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Abstract.  The interference of laser beams with a wide spectrum is 
studied theoretically and numerically. It is shown that in the cross 
section of such intersecting beams in a small vicinity of zero of the 
complex mutual coherence function, the change in the argument of 
the slow amplitude of this function corresponds to the phase singu-
larity. An approximate analytical representation of the mutual 
coherence function in the vicinity of the singularity point is given. It 
is found that an average ‘funnel’ diameter of the modulus of the 
mutual coherence function that arises in the singularity region does 
not depend on the intensity of the light beams and remains constant 
when the longitudinal coordinate changes. The emergence of phase 
dislocations in the interference pattern is established.

Keywords: phase singularity, interference, correlation functions, 
laser fields with a wide spectrum. 

1. Introduction 

Well-studied phase singularities in monochromatic light 
fields, also called optical vortices, arise at points where the 
field amplitude is zero and the phase is uncertain [1, 2].

Of no less interest are nonmonochromatic partially coher-
ent fields, in which there are no regions where the amplitude 
vanishes, and phase singularities do not arise. At the same 
time, the singular behaviour reveals the correlation functions 
of such fields, which describe their coherent properties.

The singular behaviour of the phase of the spectral degree 
of coherence was reported in theoretical work [3], where two 
pinholes on an opaque screen illuminated by partially coher-
ent light were the source of the field. In this paper, the con-
cepts of singular optics were first extended to correlation 
functions. In a theoretical analysis of coherent properties of a 
partially coherent vortex-free field of another kind, i. e. the 
superposition of Hermite – Gaussian modes, Gbur and Visser 
[4] showed that in this field there exist pairs of points in which 
the spectral degree of coherence vanishes, and the phase of 
the spectral coherence function has a vortex structure in the 
vicinity of these points (thus, the term ‘coherence vortex’ was 
introduced). Subsequently, the spectral degree of coherence 
of various partially spatially coherent fortex-free and vortex 
light fields has been investigated by many authors (see, for 
example, [5 – 15]).

For a vortex-free noncoherent superposition of Laguerre –
Gaussian modes of various orders, Bogatyryova et al. [5] found 
experimentally that the phase singularity of the spectral degree 
of coherence has the form of a circular edge dislocation. For a 
partially coherent vortex field, the singularity of the spatial 
coherence function in the form of a ring dislocation was first 
observed experimentally and investigated numerically in [6]. 
Yang et al. [7] obtained a dependence of the number of ring 
dislocations of a partially coherent vortex beam on the radial 
and azimuthal mode indices of the Laguerre – Gaussian mode. 
The helicoidal phase change of the complex coherence function 
was first experimentally demonstrated in [8] by the example of 
a spatially incoherent field, an optical vortex in which was 
introduced by a special zone plate.

A theoretical investigation of the spatial coherence func-
tion of a partially coherent field with singularities introduced 
into it by various configurations and its change with the beam 
propagation was carried out in [9, 10]. A generalised descrip-
tion of the correlation singularities using the four-variable 
transverse spectral density function proposed in [11] made it 
possible to interpret the experimental results obtained in [6] 
and [8] from a unified point of view. Paper [12] is devoted to 
the elucidation of the connection between phase singularities 
and coherence singularities, and paper [13] analyses the topo
logy of the correlation singularities of partially coherent vor-
tex beams. Stahl and Gbur [14] studied the evolution of the 
complete structure of the correlation singularity of such 
beams, including its description in the transverse plane and in 
the direction of propagation. The models of the investigated 
fields in [5 – 7, 11 – 14] were various modifications of the La- 
guerre – Gaussian beams. In a similar model used in [15], the 
measurement of the complex degree of coherence allowed the 
sign and magnitude of the topological charge of a partially 
coherent vortex beam to be simultaneously determined.

