом, однако решение последней задачи сопряжено со сложностями обеспечения непрерывной долговременной работы всех узлов ОСЧ. Именно поэтому в научной литературе публикуются в основном результаты непрерывных исследований, проводимых лишь в течение сравнительно коротких промежутков времени. Одним из способов заполнения временных промежутков, возникающих из-за перерывов в работе ОСЧ, является применение алгоритмов экстраполяции [21, 22]. Флуктуации частот водородных мазеров, выступающих в роли хранителей частоты, на протяжении этих промежутков остаются главным источником неопределенности частоты. Чтобы избежать этой неопределенности, необходимо реализовать надежную непрерывную работу ОСЧ в течение длительного времени.

В настоящей работе представлены подходы, используемые нами для обеспечения длительной (около суток) бесперебойной работы ОСЧ на холодных атомах ⁸⁷Sr. Первый подход основан на отказе от фазовой привязки в оптической схеме вторичного охлаждения атомов, второй – на алгоритме стабилизации частоты излучения «часового» лазера по частоте перехода ${}^{1}S_{0} - {}^{3}P_{0}$ атомов ⁸⁷Sr.

2. Подготовка ансамбля атомов

Для подготовки ансамбля холодных атомов, необходимых для бездоплеровской спектроскопии «часового» перехода, используется классический подход на основе зеемановского замедлителя и магнитооптической ловушки (МОЛ).

Первый этап лазерного охлаждения осуществляется через переход ${}^{1}S_{0} - {}^{1}P_{1}$ атомов 87 Sr на $\lambda = 461$ нм в присутствии излучения лазеров перекачки на $\lambda = 679$ и 707 нм (рис.1,*a*). При этом число атомов 87 Sr в первичной МОЛ составляет не менее 10^{6} с характерной температурой от 1 до 3 мК (в зависимости от параметров эксперимента).

Второй этап лазерного охлаждения атомов осуществляется через переход ${}^{1}S_{0} - {}^{3}P_{1}$ на $\lambda = 689$ нм. Из-за ненулевого ядерного спина (I = 9/2) изотоп ⁸⁷Sr обладает более сложной структурой энергетических уровней, чем изотоп ⁸⁸Sr, вторичное охлаждение которого было ранее продемонстрировано в работе [23]. Для эффективного вторичного охлаждения атомов ⁸⁷Sr требуется обеспечить необходимое распределение населенностей атомов по подуровням основного состояния ¹S₀. Для этой цели используется дополнительное «перемешивающее» излучение на частоте перехода ${}^{1}S_{0}(F = 9/2) - {}^{3}P_{1}(F' = 9/2)$, тогда как основное охлаждающее излучение настроено на частоту перехода ${}^{1}S_{0}(F = 9/2) - {}^{3}P_{1}(F' = 11/2)$. Проблемой, возникающей при осуществлении вторичного охлаждения, является необходимость одновременного воздействия лазерным излучением на атомы 87 Sr на частотах этих переходов, разность которых составляет 1.4 ГГц. Одним из вариантов ее решения является использование двух лазерных источников с системой фазовой стабилизации их излучений. Однако это может негативным образом отразиться на надежности работы в целом, поэтому для экспериментальной реализации вышеописанных процессов была создана оптическая система (рис.2), основанная на применении ряда

Рис.1. Схема переходов в атомах ⁸⁷Sr, участвующих в функционировании ОСЧ (*a*), и структура магнитных подуровней состояний ${}^{1}S_{0}$ и ${}^{3}P_{1}$ в присутствии постоянного магнитного поля (δ).

акустооптических модуляторов, что, в совокупности с поддержанием стабильной температуры в лаборатории с точностью до 1 °C, позволяет обходиться без дополнительной настройки системы в течение длительных интервалов времени (порядка нескольких месяцев) и, таким образом, обеспечивать долговременный режим ее работы.

По завершении этапа вторичного охлаждения число атомов в МОЛ составляет ~10⁵ с характерной температурой не более 2.5 мкК, что позволяет загрузить в оптическую решетку на «магической» длине волны ($\lambda_m = 813$ нм) ~10⁴ атомов. Глубина оптической решетки U_{trap} рассчитывается из значений частот боковых полос часового перехода ¹S₀-³P₀: U_{trap} ≈ 56E_{rec} (E_{rec} – энергия отдачи), а время жизни атомов в ней составляет 0.5 с.

