Захват атомов тулия в оптическую решетку усиливающего резонатора вблизи магической длины волны 814.5 нм

Е.С.Калганова, А.А.Головизин, Д.О.Шевнин, Д.О.Трегубов, К.Ю.Хабарова, В.Н.Сорокин, Н.Н.Колачевский

Создан усиливающий резонатор оптической решетки на длине волны 814.5 нм для атомов тулия и исследованы его характеристики, а также измерены параметрические резонансы на колебательных частотах ловушки. Усиливающий резонатор будет использован для поиска магической длины волны для часового перехода на 1.14 мкм в атомах тулия.

Ключевые слова: стандарт частоты, оптическая решетка, усиливающий резонатор, параметрические резонансы, ультрахолодные атомы, тулий.

1. Введение

Точность современных оптических часов на ансамблях нейтральных атомов в оптических решетках и одиночных ионах достигает нескольких единиц восемнадцатого знака [1,2], что открывает широкие возможности как для фундаментальных исследований [3,4], так и для решения ряда прикладных задач [5]. Несмотря на опережающий прогресс в развитии оптических часов на нейтральных атомах стронция [6] и иттербия [7], а также на некоторых ионах (алюминия [8], иттербия [9]), идет непрерывный поиск новых перспективных атомных систем для создания стандартов частоты [10, 11]. Нами ведутся исследования характеристик стандарта частоты на нейтральных атомах тулия в оптической решетке. В качестве часового перехода в атоме тулия предлагается магнитодипольный переход между тонкими компонентами основного состояния на длине волны 1.14 мкм, который обладает естественной спектральной шириной 1.4 Гц и, согласно расчетам [12], должен иметь низкую чувствительность к сдвигу частоты за счет теплового излучения окружающей среды.

Точность оптического стандарта частоты определяется в основном тем, насколько детально изучены сдвиги частоты часового перехода под действием внешних полей и насколько хорошо удается их контролировать. Для атомов в оптической решетке одним из наиболее существенных сдвигов частоты часового перехода является сдвиг под действием излучения самой оптической решетки. Чтобы свести этот сдвиг к минимуму, оптическую решетку формируют на так называемой магической длине волны, для которой поляризуемости верхнего и нижнего уровней часового перехода совпадают [13]. Обычно магическая длина волны может быть рассчитана теоретически с погрешностью до нескольких нанометров [14], в то время как ее

Д.О.Шевнин, Д.О.Трегубов. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53

Поступила в редакцию 21 февраля 2018 г.

точное значение определяется экспериментально по сдвигу частоты часового перехода в зависимости от интенсивности излучения в оптической решетке [15, 16].

Как правило, в оптических стандартах частоты используются оптические решетки малой глубины порядка 10-50 $E_{\rm rec}$, где $E_{\rm rec} = h^2/(2m\lambda^2)$ – энергия отдачи; h – постоянная Планка; λ – длина волны оптической решетки; *m* – масса атома. С другой стороны, использование более глубоких ловушек позволяет повысить точность определения положения магической длины и исследовать нелинейные по интенсивности сдвиги уровней [17, 18]. Увеличить диапазон изменения интенсивностей, а также выделить заданную пространственную моду излучения позволяет усиливающий резонатор оптической решетки. Помимо увеличения интенсивности, использование усиливающего резонатора позволяет уточнить ее значение в области ловушки по сравнению со случаем обычной фокусировки, поскольку размер моды резонатора может быть определен с высокой точностью. Точное определение интенсивности, в свою очередь, открывает возможность достоверного измерения абсолютных значений поляризуемостей атомных уровней по сдвигу их частоты в световом поле.

В настоящей работе представлены результаты разработки и создания внешнего усиливающего резонатора оптической решетки для поиска магической длины волны часового перехода в атомах тулия в диапазоне 800–860 нм. Измерена эффективность перегрузки атомов тулия из магнитооптической ловушки (МОЛ) в оптическую решетку в зависимости от мощности лазерного излучения решетки, исследован спектр параметрических резонансов и измерены колебательные частоты атомов в оптической решетке.