Another model of the optical beam, Gaussian – Schell 
(GSM) model, is widely used in the investigation of vector 
partially coherent beams with a spatially varying polarisation 
state (see, for example, [16 – 19]). The study of such beams is 
of interest both from a fundamental point of view and from 
the point of view of their use in various applications [16], and 
therefore the possibility of existence of correlation singulari-
ties in them and evolution of the properties of singular struc-
tures are of great importance. The propagation of a partially 
coherent vortex-free radially polarised beam in free space and 
in a turbulent atmosphere described by a non-Kolmogorov 
model was investigated in papers [17] and [18], respectively. 
The change in the statistical properties of such a beam with an 
optical vortex introduced into it was considered in [19]. In- 
vestigation of the correlation singularities of multi-Gaussian 
correlated Schell-model beams (so-called MGCSM beams) 
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made it possible to substantiate a method for determining the 
M-index of such beams with respect to the number of ring 
dislocations at a large distance from the source [20].

However, we note that for all the variety of partially co- 
herent light beams whose correlation singular properties have 
been investigated, these are quasi-monochromatic fields in 
which the violation of spatial coherence is modelled in some 
specific way. The problems of existence and properties of the 
correlation singularities of the light with a large spectral width 
and random spatial structure, as well as manifestations of the 
phase singularity in the interference of two laser speckle fields 
with a wide spectrum (broadband fields), have scarcely been 
touched upon in the literature.

In this paper, we study theoretically the phase singulari-
ties of the correlation function of mutual coherence in the 
interference of two speckle fields with a random spatial struc-
ture and a wide frequency spectrum (D w ~ 1000 cm–1). With 
such a spectral width, the light field is coherent only in a 
1/D w ~ 10–3-cm-thick narrow layer (called a coherence layer 
and perpendicular to the direction of propagation). The spa-
tial width of the interference region, even at a small angle 
between the beams, is much smaller than their diameters, 
which determines a small efficiency of coherent interaction of 
intersecting beams. To expand the region of coherent interac-
tion of interfering beams, the method of introducing disper-
sion was used [21] (see below).

We propose an optical scheme for the interference of 
broadband beams of various spatial configurations. To esti-
mate the degree of mutual coherence of interfering beams, 
which determines the efficiency of their coherent interaction 
in four-wave mixing schemes and in loop phase-conjugation 
schemes, we use the function of mutual coherence of two 
beams at one point of space, introduced in [22],

( ) ( , ) ( , )E t E tr r r1 2G = * ,	 (1)

where the bar denotes averaging over time. It determines the 
interference contribution to the light intensity in the region of 
superposition of two fields with a wide spectrum

I (r) = I1(r) + I2(r) + 2ReG (r),	 (2)

where I1,2 is the intensity of each of the fields.
Based on the numerical simulation, we study the charac-

teristics of the interference pattern. It is found that in the 
transverse plane z = const, including the initial plane, there 
exist points at which the modulus of the complex mutual co- 
herence function vanishes, and the phase of its slow ampli-
tude exhibits a singular behaviour, while the interfering beams 
are vortex-free. It is shown that the phase singularities of the 
mutual coherence function lead to the appearance of disloca-
tions in a stationary interference pattern.

It is also shown that the phase singularities also take place 
for the slow amplitude of the generalised mutual coherence 
function (introduced in the present paper), which character-
ises the excitation of oscillations by light fields in a nonlinear 
medium that lead to stimulated scattering of light.

2. Analytical consideration 

The complex function f (x, y) = f ' (x, y) + i f '' (x, y) vanishes at 
the point of intersection (x0, y0) of the ‘zero lines’ of the real 
and imaginary parts: f ' (x, y) = 0 and f '' (x, y) = 0. Upon pas-
sage around the zero point in the positive direction (counter-

clockwise), arg( f ) increases by 2p. If f ' (x, y) and f '' (x, y) are 
uniform random functions with zero mean values, then the 
‘zero lines’ in the х у plane form a grid with zero points at 
their intersections [23].

For an effective interaction of broadband light beams in a 
medium, a temporal variation of their envelopes in the entire 
region of beam superposition is needed. Light beams with 
mutually correlated coherence layers can be obtained by di- 
viding one and the same source beam using a semitransparent 
mirror.

To increase the interaction region of the beams crossing at 
a small angle, their coherence layers are made parallel by til
ting with respect to the axial directions; in this case, the width 
of the interaction region is limited only by the beam diame-
ters. The necessary slope of the coherence layers is achieved 
by introducing dispersion [21]: the beams propagate through 
a dispersing element, for example a prism. In the prism, the 
slope of the coherence layers is due to the difference of the 
phase-front velocities from the group velocity with which the 
coherence layer moves. As a dispersing element use can be 
made of a diffraction grating with a triangular profile of gro- 
oves, operating in the same diffraction order (see below).

