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Abstract.  We have constructed a theoretical model describing the 
energy spectrum and autoionisation probability for an ideal quan-
tum dot in the external DC and AC electric fields, free of using the 
delta-potential approximation and perturbation theory. The wave 
functions of the electron quasi-stationary states under these condi-
tions are calculated. To this end, we have elaborated a new method 
for regularising the Gamov wave function used to calculate the 
complex electron energy, describing both the energy spectrum of 
the system and the probability of the state decay (autoionisation). 
The oscillations of the Stark shift and the energy level width due to 
the DC electric field are found. It is shown that these oscillations 
essentially affect the energy spectrum of the quantum dot and prin-
cipally cannot be described within the frameworks of perturbative 
approaches.

Keywords: ideal quantum dots, external electric field, regularisa-
tion of Gamov wave function, oscillations of Stark shift and energy 
level width.

1. Introduction

At present the problems of interaction between intense elec-
tromagnetic fields (in particular, laser fields) and various 
nanostructures are a subject of considerable interest [1 – 6]. It 
is due to the prospects of development and application of dif-
ferent types of nanostructures, which stimulated a variety of 
theoretical and experimental publications on the interaction 
of intense electromagnetic fields with nanoobjects. In particu-
lar, of significant interest is the known problem of theoretical 
description of the process of quantum dot ionisation by an 
intense electromagnetic field. Below we mainly consider DC 
fields, but the effect of the AC component will be also 
described.

Such a problem was solved, for example, in Refs [3 – 5]. 
The closest formulation of the problem was presented in 
Ref.  [3], where the explicit analytical expressions for the 2D 
quantum dot ionisation probability in DC and AC electric 
fields were derived without using the perturbation theory. To 
describe a finite-size quantum dot a 2D quadratic potential 

was used. However, the main result was obtained on the basis 
of the Green function, which is a solution of the Schrödinger 
equation only in the exterior domain of the quantum dot. It is 
well known that this solution is fundamentally based on the 
approximation of the potential by a Dirac delta-function. As 
a result, the authors of Ref. [3] actually could not consider the 
effect of the dot final dimensions and reproduced the known 
results for the ionisation probability in the attractive delta-
function potential. This obviously restricts the applicability 
of the model to the description of real experimental results.

In the description of a finite-dimension potential well in 
an external electric field, we encounter two serious problems. 
First, in the Schrödinger equation the axial symmetry imposed 
on the system by the field ‘conflicts’ with the symmetry of the 
boundary conditions caused by the shape of the quantum dot 
(in our case it is spherical). As a result, the analytical solution 
is expressed as a double series of special functions (see, e.g., 
[7]). It is extremely difficult to find eigenvalues for such solu-
tions. Second, the rather old problem of regularising the so-
called Gamov wave function still remains not completely 
solved [8, 9].

This problem was first formulated and actively studied in 
alpha-decay theory [8]. Strictly speaking, the wave function 
here is not a solution of the steady-state Schrödinger equation 
because of the finite lifetime of the state. Nevertheless, the 
steady-state Schrödinger equation still can be used, if the 
probability of the state decay is small. To this end, an imagi-
nary term proportional to the decay rate should be introduced 
into the Hamiltonian eigenvalues. However, the normalisa-
tion integrals and a number of other physical quantities con-
taining integrals of the wave function diverge, as could be 
expected for a ‘dissociable’ system [10]. This fact significantly 
complicates the manipulation with the quasi-stationary states 
and makes the correctness of the obtained results doubtful. In 
the DC electric field, the situation is even more complex. Here 
the Gamov wave function itself has the form of an exponen-
tially diverging integral (see, e.g., [11]).

We know only two ways to solve this problem, and both 
have been formulated only in the approximation of the attrac-
tive delta-function potential. The first one [12] is based on the 
transformation of the single-fold (already rather cumber-
some) integral expressing the Green function in the electric 
field into a two-fold integral. We were not able to repeat the 
authors’ calculations and thoroughly discussed the issue in 
Ref. [13]. In the second approach, Mur et al. [14] apply the 
Zeldovich’s idea [9] to introduce a regularising factor, 
exp(– ar2), a ® 0, into the integrand, where r is the radial vari-
able of the spherical system. This method is obviously simpler 
than the first one. However, as noted by the authors them-
selves [14], the domain of its applicability is restricted to the 
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situation when the real part of the energy is greater than the 
imaginary one. Moreover, here the integrand is complicated 
with not quite clear consequences, which, in our opinion, 
requires an independent way of the correctness checking.