2. Конструкция усиливающего резонатора

Ранее нами было рассчитано, что предпочтительная магическая длина волны для часового перехода в атомах тулия лежит в спектральном диапазоне 806–815 нм [12]. Для создания оптической решетки используется излучение перестраиваемого по длине волны лазера на сапфире, легированном титаном. Для уменьшения вероятности туннелирования между ячейками мы используем вертикальную конфигурацию решетки [19]. Загрузка атомов в опти-

Е.С.Калганова, А.А.Головизин, К.Ю.Хабарова, В.Н.Сорокин, Н.Н.Колачевский. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Международный центр квантовых технологий, Россия, 143025 Москва, Сколково, ул. Новая, 100; e-mail: kalganova.elena@gmail.com

Рис.1. Схема внешнего усиливающего резонатора оптической решетки:

 ΦU – фарадеевский изолятор; $\Phi Д$ – фотодиод; E Д – балансный детектор; v_{AOM} = 39 МГЦ – частота акустооптического модулятора (AOM); v_0 – оптическая частота излучения. Радиус кривизны зеркал $r_{\rm m}$ = 25 см, расстояние между зеркалами 481 мм, коэффициент отражения входного зеркала $R_{\rm in}$ = 87%, глухого зеркала $R_{\rm out}$ = 99.99%. Двойными стрелками изображены охлаждающие пучки МОЛ.

ческую решетку осуществляется из МОЛ, подробное описание которой приведено в работах [20, 21].

Внешний усиливающий резонатор представляет собой два сферических зеркала, установленных снаружи вакуумной камеры (рис.1). Мощность излучения в пучности стоячей волны в центре резонатора $P_{\rm c}$ связана с мощностью излучения на входе P_0 выражением

$$P_{\rm c} = P_0 \frac{T_{\rm in} T_{\rm f}}{(1 - T_{\rm f}^2 \sqrt{R_{\rm in} R_{\rm out}})^2} (1 + T_{\rm f} \sqrt{R_{\rm out}})^2,$$
(1)

где $T_{\rm in}$, $R_{\rm in}$ ($T_{\rm out}$, $R_{\rm out}$) – коэффициенты пропускания и отражения зеркал по интенсивности для входного (выходного) зеркала, $T_{\rm f}$ – коэффициент пропускания по интенсивности каждого фланца.

Коэффициент усиления мощности, определяемый как отношение мощностей в пучностях оптической решетки в резонаторе и при его отсутствии (когда входное зеркало отсутствует), есть

$$K = \frac{T_{\rm in}}{(1 - T_{\rm f}^2 \sqrt{R_{\rm in} R_{\rm out}})^2}.$$
 (2)

Измеренные полные потери на фланцах вакуумной камеры для длин волн в области 800 нм составляют 13% за полный обход резонатора, то есть $T_{\rm f}^4 = 0.87$ для двух фланцев в прямом и обратном проходе каждого. Чтобы максимизировать мощность излучения, циркулирующую в резонаторе, и согласовать импедансы, коэффициент отражения входного зеркала также должен быть равен 0.87. Второе зеркало было выбрано «глухим» с коэффициентом отражения более 0.99.

Была выбрана конфигурация резонатора, близкая к концентрической, так как она позволяет существенно изменять размер перетяжки при относительно небольшом изменении расстояния между зеркалами. Для выбранного радиуса кривизны зеркал ($r_m = 25$ см) изменение длины резонатора в диапазоне 460–495 мм приводит к изменению радиуса перетяжки w_0 по уровню интенсивности $1/e^2$ от 133 до 80 мкм. В настоящей работе все измерения

Рис.2. Зависимость коэффициента перегрузки атомов из МОЛ в оптическую решетку от мощности излучения в пучностях оптической решетки P_c (точки – экспериментальные данные, прямая – линейная аппроксимация).

проводились в конфигурации с расстоянием между зеркалами 481±1 мм, что соответствует размеру перетяжки 111.3±1.4 мкм. Пространственная мода излучения лазера была согласована с модой резонатора, для чего были выполнены соответствующие измерения и подобрана согласующая оптика.

Стабилизация частоты пика пропускания резонатора к частоте лазера осуществлялась методом Хенша–Куйо, подстройка длины резонатора происходила путем перемещения глухого зеркала с помощью пьезоэлектрического элемента. Полоса обратной связи составляла 6 кГц. Мощность циркулирующего в резонаторе излучения определялась с помощью фотодиода, установленного за выходным зеркалом резонатора. Коэффициент пропорциональности κ между мощностью излучения в резонаторе и напряжением на фотодиоде U был измерен отдельно и использовался в последующих экспериментах для определения мощности излучения в пучностях решетки. Итоговая относительная погрешность определения интенсивности излучения в области ловушки ($I = 2P_c/\pi w_0^2 = 2\kappa U/\pi w_0^2$) определятся выражением

$$\delta I/I = \sqrt{(\delta \kappa/\kappa)^2 + (\delta U/U)^2 + (2\delta w_0/w_0)^2}$$

и равна 6%–10 % в зависимости от мощности при $\delta k/k = 0.05$, $\delta U = 50$ мВ, U = 0.6-1.9 В, $\delta w_0/w_0 = 0.0013$.