We assume that in the initial plane z = 0 both interfering 
beams are spatially coherent and correlated with time. The 
interference of such light beams can be provided by a scheme 
based on a Mach – Zehnder interferometer with diffraction 
gratings (see Fig. 1). A broadband plane light beam (LB) falls 
on a semitransparent beam-splitting mirror M1. The coher-
ence layer of thickness lc = 1/D w is oriented perpendicular to 
the direction of the incident wave. The separated light beams 
LB1 and LB2 pass through thin amplitude – phase transpar-
encies T1 and T2, introducing random phase and amplitude 
changes into the beams. They are installed in front of the 
same diffraction gratings DG1 and DG2. Diffraction gratings 
with the orientation of the grooves perpendicular to the plane 
of the pattern operate in opposite diffraction orders: m2 = –
m1. The directions of the incident and diffracted light beams 
are shown by arrows. The dispersed beams DB1 and DB2 
coming out of the two arms of the interferometer are superim-
posed by means of a folding mirror M3 and a semitransparent 
mirror M4. An inclined glass plate Pl serves to equalise the 
optical lengths of the arms of the interferometer, which makes 
it possible to combine parallel correlated coherence layers in 
interfering dispersed beams DB1 and DB2.
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Figure 1.  Interference scheme for dispersed light beams: 	
( LB ) incident light beam; ( LB1, LB2 ) beams in the arms of the interfe
rometer; ( DB1, DB2 ) dispersed beams; ( M1, M4 ) semitransparent mir-
rors; ( M2, M3 ) folding mirrors; ( T1, T2 ) amplitude – phase transparen-
cies; ( DG1, DG2 ) diffraction gratings; ( lc  ) coherence layers of the inci-
dent and two dispersed beams; ( Pl ) plane-parallel glass plate.
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We assume that the imaginary images in the system of 
mirrors M1 and M2, the z' axis, the z' = 0 plane, as well as in 
the planes in which the transparency T2 and the diffraction 
grating DG2 are located, are aligned respectively with the z 
axis, the z = 0 plane and the planes of the transparency T1 
and the diffraction grating DG1 in the upper arm of the 
interferometer.

The diffraction grating DG1 (DG2), operating in one dif-
fraction order mj ( j = 1, 2 is the number of the grating) and set 
perpendicular to the z axis, converts a monochromatic plane 
wave incident on it with the wave vector k (w, a0) [a0 = 
k (w, a0)^ is the component of the wave vector k (w, a0) per-
pendicular to the z axis] to a plane wave with the wave vector 
k (w, a), where a = a0 + aj, the vector aj is perpendicular to the 
z axis and to the direction of the grating grooves, |aj| = 
|mj|(2p/dj), and dj is the grating period. The axial direction of 
the broadband dispersed light beam after the grating is given 
by the vector k (wr , aj), where wr  is the mean frequency of the 
radiation. It forms with the z axis the angle cj, equal to the 
deviation angle of the corresponding grating for the frequency 
wr . If the x-axis orientation is perpendicular to the primes, we 
obtain sin cj = aj /|k (wr )|, where aj = mj (2p/dj) is the projection 
of the vector aj onto the x axis.

After the passage of light beams through the diffraction 
grating, the orientation of the coherence layers does not chan- 
ge: both in the diffracted and in the incident beam they are 
perpendicular to the z axis. Thus, the axial direction of the 
dispersed light beam is deviated from the normal to the cohe
rence layers by the angle cj. In the scheme described above, 
the coherence layers of the interfering light beams DB1 and 
DB2 are parallel to one another, and the angle of intersection 
of the beams yj = |c1 – c2| for d1 = d2 = d and |mj| = 1 is 2 lr /d. 
Note that along with the described optical scheme, use can be 
made of a scheme with reflective diffraction gratings installed 
as end mirrors of the Michelson interferometer.