The combination of two above problems makes the 
description of a quantum dot (i.e., a potential well of finite 
size and depth) in an external electric field a rather difficult 
problem to solve*. At present two approaches to its solution 
have been outlined. In the first approach (see, e.g., [5]) the 
boundary conditions that determine the spherically symmet-
ric structure of the solution are considered exactly, but the 
electric field is described within the framework of the pertur-
bation theory, which allows one to avoid the problem of the 
Gamov function divergence. However, the calculations within 
this approach are extremely cumbersome and hardly repro-
ducible, so that it is difficult to evaluate the physical picture 
and the domain of the model applicability. To simplify the 
situation, the authors had to assume equal the electron and 
hole effective masses, which undoubtedly restricted the 
model**. Finally, the description reduced to the common 
‘tunnel exponent’ approximation for the energy level width 
{Eqns (16) and (20) from Ref. [5]}, in which the electric field 
is taken into account only within the frameworks of the per-
turbation theory. However, the authors found an effect unex-
pected for problems of this sort, namely, the sign of the elec-
tric field-induced correction to the energy level width was 
found to change depending on the coupling energy. In our 
opinion, this result has the same origin as the oscillations of 
the energy level width in the DC electric field found by us.

The second approach to the description of quantum dots 
in the electric field is somewhat opposite to the first one. Here 
the effect of the electric field is considered exactly, and the 
quantum dot is modelled by a delta-function well. An exam-
ple is paper [3], already mentioned above. The comparison of 
its result with our ones is of particular significance, since we 
use an analogous representation for the attractive potential of 
the quantum dot and the similar continuity condition for the 
logarithmic derivative on the spherical boundary of the dot to 
determine the energy level. The difference in the geometry of 
the problems (in Ref. [3] they consider ionisation from 2D 
dots) is absolutely inessential for understanding the physical 
meaning of the present model. The key point is that for the 
solution the authors use the Green function that is a solution 
of the equation only in the exterior domain of the quantum 
dot {Eqns (7), (9) from Ref. [3]}. The origin of this solution is 
also clear from the character of the presented reference. 
Moreover, performing the saddle-point evaluation of the 
obtained integral, the authors of [3] use the contribution of 
only one saddle point, which is also typical for the delta-func-
tion potential approximation. If the radius of the potential 
well does not tend to zero, there must be two saddle points 
[see Eqn (7) of the present paper]. One of them conserved in 
the approximation of the delta-function well makes the major 
contribution to the energy level width, while the other one 
that vanishes in this approximation determines its oscilla-
tions. Thus, in our opinion, the authors of Ref. [3] only 

declare the finite-size quantum well problem. Hence, it is not 
surprising that the final result for the ionisation probability 
(level width) in the DC electric field {Eqn (29) from Ref. [3]} 
reproduces the old and well known result for the delta-func-
tion potential well [11] with a certain correction for the prob-
lem geometry.

In the present paper, we construct a model that combines 
the advantages of the two above approaches. We describe 
ideal quantum dots, i.e., zero-dimensional semiconductor 
heterostructures, the potential wells of which admit only one 
bound-state energy level [15]. To avoid the hole localisation in 
the well with further exciton formation, the energy structure 
of the dot should be ‘covariant’ [16] with respect to the matrix, 
i.e., both the bottom of the conduction band and the top of 
the valence band should be lower than those in the matrix. 

From the practical point of view, the simple spectrum of 
ideal quantum dots and the sensitivity of the spectrum to the 
effect of external magnetic and electric fields provide a base 
for multiple applications in nanoelectronics, spintronics, laser 
physics, etc. A number of characteristics of ideal 3D spherical 
quantum dots in the magnetic field has been calculated in our 
papers [17 – 20]. The aim of the present paper is to propose a 
more correct theoretical description of an ideal quantum dot 
in the external DC and AC electric fields. For this purpose, 
we elaborate a method for the regularisation of the wave 
function, simple in computations and having no limitations 
on the ratio of the real and imaginary parts of energy. The 
method based on introducing a small negative imaginary 
addition to the field strength is used to calculate the complex-
valued energy of the electron, localised in an ideal quantum 
dot. One of consequences of the found solution is the effect of 
oscillations of the Stark shift and energy level width in the DC 
electric field. As far as we know, this effect has not been previ-
ously described. Thus, we study the capabilities of using the 
electric field to control the energy spectrum of an ideal quan-
tum dot.

2. Wave function of a bound electron 
in the electric field

As a potential well, let us consider a semiconductor hetero-
structure, such as a spherical quantum dot with a radius R in 
an external matrix. Similar to [17] and other papers, we define 
the attractive potential in the form
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where the depth of the potential well |U0 | is the difference of 
energies of the conduction band bottom of the matrix and the 
dot; and r is the radial coordinate of the spherical system.