Коэффициент усиления мощности излучения в резонаторе K = 8.5, что позволило достигнуть эффективности перегрузки атомов из МОЛ в оптическую решетку до 60%. Максимальная глубина ловушки в единицах энергии отдачи $U_0 = 500E_{\rm rec}$. Зависимость коэффициента перегрузки от мощности излучения в пучностях решетки приведена на рис.2. Эффективность перегрузки ограничивается доступной мощностью излучения, а также пространственным перекрытием перетяжки оптической решетки и облака атомов в МОЛ.

3. Параметрические резонансы

Как отмечалось выше, усиливающий резонатор позволяет повысить глубину удерживающего потенциала оптической решетки, а также определить ее. Одним из способов определения глубины удерживающего потенциала является исследование параметрических резонансов [23]. Потенциал одномерной оптической решетки, сформированной совмещенным со своим отражением гауссовым пучком и расположенной вдоль оси z, описывается выражением:

$$U_{\rm lat}(r,z) = -U_0(z) \exp(-2r^2/w_0^2) \cos^2(2\pi z/\lambda), \tag{3}$$

где $U_0(z) = 4\alpha_g a_0^3 P_c / (cw^2(z))$ – максимальная глубина решетки; r – расстояние от оси оптической решетки; α_{g} – поляризуемость основного состояния атома; а₀ – боровский радиус; c – скорость света; w(z) – радиус гауссова пучка на расстоянии z от перетяжки вдоль оси пучка. Вблизи минимумов выражение (3) имеет вид гармонического потенциала:

$$U_{\rm lat}(r,z) = \frac{1}{2}m\omega_r^2 r^2 + \frac{1}{2}m\omega_z^2 z^2,$$
 (4)

где $\omega_r = 2\pi f_r$ – поперечная колебательная частота; $\omega_z =$ $2\pi f_z$ – продольная колебательная частота атомов в решетке:

$$f_r = \frac{2}{\pi w_0^2} \sqrt{\frac{a_0^3 \alpha_{\rm g} P_{\rm c}}{cm}};$$
 (5)

$$f_z = \frac{2}{w_0 \lambda} \sqrt{\frac{2a_0^3 \alpha_{\rm g} P_{\rm c}}{cm}} \,. \tag{6}$$

Гармоническая модуляция глубины потенциала, т.е. мощности формирующего решетку излучения, на частотах $f = 2f_i/n$, где i = r, z, а n – целое число, приводит к параметрическому возбуждению переходов атомов между колебательными уровнями [23], их нагреву и потерям атомов из ловушки. Таким образом, исследуя потери атомов из оптической решетки в зависимости от частоты модуляции мощности можно определить продольную и поперечную собственные частоты ловушки.

Эксперимент по регистрации параметрических резонансов проводился следующим образом. Атомы тулия охлаждались и захватывались в МОЛ [20,21]; одновременно с МОЛ в области захвата присутствовало излучение оптической решетки. После цикла охлаждения удерживающие поля МОЛ выключались, и часть атомов оставалась захваченной в оптической решетке. Мощность излучения оптической решетки непрерывно модулировалась с помощью акустооптического модулятора (АОМ) (рис.1). Решетка формировалась пучком нулевого порядка дифракции АОМ, его мощность определялась мощностью радиочастотного сигнала, подаваемого на АОМ. Амплитудная модуляция радиочастотного сигнала АОМ приводила к модуляции мощности лазерного излучения на той же частоте. Во время эксперимента усиливающий резонатор оставался в стабилизированном состоянии. Его полоса пропускания Δν составляла 7 МГц, что существенно превышало использованные частоты модуляции, благодаря чему коэффициенты пропускания для несущей частоты и для частот, смещенных на частоту модуляции, практически совпадали. Таким образом, присутствие резонатора не влияло на параметры модуляции.

Нами были исследованы два диапазона частот, соответствующие продольным и поперечным резонансным частотам колебаний атомов в оптической решетке. Глубина модуляции составляла от 2% до 10% в зависимости от силы резонанса. Спустя время $\tau = 100$ мс после выключения МОЛ измерялось количество атомов, оставшихся в оптической решетке. Результаты исследования потерь атомов из решетки представлены на рис.3. Эксперимент также проводился в схеме, когда интенсивность решетки модулировалась не непрерывно, а в течение 300 мс после выключения полей МОЛ, а затем детектировалось число оставшихся в ловушке атомов. Результаты, полученные обоими методами, совпадают.