The fields of the interfering light beams can be represented 
as a superposition of monochromatic components:

Ej (r, t) = j jw

3

( ) ( ) ( )exp i dt E r
0
e w w wy ,	 (3)

where

Ejw (r) = j ( ) ( , )exp i dk re wa a a-6 @y .	 (4)

When the correlated coherence layers of both beams are com-
bined, in expression (3) we can put

e1(w) = e2(w) = e(w).	 (5)

Representing the time variation of the field incident on the 
beam-splitting mirror M1 as a stationary random process, 
and the transverse spatial field distribution after each of the 
transparencies T1, T2 as a homogeneous Gaussian random 
process, we introduce the normalised spectral densities h (w) 
and h (a) by the relations [24]

( ) ( )e w e w* l  = h (w) d(w – w’),	 (6)

j j( ) ( ) ( ) ( )cn I
8

*
j jp

e e h da a a a a= -l l ,	 (7)

where the bar denotes averaging over temporal field realisa-
tions, and the angle brackets mean averaging over the realisa-
tions of the transverse spatial distribution of the field that 
arises when different statistically uniform transparencies T1 
and T2 are installed; and I j  is the cross-section averaged 
intensity of the light beam.

Due to the deviation of the dispersed beam, the relation 
hj (a) = j

0h (a – aj) is valid, where j
0h (a) is the spectral power 

density of the light beam incident on the corresponding dif-
fraction grating. In what follows, we assume ( )

1
0h (a) = ( )

2
0h (a) = 

( )0h (a).
We introduce slowly varying amplitudes Ajw(r) of the 

fields, assuming for a1 = a and a2 = –a

E1w(r) = A1w(r) exp(– ik(w, a)r),

E2w(r) = A2w(r) exp(– ik(w, – a)r).	
(8)

The mutual coherence function G (r) can be represented in 
the form

G (r) = 
3

( ) ( )dr
0

h w wGwy ,	 (9)

where

Gw(r) = E1w(r)E
*
2w(r).	 (10)

From relations (8) and (10), with allowance for Oxa , we 
have

Gw(r) = Bw(r) exp(– i2ax),	 (11)

where Bw(r) = A1w(r)A
*
2w(r).

From (9) and (11) we obtain

G (r) = B (r) exp(–i2ax),	 (12)

where

B (r) = 
3

( ) ( )dB r
0

h w wwy 	 (13)

is the slowly varying amplitude of the function G (r); B(r) = 
B' (r) + i B'' (r); and |G (r)| = |B (r)|.

Exception for the regions of the phase singularity – small 
vicinities of zero points (see below) – the characteristic scale 
of the variation of B (r) with respect to x and y is estimated as 
rcor = lr /2q, where rcor is the correlation radius of the speckle 
field (the transverse size of the speckle spots); lr  is the average 
wavelength; and 2q is the angular divergence of the radiation. 
If the angle between the interfering beams is y >> 2q, then rcor 
is much larger than the distance between the interference 
bands L = lr /y.

3. Calculation of the mutual coherence function

Two approaches were used in this paper: numerical simula-
tion, which allows one to obtain two-dimensional distribu-
tions of the amplitude and phase of the mutual coherence 
function in the cross section of intersecting beams, z = const; 
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and the linear approximation method based on approximate 
analytical expressions.

3.1. Numerical simulation

In the numerical simulation of the function G (r) and the slow 
amplitude B(r), the calculation began with the computation 
of the fields Ejw(r) in accordance with (4). On a discrete set of 
values of ax, ay, we used a random number generator to set 
the real and imaginary parts of the complex amplitudes ej (a), 
distributed according to the Gaussian law with the variance 
4p/(cn) I h(ax, ay) d ax d ay [ I  is the average intensity of the 
initial broadband uniform plane wave, and d ax and d ay are 
the intervals between the discrete values of ax and ay]. The 
two independent sets of complex amplitudes e1,2(a) obtained 
in this way were used in (4) to calculate the fields Ejw(r) and 
then in accordance with formulas (9) – (13) to determine G (r)
and B(r).

In this section, as well as in Section 4, calculations were 
performed at a centre wavelength lr  = 10–4 cm, spectral width 
Dw = 1000 cm–1 (the ratio Dw/w was 0.1) and Gaussian fre-
quency spectrum. Note that this relation holds for a promis-
ing carbon monoxide laser.

