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Abstract.  It is shown that the interaction of few-cycle waves propa-
gating at an angle to each other in media with instantaneous cubic 
nonlinearity may lead to a considerable increase in the third-har-
monic generation efficiency without energy redistribution between 
the intersecting beams with a wide spectrum.

Keywords: nonlinear optics, few-cycle waves, third-harmonic gen-
eration, optical transistor.

1. Introduction

Analysis of the interaction of intense light waves propagat-
ing in an optical media at an angle to each other is a classical 
problem of nonlinear optics [1]. This problem has been 
already thoroughly studied in the last century for quasi-
monochromatic waves. Diffraction of light beams on a 
dynamic refractive index grating induced in the region of 
their overlap in the nonlinear medium may cause radiation 
energy redistribution over directions, including energy redis-
tribution between the beams [2]. This phenomenon is inter-
esting for some applications, for example, for enhancing the 
time contrast of high-power femtosecond laser pulses [3] or 
for designing ultrafast all-optical switches and transistors 
[4,  5]. However, it is important to note that the energy 
exchange between intersecting quasi-monochromatic beams 
does not occur in media with instantaneous refractive index 
nonlinearity [6].

In recent decades, the development of efficient sources of 
high-intensity few-cycle optical waves [7 – 9] required a fresh 
approach to the traditional problems of nonlinear optics 
[10 – 12]. This occurred because, first, the spectrum of such 
wave packets with extremely small number of oscillations 
becomes very broad and, second, they may propagate through 
a material without its breakdown at considerably higher 
intensities than quasi-monochromatic radiation. Nonlinear 
effects, which are weak in the field of quasi-monochromatic 
radiation up to the breakdown intensity, can be very strong in 
the field of extremely short pulses due to increasing break-
down threshold. In particular, as the number of oscillations in 
a pulse decreases to three and smaller, the self-focusing effi-
ciency at a given power excess over the critical value may 
noticeably decrease [13] with a considerable increase in the 

third-harmonic generation efficiency [14, 15] up to the energy 
conversion efficiency of several percent.

The reflection of co- and counterpropagating pulses from 
a refractive index inhomogeneity, which is induced in the 
medium by a high-intensity ultrashort pulse and propagates 
with a pulse velocity, was considered in works [16, 17]. It was 
theoretically demonstrated that the radiation frequency con-
siderably increases due to the Doppler shift on an induced 
high-velocity inhomogeneity of the medium. It was shown in 
[18, 19] that the interaction of collinear counterpropagating 
few-cycle waves may change the third-harmonic generation 
efficiency in a nonlinear medium. The specific features of 
reflection and refraction of ultrashort signal pulses, which 
propagate at an angle to a high-intensity pulse, from a refrac-
tive index inhomogeneity induced by this pulse were consid-
ered in [20 – 22]. It was shown that noncollinear interaction 
may cause a frequency shift, a change in the velocity, and a 
deviation from the initial trajectory of the signal light beam.

Let us emphasise that the analysis of the strong changes in 
the character of propagation of one of the intersecting ultra-
short wave packets was performed in [16, 17, 20 – 22] in the 
approximation of a given refractive index inhomogeneity 
induced in the nonlinear medium by the other wave. The esti-
mates in these works were obtained using typical femtosecond 
radiation parameters and characteristics of transparent 
dielectric media, i.e., under the conditions at which the domi-
nant nonlinearity of the polarisation response has an elec-
tronic nature and this response can be with good accuracy 
considered as instantaneous.

The aim of the present work was to find the key regulari-
ties of the interaction between intense few-cycle waves propa-
gating at an angle to each other in transparent dielectric 
media with an instantaneous nonlinearity. We analysed this 
interaction strictly as a self-consistent wave problem with 
boundary conditions at the entrance of two femtosecond 
optical beams into a nonlinear medium without introduction 
of the artificial concept of induced nonlinear refractive index 
in the medium. The analysis showed that, both for quasi-
monochromatic radiation and ultrashort wave packets (i.e., 
wave packets with a very broad spectrum), energy redistribu-
tion between colliding wave packets in isotropic dielectric 
media with instantaneous cubic nonlinearity does not occur. 
In this case, the interaction between these packets may lead to 
a significant (by several times) increase in the third-harmonic 
generation efficiency. By the third-harmonic generation effi-
ciency we mean the energy ratio of the generated triple-fre-
quency radiation to the initial radiation at the entrance to the 
nonlinear medium.

The enhancement of generation of new frequencies in a 
primary wave due to the intersection with another intense 
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wave packet in a nonlinear medium corresponds to the main 
property of the optical transistor, i.e., to amplification of light 
by another light [23]. Thus, at radiation intensities that do not 
cause irreversible changes of the material, the considered 
light-control system makes it possible to achieve the optical 
transistor effect with a response time of several periods of 
optical field oscillations.