3. Спектроскопия часового перехода

Процесс определения вероятности возбуждения атомов ⁸⁷Sr в состояние ³P₀ включает в себя несколько этапов, протекающих в рамках одного рабочего цикла. На первом этапе атомы взаимодействуют с импульсом «часового» излучения, длительность которого определяется частотой Раби. При интенсивности излучения I = 0.7 BT/см² экспериментально полученная длительность π -импульса составила 70 мс. На втором этапе все атомы, оставшиеся в основном состоянии ¹S₀, регистрируются и удаляются из решетки при помощи детектирующего импульса излучения на $\lambda = 461$ нм, соответствующего переходу ¹S₀–¹P₁. Сигнал флуоресценции при этом регистрируется с помощью 16-битной ПЗС-камеры с электрооптическим преобразователем. Затем атомы, находящиеся в состоянии ³P₀, возвращаются в основное состояние при помощи импуль-

Рис.2. Оптическая схема системы для вторичного охлаждения атомов 87 Sr. Обозначение «×2» соответствует сдвигу частоты при двойном проходе лазерного излучения через AOM, знак «–» – отрицательной отстройке частоты лазерного излучения при проходе через AOM.

сов излучения лазеров перекачки на $\lambda = 679$ и 707 нм, после чего они также регистрируются детектирующим импульсом. С использованием сигналов от первого (I_1) и второго (I_2) детектирующих импульсов определяется вероятность возбуждения атомов в состояние ³P₀:

$$P = \frac{I_2}{I_1 + I_2}$$

Из-за наличия у атома ⁸⁷Sr отличного от нуля спина ядра спектр перехода ${}^{1}S_{0}-{}^{3}P_{0}$ состоит из 28 линий, соответствующих переходам между магнитными подуровнями. Для снятия вырождения состояний по магнитному квантовому числу применяется внешнее постоянное магнитное поле, индуцируемое катушками МОЛ в гельмгольцовой конфигурации. В случае, когда угол между векторами поляризации «часового» излучения и индукции внешнего магнитного поля равен нулю, наблюдаются π -переходы, соответствующие изменению магнитного квантового числа $\Delta m_{\rm F} = 0$. Оптическая решетка расположена вертикально, и ее лазерное излучение линейно поляризовано вдоль направления вектора индукции постоянного магнитного поля, а излучение «часового» лазера линейно поляризовано и распространяется вдоль оси оптической решетки.

Для увеличения отношения сигнал/шум при определении вероятности возбуждения P было использовано дополнительное излучение на $\lambda = 689$ нм с круговой поляризацией, позволяющее в зависимости от выбора направления поляризации перераспределить атомы в состояния с $m_{\rm F} = -9/2$ либо 9/2 (см. рис.1,6). При этом волновой вектор лазерного излучения сонаправлен вектору индукции магнитного поля. После того как атомы перекачены на один из перечисленных магнитных подуровней, процесс определения вероятности возбуждения P происходит согласно алгоритму, описанному выше.

В качестве источника лазерного излучения для спектроскопии «часового» перехода ${}^{1}S_{0} - {}^{3}P_{0}$ использовалась система, основанная на полупроводниковом лазере DL Pro (Toptica, Германия) и внешнем высокодобротном ULEрезонаторе. Спектральная ширина линии излучения такой системы составляет ~1 Гц, дрейф частоты равен ~91 мГи/с, а относительная нестабильность частоты, без учета линейного дрейфа, достигает (2–3)×10⁻¹⁵ на временах усреднения 1–100 с [24].

Перестройка частоты лазерного излучения производится при помощи акустооптического модулятора AOM-C (рис.3), который управляется программой, реализованной в среде LabView. Длительность одного рабочего цикла, состоящего из двух этапов лазерного охлаждения, загрузки атомов в оптическую решетку и определения вероятности возбуждения *P*, составляет ~1.3 с.

