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Abstract.  We consider the methods for modelling doughnut and 
super-Gaussian intensity distributions in the far field by means of 
deformable bimorph mirrors. A method for the rapid formation of a 
specified intensity distribution using a Shack – Hartmann sensor is 
proposed, and the results of the modelling of doughnut and super-
Gaussian intensity distributions are presented.

Keywords: formation of a specified intensity distribution, adaptive 
optics, deformable mirror, Shack – Hartmann sensor.

1. Introduction

Radiation with various shapes of focal spots is often used in 
the industry for laser cutting, laser heat treatment of surfaces, 
etc. Traditionally, the required intensity distributions are 
obtained by using complex optical elements and circuits [1, 2], 
diffraction optical devices [3] or kinoforms [4, 5]. The focal 
spot shapes obtained with the use of these methods have high 
quality and minimal laser intensity losses. However, a signifi-
cant drawback of these approaches is the impossibility to 
change the required intensity distribution in real time in the 
process of work, which is necessary for the realisation of 
a correct technological process (for example, in microelec-
tronics). 

One of the solutions to this problem is the use of adaptive 
optics, which, as a rule, is used to improve the focusing of 
radiation transmitted through optically inhomogeneous 
media [6], but can also be used to form various intensity dis-
tributions in the far field [7].

The purpose of this paper is a search for such a way of 
determining and introducing a phase delay into the system 
(using an adaptive phase corrector) so that the resulting focal 

spot would as closely as possible correspond to a predeter-
mined shape.

A scheme for the formation of a specified intensity distri-
bution in the far field is shown in Fig. 1. When a laser beam 
falls onto a phase corrector, the wavefront changes in such a 
way that the intensity distribution closest to the required one 
would be obtained in the observation plane.

For a correct solution of the problem of the formation of 
a focal spot of required shape, use is made of iterative algo-
rithms to optimise the output parameters of laser radiation 
(gradient methods [8], Newton’s method [9], simplex method 
[9] and genetic algorithms [10]). However, such algorithms 
require a considerable number of iterations and a fairly long 
computation time (the process may take several tens of sec-
onds), and consequently, they are unable to monitor dynami-
cally the distortion of the laser beam wavefront and to 
respond quickly to the changes in the given intensity distribu-
tion. To overcome this problem, a system was proposed that 
implements the phase conjugation mechanism based on the 
use of a Shack – Hartmann wavefront sensor. This sensor 
makes it possible to measure the light radiation phase in real 
time [11 – 15]. The phase conjugation algorithm is widely used 
in laser systems for rapid correction of aberrations, though it 
can also be used to change the focal spot shape in a necessary 
manner [15]. In this paper we present the results of using this 
method in systems for generating the required intensity distri-
bution in the far field.

In the approach proposed, the general statement of the 
problem was reduced to the determination of the radiation 
phase which is necessary to obtain a specified intensity distri-
bution either in the lens focal plane or at some distance from 
it. In this case, as the initial data, the information about the 
intensity distribution in the observation plane was only used.
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Figure 1.  Scheme for the formation of a specified intensity distribution 
in the far field.
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One of the ways to determine the phase delay in the for-
mation of a specified intensity distribution in the far field is to 
use the Gerchberg – Saxton iterative algorithm [16, 17]. Using 
the data on the initial intensity distribution and knowing the 
point spread function, it is possible to solve a theoretical 
problem of phase reconstruction in the near field. However, 
since the algorithm is highly sensitive to intensity fluctua-
tions, in experimental implementation the correct solution 
may not be found in a number of cases: The phase delay 
determined by the Gerchberg – Saxton algorithm does not 
provide the required intensity distribution in the observation 
plane. For this reason, we propose to present the phase delay 
in the form of a superposition of Zernike polynomials with 
subsequent iterative optimisation of their coefficients to 
obtain a desired focal spot shape in the observation plane.