2. Mathematical model of the interaction  
of few-cycle waves in a medium  
with instantaneous nonlinearity

The dynamics of spectral density g of a TE-polarised two-
dimensional nonparaxial radiation, including the case of two 
waves propagating at an angle to each other, in a homoge-
neous isotropic dielectric medium with an instantaneous 
cubic nonlinearity can be described by the equation [24]
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w and kx are the temporal and spatial frequencies, k(w) = 
wn(w)/c is the wave number, n(w) is the frequency dependence 
of the refractive index of the medium, enl is its nonlinear per-
mittivity, c is the speed of light in vacuum, t is the time, x and 
z are the spatial Cartesian coordinates, and E(t, x, z) is the 
strength of the electric field of radiation polarised perpendic-
ular to the xz plane. The axis z in (1) is the direction along 
which the nonparaxial radiation field is E ® 0 at any finite 
distance z at x ® ±¥ [24], i.e., this direction, for example, for 
wave packets intersecting at an angle to each to other, may 
coincide with the axis of one of the beams, which we will call 
the primary beam.

Note that the field analogue of Eqn (1) that describes 
the slit diffraction of waves in a nonlinear medium has the 
form [25]
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and the dispersion characteristics of the medium are related 
by the expression
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The spectral density of two waves propagating at an angle 
a to each other at the boundary of a nonlinear medium (at 
z = 0) is written as
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where g1(w, kx) is the spectrum of the primary wave packet, 
g2(w, kx) is the spectrum of the wave acting on the primary 
wave, g01 and g02 are the maxima of their spectral densities, 
Dkx and Dw are the widths of the spatial and temporal spectra 
of the wave packets at the entrance to the medium, w0 is the 
centre wavelength of the radiation, V = c/n(w0) is the phase 
velocity of the incident wave (the difference between its phase 
and group velocities and their dispersion at the entrance to 
the medium are neglected), a is the angle between the z axis 
(which coincides with the primary wave propagation direc-
tion) and the axis of the light beam acting on the primary 
wave, t is the delay time of the incident beam, and h is the 
transverse shift of the incident beam along the x axis.

The field analogues of boundary conditions (4) takes the 
form
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where field amplitudes are E01 = DwDkxg01/2p and E02 = 
DwDkxg02/2p, Dx = 2/Dkx is the transverse size of wave pack-
ets at the entrance to the medium, and Dt = 2/Dw is the initial 
duration of the wave packets. Another boundary condition 
that determines the propagation directions of the waves will 
be considered in the linearised form [25]
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For convenience and simplicity of calculations, we nor-
malise Eqn (1) and boundary conditions (4) and (6) by intro-
ducing dimensionless variables
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where k0 = w0 n(w0)/c.
Then, Eqn (1) and boundary conditions (4) and (6) in vari-

ables (7) take the form
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l0 =2pc/w0 is the centre wavelength, and T0 =2p/w0 is the wave 
oscillation period.

All products of normalised variables, functions, and func-
tionals in Eqn (8) are on the order of unity at least at the ini-
tial stage of the spectral density dynamics of radiation in the 
nonlinear medium. Therefore, the dimensionless parameters
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n2 is the nonlinear refractive index of the medium, and I01 is 
the primary wave intensity at the entrance to the medium) 
allow one to estimate the relative influence of diffraction, dis-
persion, and nonlinear response of the medium, respectively, 
on the radiation propagation character.

Let us estimate these parameters, e.g., for femtosecond 
pulses propagating in quartz glass. Assuming that the trans-
verse size of the slit beam (at the e–1 level) at the entrance to 
the nonlinear medium contains 20 wavelengths (L = 2Dx/l0 = 
20), the number of complete oscillations in the pulse (at the 
e–1 level) is equal to seven (N = 2Dt/T0 = 7), centre wavelength 
is   l0 = 800 nm, and the radiation intensity is I = 1.3 ´ 
1012  W  cm–2, we obtain for quartz glass (n2 = 2.9 ´ 
10–16 cm2 W–1) mdfr = 4 ´ 10–4, mdsp = 1.7 ´ 10–3, and mnl = 
7.2 ´ 10–3 (Dndsp and n(w0) were calculated using the data for 
quartz glass dispersion from [26]). As is seen from the esti-
mates, the dynamics of the spectrum of a beam propagating 
under these conditions is determined by the medium nonlin-
earity, because of which below we will neglect the beam dis-

persion. However, of course, it is clear that, with decreasing 
number of field oscillations in a pulse (with respect to the con-
sidered case), dispersion may become the strongest effect. The 
diffraction term, despite its smallness, will be taken into 
account because we will consider the interaction of two beams 
propagating at an angle to each other rather than a single 
pulse propagation. The diffraction broadening of beams at 
the given parameters is expected to be insignificant.