4. Стабилизация частоты излучения лазера по атомному резонансу

В ОСЧ частота излучения «часового» лазера должна быть стабилизирована по сверхузкой линии атомного перехода. В большинстве случаев сигнал ошибки для стабилизации генерируется путем перестройки частоты излучения лазера вблизи атомного резонанса и измерения частотно-зависимой вероятности возбуждения Р на верхний атомный уровень ³Р₀. Работа ОСЧ носит циклический характер, обусловленный необходимостью загрузки атомов в оптическую решетку. Для стабилизации частоты излучения лазера по частоте «часового» перехода определяются вероятности возбуждения Р при чередующейся перестройке лазерной частоты ниже и выше частоты резонанса в соседних рабочих циклах. Величина отстройки выбирается из условия максимального наклона спектральной кривой возбуждения и, как правило, близка к половине ширины линии атомного резонанса. Такой подход получил достаточно широкое распространение и реализован во многих лабораториях мира [25-27]. Его недостаток, являющийся в нашем случае определяющим, заключается в неустойчивости подобной схемы к внешним воздействиям. Нами было отмечено, что акустические шумы (открывание дверей в здании, шум и т.д.) могут приводить к кратковременным возмущениям частот излучения лазеров, что в свою очередь может привести к достаточно большой ошибке в определении вероятности в конкретном цикле. В результате из-за допущенной неточности вносится ложная коррекция в центральную частоту, что может стать причиной некорректной работы системы стабилизации.

В связи с этим нами был реализован несколько иной подход. Получив предварительно спектр перехода ${}^{1}S_{0}-{}^{3}P_{0}$ и определив его резонансную частоту f_{0} , а также ширину его спектральной линии, мы выбирали шаг перестройки частоты, позволяющий восстановить спектр по числу N точек. На первом этапе формируется массив, состоящий из частот АОМ-С и соответствующих им вероятностей возбуждения P на верхний атомный уровень. Далее, в первом варианте алгоритма стабилизации, определяется частота (f_{0})_n (n – номер рабочего цикла), соответствующая максимуму значения вероятности P, полученному в массиве. При этом в значение резонансной частоты (f_{0})_{n -1}, определенное ранее, вносится коррекция (f_{0})_n = (f_{0})_{n -1} + Δf , где $\Delta f = k((f_{0})_{n} - (f_{0})_{n-1})$, а k – коэффициент, выбираемый эмпирическим путем.

Во втором случае, после того как спектр вероятности возбуждения *P* восстановлен, производится его аппроксимация функцией Лоренца:

$$P(x) = A \frac{w}{(x - x_{c})^{2} + w^{2}},$$

где x – частота; x_c – частота резонанса; w – ширина перехода на полувысоте; A – площадь под лоренцевой кривой. При использовании прямоугольного лазерного импульса конечной длительности в спектре «часового» перехода должны наблюдаться осцилляции Раби, а ожидаемый спектр должен описываться функцией вида sinc²x. Однако в условиях эксперимента спектр лучше соответствует именно кривой Лоренца. Это обусловлено дополнительным уширением спектра, источниками которого могут выступать шумы излучения лазера, малое время жизни атомов в решетке, сдвиг частоты излучения лазера, формирующего решетку, наличие внешнего магнитного поля.

По полученному значению x_c и его погрешности Δx_c определяется величина коррекции частоты резонанса f_0 . При условии, что $|x_c - f_0| (где <math>p$ – коэффициент доверительного интервала, подбираемый экспериментальным путем), $f_0 = x_c$. В противном случае значение f_0 остается прежним, а значение x_c определяется заново.

Преимуществом подобного подхода является дополнительная проверка достоверности полученных данных: значения вероятности возбуждения, явно не соответствующие профилю лоренцевой кривой, измеряются повторно, что позволяет снизить влияние внешних шумов (акустических, электрических и т.д.) на стабильность работы ОСЧ.

Получив последовательно спектры переходов между магнитными подуровнями ($m_{\rm F} = +9/2 - m_{\rm F}' = +9/2$) и ($m_{\rm F} = +9/2 - m_{\rm F}' = -9/2$) состояний $^{1}S_{0}$ и $^{3}P_{0}$ и определив их центральные частоты при помощи аппроксимации функцией Лоренца, мы рассчитывали их среднее значение. Полученная частота, соответствующая переходу между нулевыми магнитными подуровнями ($m_{\rm F} = 0 - m_{\rm F}' = 0$), подавалась на акустооптический модулятор АОМ-П (рис.3). Помимо увеличения отношения сигнал/шум, важным достоинством метода последовательной спектроскопии симметричных магнитных компонент спектра «часового» перехода с последующим расчетом среднего значения частоты является подавление линейного зеемановского сдвига частоты «часового» перехода.