To solve the problem of forming a specified intensity dis-
tribution in the far field, the following algorithm for calculat-
ing the phase delay was proposed:

1. The intensity distribution in the far field was specified 
analytically (usually, centrally symmetric).

2. The required wavefront was represented as a superposi-
tion of Zernike polynomials. The coefficients of these polyno-
mials were determined using an iterative hill-climbing algo-
rithm (numerical solution to the problem of obtaining a spec-
ified intensity distribution in the lens focal plane).

3. The wavefront calculated was approximated by response 
functions of the deformable mirror drivers. Control signals 
(voltages) were calculated, which were then fed to individual 
drivers to form the required phase.

4. The wavefront formed was analysed using a 
Shack – Hartmann sensor. To minimise the difference between 
the calculated wavefront and the real phase surface recon-
structed using the adaptive mirror, a feedback system was 
used.

5. The intensity distribution in the observation plane was 
recorded using a CCD camera. The discrepancy between the 
obtained and required intensity distributions was compen-
sated for using the hill-climbing algorithm by successive vari-
ation of control signals on the adaptive mirror drivers. 

6. After obtaining a specified intensity distribution, the 
iteration algorithm was suspended, and the corresponding 
wavefront was measured, which was then used as a reference 
in the phase conjugation system to further maintain the focal 
spot shape in the conditions of radiation phase fluctuations.

Thus, the proposed algorithm makes it possible to form a 
specified intensity distribution of the focal spot and simulta-
neously compensate for a change in the radiation aberrations 
in real time. A system for the algorithm implementation 
should include a deformable mirror, a wavefront sensor and a 
CCD camera installed in the far field.

2. Deformable mirror

The key element of any adaptive optical system is a wavefront 
corrector, for example, a flexible mirror. In this paper, we 
employed a wavefront corrector based on a semipassive 
bimorph piezoelectric element [18, 19]. The main advantage 
of this type of mirror is that it perfectly reproduces lower-
order aberrations. A conventional bimorph mirror consists of 
a relatively thick glass substrate, rigidly glued to a flat, thin 
piezoceramic disk. By applying an electrical signal to the elec-
trodes, it is possible, due to the piezoceramic effect, to obtain 
a bend of the surface wavefront corrector.

Basic parameters of the deformable mirror used in this 
work are presented below.

3. Shack – Hartmann sensor

To analyse the wavefront of light beams, a Shack – Hartmann 
sensor is commonly used [11 – 15]. In addition, sensors of this 
type are increasingly used in devices for measuring the quality 
of optical elements [20], thus replacing conventional interfer-
ometers [21].

The operation principle of a sensor is that, with the use of 
a microlens raster (lenslet), an incident wavefront is divided 
into separate sections, within which the local slope is consid-
ered constant. The microlens raster represents a thin plate 
with a pattern of microlenses etched on its surface. Each lens 
forms its own focal spot in the receiver plane (usually CCD or 
CMOS camera). Depending on the wavefront slope, the focal 
spots are displaced by a certain distance relative to the initial 
location. By analysing the displacements over the entire aper-
ture of the beam, it is possible to calculate the local wavefront 
slopes in the region of each element of the microlens raster, 
and to reconstruct through them the entire phase surface 
structure.

The camera for wavefront recording, as a rule, is selected 
in accordance with the requirements for speed and resolution 
of the system. Below the main parameters of the Shack – 
Hartmann sensor are represented.

4. Simulation and experimental results

Before the experiments, we simulated numerically the sys-
tem operation intended for the formation of the far-field 
radiation. It was assumed that the intensity distribution 
Isim(x, y) is constant throughout the aperture, and the phase 
j(x, y) is plane. In calculating the intensity distribution in 
the lens focal region, we used the Fraunhofer diffraction 
integral [22]:
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where kx = x/(  f l), ky = y/(  f l); (x, y) are the coordinates of a 
point in space; l is the wavelength; f is the focal length of the 
microlens raster lenses; and a is a set of coefficients for Zernike 
polynomials. 