To solve Eqn (8), we used the Crank – Nicolson numerical 
scheme with an adaptive step [27]. The convolution in the 
right-hand side of Eqn (8) was calculated using the fast 
Fourier transform algorithm. The calculation was performed 
using a software module, the Fortran language, and the 
OpenMP parallelism [28].

3. Regularities of the interaction of few-cycle 
waves in a medium with instantaneous  
nonlinearity

Figure 1 shows the results of calculation of the interaction of 
a wave packet (with width Dx = 14l0, duration Dt = 3.5T0, 
and intensity ensuring mnl = 7.2 ´ 10–3) propagating along 
the z axis with a wave packet (with width Dx = 14l0, dura-
tion Dt = 3.5T0, relative intensity h2 = 0.75, transverse shift 
h 57=u , and delay time 7t =-u ) propagating at the angle a 
= 0.2 to the primary wave. This figure presents the plane 
images of the space – time distribution of the electric field 
strength of wave packets. The light-grey and dark-grey 
bands correspond to the positive and negative field strengths, 
respectively (we used normalised spatial coordinate /x x 0l=u  
and time /t t T0=u ).

One can see from Fig. 1 that the waves at the entrance to 
the nonlinear medium (at z 0=u ) are spatially separated and 
can be considered as noninteracting (Fig. 1a). The waves 
intersect at the distance .z 2 5 103#=u  (Fig 1b), pass through 
each other, and become spatially separated again, after which 
they propagate independently (Fig. 1c). Self-phase modula-
tion of wave packets becomes noticeable at the distance  

5. 10z 0 3
#=u . The nonlinear phase incursion in the intense 

part of the wave reaches p/4.
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Figure 1.  Space – time distribution of the electric field of waves (a) be-
fore (at z 0=u ), (b) during ( .z 2 5 103#=u ), and (c) after ( .z 5 0 103#=u ) 
their interaction.
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As the duration of optical pulses decreases to only several 
periods of the electric field oscillations, there occurs an inter-
change of dominant nonlinear effects. The third-harmonic 
generation becomes important. Its efficiency may reach sev-
eral percent [14, 15]. The change in this efficiency due to the 

interaction of the ultrashort optical pulse with another pulse 
is shown in Fig. 2, which presents the dependences of the 
wave-packet energies at the fundamental and the generated 
triple frequencies on the relative intensity of the incident wave 
h2 at the distance 5. 10z 0 3

#=u . One can see that, at the con-
sidered few-cycle wave intensity in the absence of an incident 
wave (h = 0), about 2.5 % of energy is spent on the triple fre-
quency radiation. However, the action of an intersecting wave 
leads to a considerable increase in the generated third-har-
monic energy. For example, this energy increases twofold at 
h2 = 0.85. It is important that the total energy of the primary 
wave in this case does not change. This means that energy 
transfer from the incident wave does not occur, and the energy 
of radiation at the triple frequency increases due to an increase 
in the third-harmonic generation rate during the interaction 
of waves.

Figures 3 and 4 show the changes in the time (at  kx = 0) 
and space – time spectra of the third harmonic of the primary 
wave at the distance 5. 10z 0 3

#=u  at different relative intensi-
ties h2 of the incident wave. The solid curves in Fig. 3 corre-
spond to the calculated points in Fig. 2. Figure 3 demon-
strates that an increase in the third-harmonic energy with 
increasing intensity of the incident wave is accompanied by 
broadening and reshaping of the time spectrum in this fre-
quency range. As follows from Fig. 4, the spatial spectrum of 
the third harmonic also broadens.
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Figure 2.  Dependences of the primary wave energy at the triple (W3) 
and fundamental (W1) frequencies on the relative intensity of the inci-
dent wave h2. The points on the curves correspond to the numerical ex-
periments performed in this work.
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Figure 3.  Time spectrum of the third harmonic generated in the primary wave at different relative incident wave intensities h2  (solid curves) and at 
h2  = 0 (dashed curves).
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4. Conclusions

In this work, we showed that, similar to the case of quasi-
monochromatic radiation, the cross-interaction of few-cycle 
waves with a broad spectrum in a medium with an instanta-
neous cubic nonlinearity causes no energy redistribution 
between intersecting optical beams. However, control of light 
by light in this case is possible, i.e., the third-harmonic gen-
eration efficiency in the primary wave can be considerably (by 
several times) increased due to the action of another intense 
wave propagating at an angle to the primary wave. Thus, 
using a simple scheme, one can create an optical transistor 
with a response time of only several periods of light field oscil-
lations.