5. Функционирование и сличение ОСЧ с цезиевым СЧ

В ходе настоящей работы для сличения ОСЧ с цезиевым репером была реализована система, представленная на рис.3. Для переноса характеристик ОСЧ в радиодиапазон часть излучения лазера, настроенного на частоту «часового» перехода ${}^{1}S_{0}-{}^{3}P_{0}$ при помощи АОМ-П, используется для стабилизации фемтосекундного синтезатора оптических частот (ФСОЧ). Его спектр представляет собой набор эквидистантных по частоте линий в оптической области и характеризуется двумя параметрами: частотой следования импульсов f_{rep} и частотой отстройки между оптической фазой и максимумом огибающей импульса f_{ceo} , которые расположены в радиочастотной области и легко могут быть измерены коммерчески доступными частотомерами. Таким образом, частота «часового» перехода может быть определена как

$$v_{87Sr} = Nf_{rep} \pm f_{ceo} \pm f_{beat},$$

где f_{beat} – частота биений между модой ФСОЧ и излучением «часового» лазера; N – номер моды ФСОЧ, который определяется с помощью волномера, имеющего точность лучше, чем $\pm f_{\text{rep}}/2$.

В качестве ФСОЧ использовался коммерческий волоконный синтезатор FC-1500-250-WG (Menlo Systems, Германия) с $f_{rep} = 250$ МГц. Для стабилизации частоты f_{ceo} с помощью f-2f-интерферометра [28] спектр излучения ФСОЧ уширяется на октаву с использованием волоконного фемтосекундного усилителя и волокна с большой нелинейностью. Для получения сигнала биений между излучениями ФСОЧ и «часового» лазера генерируется мода ФСОЧ на $\lambda \approx 698$ нм путем удвоения частоты части его спектра. Излучение «часового» лазера передается на ФСОЧ через волокно длиной 10 м в первой серии измерений и длиной 0.5 м во второй серии измерений, что позволяет избежать применения системы компенсации фазовых шумов волокна в последнем случае. Сигнал биений

Рис.3. Схема сличения: БУ – буферный усилитель; Т – оптический трасмиттер для передачи сигнала на частоте 10 МГц; Р – оптический ресивер для приема сигнала на частоте 10 МГц; ИФШ 5120А – измеритель фазовых шумов; ПК – персональный компьютер; АОМ-П – АОМ, подстраивающий частоту излучения «часового» лазера в резонанс с частотой атомного перехода; АОМ-С – АОМ, осуществляющий перестройку частоты излучения «часового» лазера при сканировании атомного перехода; SMB 100А – синтезатор радиочастоты.

детектируется при отношении сигнал/шум 35 дБ в полосе 1 кГц.

В нашем случае цезиевый СЧ и группа хранителей частоты расположены на расстоянии ~1 км от лаборатории, где находятся ОСЧ на нейтральных атомах стронция. Частота излучения одного из водородных мазеров (ВМ), входящего в состав группы хранителей частоты цезиевого репера, передавалась через оптоволоконную линию длиной 1.5 км с нескомпенсированными шумами. Частота излучения данного водородного мазера служила в качестве опорной для схемы сличения и всех приборов (синтезаторов, счетчиков частот и т.п.), участвующих в эксперименте.

Радиочастотная часть схемы сличения стронциевого ОСЧ и цезиевого СЧ реализована следующим образом. Сигнал на частоте повторения ФСОЧ детектируется «быстрым» фотоприемником и усиливается низкошумящим радиочастотным усилителем. Затем он делится на два канала, один из которых служит для прямого измерения f_{rep} при помощи коммерческого фазового измерения шумов 5120A (Microsemi, США), обеспечивающего точность измерения 4×10⁻¹⁴ при времени усреднения 1 с. Сигнал во втором канале усиливается, фильтруется и сбивается на радиочастотном смесителе с сигналом на частоте ~240 МГц от коммерческого синтезатора радиочастоты SMB 100A (Rohde&Schwarz, Германия), на который поступает опорный сигнал на частоте 10 МГц от ВМ. Разностный сигнал после смесителя снова усиливается, фильтруется и подается на один из каналов счетчика без «мертвого» времени FXE (K+K, Германия), который обеспечивает относительную точность 3×10^{-13} при времени усреднения 1 с для измерения частот до 65 МГц. Результаты измерений со счетчика и измерителя фазовых шумов считываются по локальной сети при помощи компьютера, который в режиме реального времени производит обработку информации, сохраняет новые данные, выводит на экран результаты измерений и оповещает об отсутствии стабилизации частоты f_{rep} ФСОЧ по частоте излучения «часового» лазера и частоты «часового» лазера по частоте атомного перехода.