Для определения колебательных частот ловушки контуры параметрических резонансов вблизи их центра были аппроксимированы квадратичными функциями. Видно, что изменение мощности излучения в пучностях решетки в соответствии с выражениями (5), (6) приводит к сдвигу резонансной частоты (вставки на рис.3). Значения полу-

1.0

Рис.3. Спектры низкочастотных (а) и высокочастотных (б) параметрических резонансов в оптической решетке. Резонансные частоты определялись аппроксимацией экспериментальных точек вблизи резонансов квадратичными функциями. На вставках показано смещение частоты резонанса в зависимости от мощности излучения в пучностях решетки.

Табл.1. Частоты параметрических резонансов в исследуемой ловушке при двух мощностях излучения в пучностях.

<i>P</i> _c (Вт)	<i>f</i> _r (Гц)	2f _r (Гц)	f_z (кГц)	2f _z (кГц)
10.8	62±10	131±10	52±5	97±7
16.8	82±10	171 ± 10	57±5	116±7

ченных продольных и поперечных частот приведены в табл.1.

Из их соотношения (формулы (5), (6)) можно определить динамическую поляризуемость основного состояния атома тулия на длине волны 814.5 нм и размер перетяжки оптической решетки:

$$\alpha_{\rm g} = \frac{f_z^4 \lambda^4 cm}{16f_r^2 a_0^3 \pi^2 P_{\rm c}},\tag{7}$$

$$w_0 = \frac{\lambda}{\sqrt{2\pi}} \frac{f_z}{f_r}.$$
(8)

Вычисленная по формуле (7) поляризуемость α_{g} = 146±44 а.е., для расчетов использовались колебательные частоты более глубокого потенциала, соответствующего $P_{\rm c} = 16.8$ Вт, для которого влияние ангармонизма меньше. Ранее в работе [12] поляризуемость основного состояния атома тулия была рассчитана теоретически в большом диапазоне длин волн; найденное для нее значение $\alpha_{\rm g}$ (195 а.е. на длине волны $\lambda = 814.5$ нм) согласуется с результатом описанного выше эксперимента. Это указывает на достаточно высокую достоверность расчетов, несмотря на значительные трудности, связанные с вычислениями уровней энергий и сил осцилляторов для редкоземельных атомов с незаполненными внутренними оболочками [24–26]. Определенный по формуле (8) размер перетяжки w_0 составил 124±12 мкм, что в пределах погрешности совпадает с расчетным значением $w_0 = 111.3 \pm 1.4$ мкм. Завышенное значение размера перетяжки, полученное из формул для частот параметрических резонансов, обусловлено тем, что температура атомов в эксперименте сопоставима с глубиной ловушки, а это приводит к существенному ангармонизму потенциала [27]. Несмотря на высокую погрешность метода, согласование между расчетным и полученным из эксперимента значениями размера перетяжки говорит о справедливости экспериментальной оценки поляризуемости основного состояния.

4. Заключение

Представлены результаты исследования ультрахолодных атомов тулия, захваченных в оптическую решетку, которая формируется с помощью внешнего усиливающего резонатора на длине волны 814.5 нм. Коэффициент усиления резонатора по мощности составил 8.5, что позволило достичь в пучностях решетки мощности до 25 Вт и реализовать эффективность перезагрузки атомов из МОЛ в оптическую решетку 60%. Удерживающий потенциал оптической решетки был охарактеризован с помощью исследования параметрических резонансов. Из частот параметрических резонансов была определена поляризуемость основного состояния атома тулия на длине волны 814.5 нм, которая составила 146±44 а.е.

Усиливающий резонатор позволил значительно увеличить глубину потенциала оптической решетки, что в дальнейшем будет использовано для экспериментального поиска магической длины волны для часового перехода 1.14 мкм в атоме тулия. Кроме того, планируются измерения дифференциальных скалярной и тензорной поляризуемостей, а также дифференциальной статической поляризуемости, определяющей чувствительность частоты часового перехода к тепловому излучению окружающей среды.

Работа выполнена при поддержке РФФИ (гранты № 18-02-00628, 16-29-11723).