Acknowledgements.  This work was supported by the 
Government of the Russian Federation (Grant No. 074-U01).

References
  1.	 Armstrong J.A., Bloembergen N., Ducuing J., et al. Phys. Rev., 

127, 1918 (1962).
  2.	 Vinetskii V.L., Kukhtarev N.V., et al. Sov. Phys. Usp., 22, 742 

(1979) [ Usp. Fiz. Nauk, 129, 113 (1979)].
  3.	 Liu J., Kida Y., Kobayashi T., et al. Opt. Express, 18, 22245 

(2012).
  4.	 Miller D.A.B. Nat. Photon., 4, 3 (2010).
  5.	 Demircan A., Amiranashvili Sh., Steinmeyer G. Phys. Rev. Lett., 

106, 163901 (2011).
  6.	 Boyd R.W. Nonlinear Optics (New York: Acad. Press, 2008).
  7.	 Zhang W. et al. Chin. Phys. Lett., 27, 054211 (2010).
  8.	 Garnov S.V., Shcherbakov I.A. Phys. Usp., 54, 91 (2011) [ Usp. 

Fiz. Nauk, 181, 97 (2011)].
  9.	 Sun X., Zhang X.-C. Appl. Phys. Lett., 104, 191106 (2014).
10.	 Maimistov A.I. Quantum Electron., 30, 287 (2000) [ Kvantovaya 

Elektron., 30, 287 (2000)].
11.	 Sazonov S.V. Izv. Akad Nauk, Ser. Fiz., 75, 172 (2011).
12.	 Kozlov S.A., Samartsev V.V. Osnovy femtosecundnoi optiki 

(Fundamentals of Femtosecond Optics) (Moscow: Fizmalit, 
2007).

13.	 Berkovskii A.N., Kozlov S.A., Shpolyanskii Yu.A. Opt. Zh., 75, 
28 (2008).

14.	 Kozlov S.A., Petroshenko P.A. Pis’ma Zh. Eksp. Teor. Fiz., 76, 
241 (2002).

15.	 Vasil’ev V.N., Kozlov S.A., Petroshenko P.A., Rozanov N.N. 
Opt. Spektrosk., 96, 217 (2004).

16.	 Rozanov N.N. Pis’ma Zh. Eksp. Teor. Fiz., 88, 577 (2008).
17.	 Rozanov N.N. Zh. Eksp. Teor. Fiz., 135, 154 (2009).

18.	 Buyanovskaya E.M., Kozlov S.A. Pis’ma Zh. Eksp. Teor. Fiz., 86, 
349 (2007).

19.	 Buyanovskaya E.M., Kozlov S.A. Opt. Spektrosk., 111, 325 
(2011).

20.	 Sukhorukov A.P. et al. Izv. Akad. Nauk, Ser. Fiz., 76, 350 (2012).
21.	 Lobanov V.E., Sukhorukov A.P. Phys. Rev. A, 84, 305 (2011).
22.	 Kalinovich A.A., Lobanov V.E., Sukhorukov A.P., Zverev D.M. 

Phys. Wave Phenomena, 21, 5 (2013).
23.	 Jain K., Pratt G.W. Appl. Phys. Lett., 28, 719 (1976).
24.	 Ezerskaya A.A., Ivanov D.V., Kozlov S.A., et al. J. Infrared Milli 

Terahz Waves, 33, 926 (2012).
25.	 Kniazev M.A., Kozlov S.A., Dolgaleva K. Proc. Intern. Conf. 

Days on Diffraction 2016 ( St. Petersburg, 2016) p. 212.
26.	 Malitson I.H. J. Opt. Soc. Am., 55, 1205 (1965).
27.	 Crank J., Nicolson P. Adv. Comput. Math., 6, 207 (1996).
28.	 Kislin D.A., Knyazev M.A., Zvyagin V.F., Kozlov S.A. Nauchn. 

Tekhnich. Vestnik Inform. Tekhnol., Mekhan., Opt., 79, 91 (2012).

2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0
–4.8

–2.4

0

0

2.4

4.8

–4.8

–2.4

0

2.4

4.8

~w (arb. units)

~

k x
 (

ar
b

. u
n

it
s)

~w (arb. units)

~k x
 (

ar
b

. u
n

it
s)

~

a b

0.01

0.02

0.03

0.04

0.05
|g| (arb. units) ~

0

0.01

0.02

0.03

0.04

0.05
|g| (arb. units)

Figure 4.  Space – time spectrum of the third harmonic of the primary wavelength at relative incident wave intensities h2 = (a) 0 and (b) 1.