The angular divergence 2q0 of the initial beam was as- 
sumed to be 4 ́  10–3 rad, and the deflection angles of the dif-
fraction gratings were |cj| = 2 ́  10–2 rad. The angle between 
the interfering beams, y = 4 ́  10–2 rad, was an order of mag-
nitude greater than their angular width.

3.2. Linear approximation

In the fixed plane z = const, in a small vicinity of zero of the 
function B(r) with coordinates x0, y0, the approximate repre-
sentation

B(x, y, z) » P0(x – x0) + Q0(y – y0)	 (14)

is valid, where

P0 = 00 ¶
¶iP P
x
B

,x y0 0

+ =l m , Q0 = 0 0 ¶
¶iQ Q
y
B

,x y0 0

+ =l m 	 (15)

are the complex derivatives B(x, y, z) with respect to x and y at 
the zero point (x0, y0); and |x – x0|, |y – y0| << rcor. Passing 
to the polar coordinate system r and J, we set x – x0 = rcosJ, 
y – y0 =  rsinJ, and, denoting BFt  = argB, we obtain from (14) 
and (15)

tan BFt  = 0

0 0

0

cos sin

cos sin

P Q

P Q

J J

J J

+

+

l l

m m
.	 (16)

If the point with the coordinates x, y moves along a 
straight line passing through the zero point, then in accor-
dance with (14) and (16) the phase BFt (x, y) = BFt (J) remains 
unchanged and only changes jumpwise by ± p after passing 
through the zero point. Therefore, in a small vicinity of the 
zero point 

BFt (J ± p) = BFt (J ) ± p.	 (17)

With a symmetrical arrangement of the zero lines relative 
to the coordinate axes x and y (as shown below in Fig. 4), 
expression (16) yields the relation

tan BFt  = S
( / )

( / )

tan cos sin

tan cos sin

2

2

g J J

g J J

-

+
,	 (18)

where S = P0m / 0Pl ; and g £ p/2 is the angle between the zero 
lines. Setting BFt  = 3p/4 for J = 0, we obtain S = –1 from (18), 
which will be used below in the calculations.

4. Mutual coherence function in the vicinity  
of an isolated point of singularity 

4.1. Distribution of the slow amplitude of the mutual  
coherence function B(x, y) in the z = const plane

Figures 2a and 2b show numerically simulated two-dimen-
sional distributions of the modulus and phase of the slowly 
varying amplitude B (x, y) in the vicinity of the zero point at 
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Figure 2.  Distributions in the vicinity of ( a ) the zero point |B (x, y)| 
and ( b ) phase FB = argB (x, y) and ( c ) zero lines B' (x, y) = 0 (solid 
curve) and B'' (x, y) = 0 (dashed curve).
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z = 1 cm. The lighter areas correspond to large values of |B| 
and FB = argB. Figure 2c illustrates the zero lines of the real 
and imaginary parts of B (x, y), intersecting at the zero point 
(x0, y0), and the quadrants in the complex plane and the 
boundary values of the phase FB. The two-dimensional phase 
distribution in Fig. 2b is in good agreement with the zero-line 
trajectory in Fig. 2c and clearly demonstrates an increase in 

BFt  by 2p upon passage around the zero point.
Figure 3a shows the dependences of |B| and FB on x, 

obtained by numerical simulation for y = y0 and z = 25 cm. 
For comparison, we present also the dependence of |B| on x 
calculated in the linear approximation by formula (14) using 
the numerically obtained values of P0 and Q0. The lower part 
of the curve |B (x0, y0)| is given on the right on an enlarged 
scale. It is clearly seen that for x = x0 the phase FB (x, y0) 
changes abruptly by p, which agrees with (17).

The dependence of the phase FB (x, y) on x for various 
values of y = const is given in Fig. 3b. In the case of y = y0 
(solid line), when passing through the zero point, there is a 
phase jump of FB by p. The dependence of FB (x, y) on x for 
y ¹ y0 has a more complicated form, when the point (x, y) 
moves along a straight line that does not pass through the 
zero point. In this case, it intersects lines passing through the 
zero point at different angles J, the phase BFt (J) on which is 
given by expression (16). The number of intersecting straight 
lines per unit displacement of the point (x, y) along x increases 
with an approach of x to x0; in this case, the phase FB (x, y) 
changes faster. The curves in Fig. 3b (dashed curve for y = 
y0 + 0.5 lr  and dotted curve for y = y0 + 2 lr ) represent a spe-

cific form of this dependence in a small vicinity of the zero 
point; they also show that the smaller the deviation of y from 
y0, the closer the dependence of FB (x, y) to the abrupt one. 
For x = x0, the curves with different values of y intersect at 
one point, since J = p/2 and the phase FB, which is equal to 
arctan( 0Qm / 0Ql ) in the linear approximation in accordance 
with formula (16), does not depend on y.