The method for forming the intensity distribution Ides(x, y) 
was numerically tested for two types of distributions: 1) an 

Mirror type  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         bimorph	

Active aperture diameter/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 50	

Initial surface roughness (P – V)/mm  .  .  .  .  .  .  .  .  .  .  .  .  .             0.5	
Deformation value/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     20	
Number of electrodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      48	

Range of applied voltages/V  .  .  .  .  .  .  .  .  .  .  .              –200…+300

Sensor type  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         CMOS	

Sensor size/inch   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        1/3	

Sensor real size/mm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   4.8 ´ 3.6	
Microlens raster focus/mm   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  3.2	

Distance between microlenses/mm  .  .  .  .  .  .  .  .  .  .  .  .            0.136
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doughnut distribution, which in the two-dimensional case has 
the form
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where D is the ring diameter and H is the distance between the 
ring maxima, and 2) a super-Gaussian distribution:

( , ) expI x y
R

x y
2des

N

2

2 2

= -
+c m= G,	 (3)

where R is the input beam radius and N is the order of the 
super-Gaussian distribution.

According to the technique presented above, in order to 
form a specified intensity distribution, the radiation wave-
front incident on the focusing lens was represented as a super-
position of centrally symmetric Zernike polynomials [23]. The 
coefficients for these polynomials were calculated using the 
hill-climbing method. Their values were found by minimising 
the functional 

( , ) ( , , )I x y I x y ades sim
2F = -// ,	 (4)

where the intensity distribution was calculated by for-
mula (1).

Using the calculated coefficients for polynomials, a 
phase surface was determined, which was then approxi-
mated by the experimentally measured response functions of 
the bimorph mirror. To this end, in accordance with the cal-
culated Zernike polynomials, an array of displacements of 
the hartmanogram’s focal spots relative to the reference 
positions (corresponding to the planar phase of the radia-
tion) was found:
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where ap is the coefficient of the Zernike polynomial with the 
number p  = 1 , ... , NP; NP is the number of polynomials; 
∂Zp(xk, yk)/∂x is the polynomial’s derivative with number p 
along the X axis at point (xk, yk); ∂Zp(xk, yk)/∂y is the polyno-
mial’s derivative with number p along the Y axis at point (xk, 
yk); f is the lenslet focus;  Sx(xk, yk) is the focal spot displace-
ment with number k along the X axis; and Sx(xk, yk) is the 
focal spot displacement with number k along the Sy axis.

With the use of the displacements obtained, a set of volt-
ages have been found to minimise the functional:

min | S – bu | 2,	 (6)

where S is the array of displacements found by means of (5) 
and containing the displacements along both axes; b is a 
matrix of the response functions of the deformable mirror; 
and u is the required vector of voltages to be applied to the 
mirror electrodes. Then, in accordance with the voltages 
found, we have determined the displacement vector [accord-
ing to (6)], the phase surface [according to (5)], and the inten-
sity distribution in the lens focal plane [according to (1)], 
which should be obtained by applying the calculated voltages 
to the mirror control elements. 

To verify the correctness of this method, an experimental 
setup was assembled (Fig. 2). The radiation of a 635-nm diode 
laser was expanded with a telescope to 50 mm and fell on a 
flexible bimorph mirror. Part of the laser beam was directed 
to the focusing lens and was further analysed by a CCD cam-
era. The other part of the radiation, after passing through a 
demagnifying telescope, fell onto the Shack – Hartmann 
wavefront sensor, which was used to measure the response 
functions of the bimorph mirror. Then, the pre-calculated 
wavefront, which was required to obtain a specified intensity 
distribution in the observation plane, was reproduced by a 
bimorph mirror (using a closed adaptive system and 
Shack – Hartmann sensor data). The thus formed radiation 
was recorded with a CCD camera.