For r > R the Schrödinger equation in the presence of an 
electric field has the standard form
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The real part of the complex-valued energy is Re(W ) < 0, 
since this is the binding energy of the state. The rest notations 
are as follows: mex

* is the effective mass of an electron in the 
matrix material; D is the Laplace operator in spherical coordi-
nates; e is the absolute value of the electron charge; and E is 
the modulus of the electric field strength directed along the z 
axis. The only bound state in the well is an s-state.

** The authors of Ref. [5] consider an open quantum dot of ‘core – shell’ 
type, from which the tunnelling of electrons is possible even without any 
external field; see also the analogous paper [6].

* The situation with magnetic field is simpler in this sense, since the state 
of the electron remains a steady-state one. Therefore, only the problem 
of two ‘conflicting’ symmetry species remains.
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In this case, for the solution it is convenient to use the 
Green function in the electric field (see, e.g., [11, 21, 22]). The 
solution of this problem for the general case is well known 
{[22], Eqn (5) on page 844}:
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Here m is the mass of a free electron; t is the time; x and y are 
the Cartesian coordinates (the wave propagates along the z 
axis); and w is the wave frequency. In the limiting case w ® 0, 
the above expression yields the formula for the DC electric 
field
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where A is a normalisation constant.
It is convenient to make the integration variable dimen-

sionless by the replacement t ® t|U0 |/' .
After these transformations we arrive at the final expres-

sion for the Green function in the electric field in the external 
matrix (with m replaced with m ® m*
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This solution can be essentially simplified based on the 
following considerations. Obviously, it is axially symmetric. 
At the same time, condition (1) that determines the shape of 
the potential well has a spherical symmetry. Thus, a certain 
‘conflict of symmetries’ arises in the problem. The external 
field ‘imposes’ a certain symmetry species, and the shape of 
the well corresponds to a different one. In this situation, it is 
rather difficult to derive a qualitatively clear analytical solu-
tion. Note that the symmetry conflict of this sort is generally 
typical for processes in external fields [17 – 20]. The simplest 
solution is possible in relatively weak fields*. Here the field is 
considered to be weak in the sense of its critical influence on 
the situation, if it satisfies the condition

E << 2| Re(W ) |/(eR).	 (4)

The physical meaning of this condition is rather simple: 
the work of the field force on the particle that moves along a 
well should not critically change the binding energy, i.e., 
should not cause ionisation. In other words, the geometric z 
region is considered for which expression (4) is valid. This 
means that the point z0 = –2| Re(W ) |/(eE), where the avail-
able region of common over-barrier motion begins for an 
electron, should be separated from the well boundaries. In the 
course of ionisation, the electron is tunnelling into this point 
at the expense of the electric field work. The electron state will 
be quasi-stationary if the potential barrier between the points 
z = –R and z = z0 is broad enough. To calculate the binding 
energy, we need the Green function only in the vicinity of the 
potential well. Therefore, in Eqn (3) one can omit the term 
eEz/2 keeping, however, the next term quadratic with respect 
to the field. This immediately makes the situation spherically 
symmetric, which essentially simplifies the problem. Let us 
explain this idea once again. The linear term is ‘discarded’ 
because of the validity of inequality (4) rather than because of 
the absolute smallness of the field E, and this does not mean 
at all that the next term quadratic with respect to the field 
weakly affects the situation.

As already mentioned above, the integral in Eqn (3) 
diverges at the upper limit due to the negative imaginary part 
of the complex energy W. The simplest and most natural way 
to suppress this divergence is to introduce a small negative 
imaginary addition into the field strength, i.e., to replace E 
with E – ia, where a ® 0. After this replacement, the integral 
in Eqn (3) obviously converges, and its value rather quickly 
becomes independent of the upper integration limit. No 
restrictions on the convergence related to the condition 
Re(W ) ³ Im(W ) mentioned in Ref. [14] arise in our case. The 
integral perfectly converges even when Re(W) = 0 and Im(W ) 
¹ 0. Moreover, the calculations are additionally substantiated 
by the fact that in weak fields integral (3) is close to its saddle-
point estimate.

This estimate dramatically differs from that in the delta-
function well case. The condition djex0/dt = 0 yields the 
biquadratic equation that determines the saddle points
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It has two roots in the lower half-plane* of the complex t 
plane near the imaginary axis:
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with the corrections proportional to the field powers. The sec-
ond root in this limiting case does not exist at all. Thus, it 
describes a principally nonperturbative contribution of the 
field to solution (3). On the contrary, in the limiting case r ® 0 

* For bound states the notions of ‘weak’ and ‘strong’ fields are much 
more conventional than for the free ones. In particular, for a free elec-
tron in vacuum the field is strong if it can produce an electron – positron 
pair at the Compton wavelength [7]. In a semiconductor, the field is 
considered to be strong if it can produce an electron – hole pair [23]. For 
an electron localised by a delta-function potential, any field is weak 
near the delta-function well and strong otherwise [24].