In Fig. 3c, the change in the phase FB upon bypassing the 
zero point with a small radius R < 3 ́  10–3 cm does not 
depend on R, which agrees with (16). In this case, relation (17) 
holds with good accuracy. Spatial phase fluctuations strictly 
azimuthal at small radii of bypassing seem to be of a general 
nature with the mutual coherence fluctuations investigated in 
[22]. A comparison of the dependences of |B| on x calculated 
numerically and in the linear approximation, as well as the re- 
sults presented in Fig. 3, show that the linear approximation 
describes well the behaviour of the slow amplitude B (x, y) in 
the vicinity of the zero point with a radius less than 3 ́  10–3 cm.

4.2. Phase distribution of the mutual coherence function 
G (x, y) in the z = const plane

According to (12), the phase of the function G (x, y) can be 
written as

FG (x, y) = FB (x, y) – 2ax.	 (19)

Figure 4 shows the phase lines FG (x, y) = const, obtained 
from (19) and (18) at S = –1 and g = 60 °. If we assume B = 
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const in (12), then the set of phase lines with different values 
of the FG has the form of rectilinear bands repeating with a 
period L = p/a. The presence of the dependence of B on x, y 
disrupts the regular pattern of the bands.

The phase lines with FB (x, y) = p /4 and 9p /4, emerging 
from the instability point C perpendicular to the y axis, 
deflect into the region of negative values of y and form a 
‘fork’ inside which the phase lines pass through the zero 
point O. Analogous ‘forks’ in the vicinity of points of phase 

singularity arise also with the interference of monochro-
matic light beams [25].

The coordinate yC of point C is determined from the equa-
tion

( , )

d

d

x

x y
a2CBF

= .	 (20)

From expressions (18) at S = –1 and (20) one can obtain

yC » 1/(2a) tan(g/2).	 (21)

The course of the phase lines near points O and C is 
shown in Fig. 5a. It follows from (19) and (20) that at point 
C, dFG /dx = 0. As can be seen from the figure, in the vicinity 
of point C the phase FG (x, y)������������������������������ depends weakly on the coordi-
nates x, y and remains close to p /4. The position of the inter-
section points of the phase lines with the y axis for different 
angles g between the zero lines, presented in Fig. 5b, agrees 
well with formula (21).

Figure 6a shows the numerically simulated two-dimen-
sional distribution of the phase FG = argG (x, y) in the vicinity 
of the zero point. As in Fig. 2b, the lighter areas correspond 
to larger values of the phase. The phase singularity of the slow 
amplitude B (x, y)���������������������������������������������� manifests itself in the presence of a charac-
teristic ‘fork’ near the zero point in the spatial distribution of 
the phase FG (x, y), which also appears in the intensity of the 
interference pattern shown in Fig. 6b.
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5. Determination of |B (x, y)| in the region 
of singularity as a function of z, using 
statistical characteristics

The spatial coherence of each broadband light beam and the 
mutual coherence of two interfering light beams decrease with 
distance from the initial plane z = 0, in which such radiation 
is assumed to be spatially coherent.

We assume P (x, y, z) = ¶B (x, y, z) /¶x and use an analyti-
cal calculation for the Gaussian shape of the spectrum h(0)(a) 
to find the root-mean-square quantities

( ) ( , , )B z B x y z 2
=u  и ( ) ( , , )P z P x y z 2

=u .

They do not depend on the frequency spectrum h0 (w), and 
their values in the initial plane z = 0 are determined by expres-
sions

(0) 8 /( )B cn I I1 2p=u ,

(0) 8 /( ) ( ) lnP cn I I k 21 2p w q=u r^ h.	
(22)

 

The calculation showed that the quantities ( )B zu  and ( )P zu  
change similarly with z, such that

( ) / (0) ( ) / (0) ( )B z B P z P H z= =u u u u .	 (23)

The dependence H(z) is shown in Fig. 7. The obtained depen-
dence ( )B zu  agrees with the results of [22], which describes the 
visual mechanism of a decrease in mutual coherence upon 
propagation of light beams.