- Hinkley N., Sherman J.A., Phillips N.B., Schioppo M., Lemke N.D., Beloy K., Pizzocaro M., Oates C.W., Ludlow A.D. Science, 341, 1215 (2013).
- Bloom B.J., Nicholson T.L., Williams J.R., Campbell S.L., Bishof M., Zhang X., Zhang W., Bromley S.L., Ye J. *Nature*, 506, 71 (2014).
- Chou C.W., Hume D.B., Rosenband T., Wineland D.J. Science, 329, 1630 (2010).
- Blatt S., Ludlow A.D., Campbell G.K., Thomsen J.W., Zelevinsky T., Boyd M.M., Ye J., Baillard X., Fouché M., Targat L.R., Brusch A., Lemonde P., Takamoto M., Hong F.-L., Kator H., Flambaum V.V. *Phys. Rev. Lett.*, **100**, 140801 (2008).
- Müller J., Dirkx D., Kopeikin S.M., Lion G., Panet I., Petit G., Visser P.N.A.M. Space Sci. Rev., 214, 5 (2018).
- Nicholson T.L., Campbell S.L., Hutson R.B., Marti G.E., Bloom B.J., McNally R.L., Zhang W., Barrett M.D., Safronova M.S., Strouse G.F., Tew W.L., Ye J. *Nat. Commun.*, 6, 6896 (2015).
- Schioppo M., Brown R.C., McGrew W.F., Hinkley N., Fasano R.J., Beloy K., Yoon T.H., Milani G., Nicolodi D., Sherman J.A., Phillips N.B., Oates C.W., Ludlow A.D. *Nat. Photonics*, **11**, 48 (2017).
- Chen J.-S., Brewer S.M., Chou C.W., Wineland D.J., Leibrandt D.R., Hume D.B. Phys. Rev. Lett., 118, 053002 (2017).
- Huntemann N., Sanner C., Lipphardt B., Tamm Chr., Peik E. *Phys. Rev. Lett.*, **116**, 063001 (2017).
- Campbell C.J., Radnaev A.G., Kuzmich A., Dzuba V.A., Flambaum V.V., Derevianko A. *Phys. Rev. Lett.*, **108**, 120802 (2012).
- 11. Arnold K.J., Kaewuam R., Roy A., Tan T.R., Barrett M.D. arXiv:1712.00240 (2017).
- Sukachev D., Fedorov S., Tolstikhina I., Tregubov D., Kalganova E., Vishnyakova G., Golovizin A., Kolachevsky N., Khabarova K., Sorokin V. *Phys. Rev. A*, **94**, 022512 (2016).
- Katori H., Takamoto M., Pal'chikov V.G., Ovsiannikov V.D. *Phys. Rev. Lett.*, **91**, 173005 (2003).
- Arora B., Safronova M.S., Clark C.W. Phys. Rev. A, 76, 052509 (2007).
- Takamoto M., Hong F., Higashi R., Katori H. Nature, 435, 321 (2005).
- Yi L., Mejri S., McFerran J.J., Coq Y.L., Bize S. *Phys. Rev. Lett.*, 106, 073005 (2011).
- Ovsiannikov V.D., Marmo S.I., Palchikov V.G., Katori H. *Phys. Rev. A*, 93, 043420 (2016).
- Brown R.C., Phillips N.B., Beloy K., McGrew W.F., Schioppo M., Fasano R.J., Milani G., Zhang X., Hinkley N., Leopardi H., Yoon T.H., Nicolodi D., Fortier T.M., Ludlow A.D. *Phys. Rev. Lett.*, 119, 253001 (2017).
- 19. Lemonde P., Wolf P. Phys. Rev. A, 72, 033409 (2005).
- Sukachev D., Sokolov A., Chebakov K., Akimov A., Kanorsky S., Kolachevsky N., Sorokin V. *Phys. Rev. A*, 82, 011405(R) (2010).
- Сукачев Д.Д., Калганова Е.С., Соколов А.В., Федоров С.А., Вишнякова Г.А., Акимов А.В., Колачевский Н.Н., Сорокин В.Н. Квантовая электроника, 44 (6), 515 (2014) [Quantum Electron., 44 (6), 515 (2014)].
- 22. Hansch T., Couillaud B. Opt. Commun., 35 (3), 441 (1980).
- Friebel S., D'Andrea C., Walz J., Weitz M., Hansch T.W. *Phys. Rev. A*, 57, R20 (1998).
- Mitroy J., Safronova M.S., Clark C.W. J. Phys. B: At. Mol. Opt. Phys., 43, 202001 (2010).
- Dzuba V.A., Kozlov A., Flambaum V.V. Phys. Rev. A, 89, 042507 (2014).
- 26. Chu X., Dalgarno A., Groenenboom G.C. Phys. Rev. A, 75, 032723 (2007).
- Ravensbergen C., Corre V., Soave E., Kreyer M., Tzanova S., Kirilov E., Grimm R. arXiv:1801.05658 (2018).