Таким образом, построена система сличения ОСЧ с цезиевым репером с помощью ВМ, входящего в группу хранителей единицы частоты. На рис.4 приведены результаты измерений частоты одного и того же ВМ относительно частот излучений цезиевого СЧ и ОСЧ. Следует отметить, что продолжительности сличений частот ВМ и цезиевого СЧ и сличений частот ВМ и ОСЧ различаются. Система вторичного охлаждения атомов работала непрерывно, однако большое влияние на долговременное функционирование ОСЧ оказывали сбои в системе стабилизации частоты излучения «часового» лазера по частоте атомного перехода, вызванные акустическими шумами в лаборатории. Таким образом, сличения проходили в разные моменты времени и с разным количеством точек измерений.

Для повышения стабильности и длительности непрерывной работы ОСЧ были протестированы два алгорит-

Рис.4. Результат сличения ОСЧ и цезиевого СЧ с ВМ, входящим в состав группы хранителей частоты. Кружки – отклонение частоты ВМ от частоты цезиевого СЧ, квадраты – отклонение частоты ВМ от частоты ОСЧ. За одни сутки могло проводиться несколько серий измерений частоты ВМ относительно ОСЧ с разной продолжительностью. По горизонтальной оси время представлено в формате модифицированной юлианской даты (MJD), при котором начало дня приходится на полночь, что соответствует общепринятому делению времени на сутки (MJD = JD – 2400000.5, где JD – юлианская дата; например, MJD = 57884 соответствует 00:00 11 мая 2017 г.).

Рис.5. Результаты долговременных измерений частоты излучения часового лазера. Данные, полученные начиная со второй половины 57952 МJD, отличаются от предыдущих лучшим отношением сигнал/шум биений между излучениями «часового» лазера и ФСОЧ, достигнутым благодаря использованию фемтосекундного режима ФСОЧ с большей мощностью в моде на $\lambda = 698$ нм. По оси ординат отложена разность абсолютных значений частот перехода $^{1}S_{0}-^{3}P_{0}$ атома 87 Sr, полученных в ходе измерений относительно частоты ВМ, и значения, рекомендованного СІРМ – 429 228 004 229 873.2 Гц. Продолжительность измерения на промежутке времени 57947–57950 МJD составила ~250000 с (зафиксировано одно кратковременное отсутствие стабилизации ФСОЧ после суток измерений) и была достигнута, в том числе за счет специальных мер по снижению акустических шумов в лаборатории, на время измерений.

Рис.6. Демонстрация эффективности алгоритма стабилизации частоты излучения «часового» лазера по частоте перехода ${}^{1}S_{0} - {}^{3}P_{0}$ атомов 87 Sr методом аппроксимации вероятности возбуждения функцией Лоренца при разных значениях спектральной ширины линии «часового» перехода. По оси ординат отложена частота коррекции АОМ-П (см. рис.3) за вычетом линейного дрейфа. На рис.6,*a*, *б*, *в*, *г* ширины линий перехода составляли 10, 10, 30 и 50 Гц соответственно.

ма стабилизации частоты излучения «часового» лазера по частоте атомного перехода. Мы провели две серии экспериментов по исследованию долговременной автономной работы ОСЧ. В первой серии использовался алгоритм стабилизации частоты излучения «часового» лазера по частоте атомного перехода ${}^{1}S_{0} - {}^{3}P_{0}$ атомов ${}^{87}Sr$ – по максимуму вероятности возбуждения Р в восстановленном спектре атомного перехода. Измерения проводились в течение девяти суток, а продолжительность автономной работы ОСЧ составляла 25000-50000 с (рис.5). Была также достигнута рекордная длительность непрерывной автономной работы ОСЧ и ФСОЧ - 250000 с. Одной из причин длительной непрерывной работы ОСЧ является уменьшение акустических шумов в лаборатории на время измерений. Однако необходимо, чтобы система сохраняла работоспособность в повседневных условиях. Для этого мы провели вторую серию измерений с использованием второго алгоритма, описанного ранее, на основе аппроксимации спектра вероятности возбуждения Р функцией Лоренца. Кроме того, мы переместили ФСОЧ в одну термостабилизированную комнату вместе с «часовым» лазером. Это позволило решить проблему потери стабилизации частоты $f_{rep} \Phi COY$ по частоте излучения «часового» лазера из-за дрейфа частоты самого ФСОЧ. На рис.6 демонстрируется эффективность используемого алгоритма стабилизации частоты «часового» лазера по атомному резонансу. Автономная работа ОСЧ обеспечивалась на протяжении 70000-200000 с без уменьшения акустических шумов в лаборатории.