Under the conditions of fulfilment of the linear approxi-
mation, from (14) with P0 = Q0 it follows that in the fixed 
plane z = zt  = const the transverse distribution |B (x, y, zt)| 
has the form of an inverted cone of circular cross section 
(‘funnel’). The ‘funnel’, in which P0 = Q0 = ( )P zu  and the 
height is equal to ( )B zu , is called average statistical. The open-
ing angle of such a funnel ( )zbu  = 1/ ( )P zu  increases with in-
creasing z, and the diameter of the hole remains constant, Du  = 
2 ( )B zu / ( )P zu  = 2 ( )B 0u / ( )P 0u . Taking (22) into account, we have 

( ( ) )lnD k2 2 w q=u r .	 (24)

With an average wavelength of lr  = 10–4 cm and an angu-
lar divergence of 2q = 4 ́  10–3 used in the calculations, we 

obtain from (24) Du  = 1.32 ́  10–2 cm. This value is 2  times 
smaller than the analogous calculation of the ‘funnel’ diame-
ter of intensity in the singularity region of a single monochro-
matic light beam with a wavelength equal to lr .

6. Generalized mutual coherence function

The above-considered mutual coherence function G (r) des- 
cribes the interaction of two broadband light fields, which 
leads to the formation of a stationary interference pattern. 
The generalised mutual coherence function

( , ) ( , ) ( , ) ( )exp iE t E t tr r r1 2G W W= -* 	 (25)

is introduced to characterise the interaction of broadband 
fields (laser field E1 and Stokes field E2 frequency shifted in 
W), at which the interference pattern created by them at each 
point r varies harmoniously with time at the frequency W, and 
the interference fringes move in the cross section of the light 
beams. This causes the excitation of oscillations at the fre-
quency W in a nonlinear medium and stimulated light scatter-
ing.

The generality of the mathematical description of G (W, r)
and the mutual coherence function G (r) studied above [see 
(9) and (10)] allows us to conclude that the slow amplitudes 
G (W, r) have singularities in the form of phase singularities 
which should lead to phase singularities of oscillations 
excited in a nonlinear medium, as well as to phase singulari-
ties in the emission of the Stokes component of stimulated 
light scattering.

7. Conclusions

We have studied theoretically the phase singularity of a slow 
amplitude of the mutual coherence function of two broad-
band laser fields, which leads to the appearance of disloca-
tions in the interference pattern arising in the region of their 
superposition. A scheme has been proposed for experimental 
realisation of the interference of dispersed broadband laser 
beams based on a Mach – Zehnder interferometer with dif-
fraction gratings.

The two-dimensional distributions of the modulus and the 
phase of the slow amplitude of the complex mutual coherence 
function in the cross section of intersecting light beams have 
been obtained by numerical simulation. An analytical descrip-
tion of the slow amplitude in the region of the phase singular-
ity has been presented on the basis of the linear approxima-
tion.

The statistical characteristics of the mutual coherence 
function have been studied as a function of the longitudi-
nal coordinate. The average diameter of the ‘funnel’ of the 
modulus of the mutual coherence function that arises in 
the singularity region has been calculated. It has been 
found that it does not depend on the intensity of the light 
beams and remains constant when the longitudinal coordi-
nate changes.

The manifestation of phase dislocations in the interfer-
ence pattern has been investigated. It has been shown that the 
phase singularities also occur for the introduced generalised 
mutual coherence function, which characterises the excitation 
of oscillations in the nonlinear medium resulting in stimu-
lated light scattering. The results obtained can be used to 
study the effects of phase singularity in four-wave mixing 

H (rel. units)

100

50

0 10 20 30 40 z/cm

Figure 7.  Dependence of the mutual coherence of the beams on the lon-
gitudinal coordinate z for ( ) / (0)B z Bu u  = ( ) / ( )P z P 0u u  = H(z).
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schemes with intersecting light beams, as well as in implemen-
tation of phase conjugation of broadband laser radiation.
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