As was to be expected, due to various unaccounted aber-
rations, alignment inaccuracies and other noise factors, the 
resulting focal spot turned out different from that calculated 
analytically with the use of the found set of control voltages. 
However, this result served as a good initial approximation 
for the application of the hill-climbing algorithm in order to 
optimise the focal spot with subsequent quick achievement of 
the specified intensity distribution.
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Figure 2.  Scheme of an adaptive optical system for the formation of a specified intensity distribution in the far field.
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A criterion for the hill-climbing algorithm to optimise the 
experimentally obtained intensity distribution was minimisa-
tion of the sum of squares of the differences between the 
required intensities and those obtained with the use of the 
camera:

( , ) ( , )I x y I x ydes real1
2F = -// ,	 (7)

where Ireal(x, y) is the far-zone intensity at point (x, y).
Numerical modelling of radiation propagation and its 

focusing into an assigned centrally symmetric intensity distri-
bution has shown that as many as three centrally symmetric 
Zernike polynomials describing defocusing (Z3) and spherical 
aberrations (Z8 and Z15) would suffice to obtain a satisfac-
tory result. According to calculations, the symmetric higher-
order wavefront aberrations are virtually zero and do not 
affect the focal spot shape in the far field, and therefore can be 
excluded from consideration.

As an example of the proposed method application, Fig. 3 
illustrates the results of a doughnut intensity distribution for-
mation. Figure 3a shows an initial, experimentally mea-
sured, focal spot, and Fig. 3b presents a specified intensity 
distribution; the calculated value of the beam phase corre-
sponds to the following set of the coefficients for Zernike 
polynomials: 0.53 (Z3), –0.18 (Z8) and –0.2 (Z15). Figure 3c 
shows the result of the formation of a doughnut intensity 
distribution using the approximation of an ideal phase by a 
real bimorph mirror. High sensitivity of the mirror to the 
voltage changes (which in this case is a disadvantage of the 
flexible mirror used) along with the nonlinearity of the 
response of electrodes (hysteresis) did not allow us to achieve 
the best results using the phase conjugation algorithm. In 
this case, the absence of symmetry in the resulting focal spot 
is clearly visible. Figure  3d demonstrates the result of using 
the hill-climbing method for obtaining a doughnut intensity 
distribution.

Figure 4 presents the results of the formation of a super-
Gaussian intensity distribution. Figure 4a shows the initial 
focal spot, and Fig. 4b – the required super-Gaussian inten-
sity distribution. The calculated value of the beam phase cor-
responds to the following set of the coefficients for Zernike 
polynomials: 0.53 (Z3), –0.14 (Z8) and –0.20 (Z15). Figure 4c 
demonstrates the result of the formation of a super-Gaussian 
distribution using the phase conjugation method. As in the 
case of the doughnut intensity distribution formation, the 
resulting spot is asymmetric. Figure 4d illustrates the intensity 
distribution obtained after applying the hill-climbing method. 

It should be noted that for both doughnut and super-Gauss-
ian intensity distributions, the energy concentration in the 
required region was about 75 %.

After obtaining a focal spot of the required shape, the 
image from the Shack – Hartmann wavefront sensor was 
recorded as a reference image for the adaptive optical system. 
With the use of this reference image, the phase conjugation 
mechanism was implemented, which allows a given far-zone 
intensity distribution to be simulated in real time.

Thus, we have shown that a bimorph mirror is an instru-
ment which allows the laser beam position to be controlled 
and its focal spot to be modified. We have presented a fairly 
efficient and effective technique for the formation of a speci-
fied intensity distribution by two sensors: one for measuring 
the phase (Shack – Hartmann sensor), and the other for ana-
lysing the intensity distribution (a CCD camera located in the 
lens focal plane). As a result, we have obtained doughnut and 
super-Gaussian intensity distributions in the lens focal plane 
with a radiation energy concentration of 75 %. 
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