6. Заключение

Представлены подходы к решению проблемы достижения долговременной непрерывной автономной работы ОСЧ на атомах ⁸⁷Sr. Первый подход основан на отказе от применения фазовой стабилизации лазерных источников для вторичного охлаждения атомов стронция. Он применим для стационарных устройств, которые не имеют ограничений по габаритам. Второй подход – алгоритм стабилизации лазера по атомному резонансу – применим как для стационарных ОСЧ, так и для возимых ОСЧ [20, 29], более подверженных воздействию акустических шумов. Применение данных методов позволило достичь штатной автономной работы ОСЧ на протяжении нескольких суток.

- 1. Essen L., Parry J.V.L. Nature, 176, 280 (1955).
- 2. Le Targat R. et al. Nat. Commun., 4, 2109 (2013).
- 3. Rosenband T. et al. Science, 319, 1808 (2008).
- 4. Huntemann N. et al. Phys. Rev. Lett., 113, 210802 (2014).
- 5. Godun R.M. et al. Phys. Rev. Lett., 113, 210801 (2014).
- 6. Altschul B. et al. Adv. Sp. Res., 55, 501 (2015).
- 7. Tarallo M.G. et al. Phys. Rev. Lett, 113 (2), 023005 (2014).
- 8. Derevianko A., Pospelov M. Nat. Phys., 10, 933 (2014).
- 9. Dow J.M., Neilan R.E., Rizos C. J. Geodyn., 83, 191 (2009).
- 10. Normile D., Clery D. Science, 333, 1820 (2011).
- 11. Nicholson T.L. et al. Nat. Commun., 6, 6896 (2015).
- Huntemann N., Sanner C., Lipphardt B., Tamm C., Peik E. *Phys. Rev. Lett.*, **116**, 063001 (2016).
- 13. Riehle F. C. R. Phys., 16, 506 (2015).
- 14. Gill P. Phil. Trans. R. Soc. A, 369, 4109 (2015).
- Ushijima I., Takamoto M., Das M., Ohkubo T., Katori H. *Nat. Photonics*, 9, 185 (2015).
- Chou C.W., Hume D.B., Koelemeij J.C.J., Wineland D.J., Rosenband T. *Phys. Rev. Lett.*, **104**, 070802 (2010).
- Guéna J. et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 391 (2012).
- Szymaniec K., Lea S.N., Liu K. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 203 (2014).
- 19. Lisdat C. et al. Nat. Commun., 7, 12443 (2016).
- 20. Koller S.B. et al. Phys. Rev. Lett., 118 (7), 073601 (2017)
- 21. Hachisu H., Ido T. Jpn. J. Appl. Phys., 54 (11), 112401 (2015).
- Dörscher S., Häfner S., Gerginov V., Weyers S., Lipphardt B., Riehle F., Sterr U., Lisdat C., Grebing C., Al Masoudi A. arXiv:1511.03888 (2015).
- Стрелкин С.А., Хабарова К.Ю., Галышев А.А., Бердасов О.И., Грибов А.Ю., Колачевский Н.Н., Слюсарев С.Н. ЖЭТФ, 148 (1), 25 (2015).
- Бердасов О.И., Грибов А.Ю., Белотелов Г.С., Пальчиков В.Г., Стрелкин С.А., Хабарова К.Ю., Колачевский Н.Н., Слюсарев С.Н. Квантовая электропика, 47 (5), 400 (2017) [Quantum Electron., 47 (5), 400 (2017)].
- 25. Barwood G., Gao K., Gill P., Huang G., Klein H. *IEEE Trans. Instrum. Meas.*, **50** (2), 543 (2001).
- Bernard J.E., Marmet L., Madej A.A. Opt. Commun., 150 (1-6), 170 (1998).
- 27. Peik E., Schneider T., Tamm C. J. Phys. B: At. Mol. Opt. Phys., 39 (1), 145 (2006).
- Telle H.R., Steinmeyer G., Dunlop A.E., Stenger J., Sutter D.H., Keller U. Appl. Phys. B, 69 (4), 327 (1999).
- 29. Poli N. et al. Appl. Phys. B., 117 (4), 1107 (2014).