* The fact that the roots lie in the lower half-plane of the ‘intrinsic time’ 
t is due to the causality principle [25].
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only the second root ‘survives’, also with the corrections regu-
lar in r:
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It is clear that only this root has an analogue in the delta-
function potential approximation. 

In this model the shift of the real part of the energy level in 
the field (the Stark shift) is usually calculated in the form of 
an asymptotic series in powers of Е2 (see, e.g., [22]). Its coef-
ficients can be obtained by expanding the contribution of the 
last term of Eqn (3) in the vicinity of the point t = 0. In this 
case the dependence W(E) is also to be taken into account. 
The energy level width in this approximation is determined by 
the contribution of the saddle point t0

(2) in the limiting case (7). 
The introduction of a small but finite radius of the force cen-
tre (in our case it is the radius of the quantum dot) can be 
considered as a certain ‘regularisation’ of the delta-function 
potential at small distances. It is easy to see that the procedure 
considerably improves the analytic properties of the theory*. 
It is clear that this regularisation is somewhat contradicting 
the logics of the method itself. The main attractive feature of 
the delta-function potential approximation is due just to the 
simplicity, caused by the reduction of the interaction radius to 
zero [26]. The backside of this simplicity is the loss of relation 
between the initial energy level characteristics and the proper-
ties of the potential well, as well as the additional nonanali-
ticity.

The saddle-point estimate of integral (3) takes the form
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We see that when E ® 0, the first term yields an exponential 
decrease, typical for bound states:
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and the second term vanishes as an essentially singular point.
To formulate the condition for the electron binding 

energy, one has to construct the solution of the Schrödinger 
equation in space inside a quantum dot. Previously we have 
shown [17 – 20] how it can be done for potential (1) in the 
presence of a magnetic field. In the electric field, the situation 
is quite analogous after the simplification of the Green func-
tion under the condition (4). Let us analytically continue the 
solution from the exterior domain into the domain r < R, 
replacing the appropriate constants. One should keep in mind 
that the wave function must be limited at r = 0. Inside the well 
the Schrödinger equation reads
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where the field strength inside the spherical quantum dot is 
E' = 3E/(E  + 2) [27]; min

* is the electron effective mass in the 
material of the dot; and E  is the relative permittivity of the 
dot material in the matrix. Correspondingly, two linear-inde-
pendent simplified solutions for this domain are

3

( ) ( )expd iBr /
in in

3 2 0

0
!y tt j= -y ,	 (11)

where B is a normalising constant and
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It is easy to show that the boundary condition at the zero 
point is satisfied by the following linear combination of these 
solutions:
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Then, following Ref. [9], we construct the function  c(r) = 
ry(r) and require its logarithmic derivative to be continuous 
at the boundary of the quantum dot. As a result, we obtain 
the closed equation that after regularisation allows the calcu-
lation of the bound state energy level
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3. Complex bound electron energy. Stark shift 
and autoionisation probability. Distinctions 
from the delta-function potential model

Even after the described regularisation procedure, two cir-
cumstances hamper the use of Eqn (13). First, the integrals in 
the left-hand side of (13) strongly oscillate at E' ® 0. These 
oscillations are due to the contribution of the second saddle 
point in the considered domain [in contrast to Eqn (6), these 
points lie near the real axis]:
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The corresponding saddle-point estimate of Eqn (11) has 
the form
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* The property of the electric field to improve the analytic properties of 
the functions that describe threshold reactions in the quantum field 
theory and quantum mechanics at the expense of ‘removing’ the singu-
larities such as branching points near the threshold was analysed in de-
tail in Ref. [13].
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As will be seen below, the above oscillations give rise to 
strong ‘noisiness’ of the general trend of the appropriate 
curves. It is reasonable to extract this trend by removing the 
oscillatory contribution. This can be done both analytically 
and using the software means. It is important to note that for 
the considered purpose one cannot merely omit the contribu-
tion of the second saddle point. Replacing all integrals in 
Eqn (13) with their saddle-point estimates and omitting the 
terms with sinj2 and cosj2, we arrive at the ‘smoothed’ equa-
tion for the bound state energy level
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All calculations below are performed using either this 
expression, or Eqn (13), in which the values of the integrals 
are replaced with saddle-point estimates (8) and (15).

The second ‘technical’ circumstance that complicated the 
calculations is limitation (4) on the field magnitude. If the real 
part of energy is small, then even a small electric field can be 
sufficient to eliminate the potential barrier between the poten-
tial well in the quantum dot and the surrounding matrix. In 
other words, in this case the value of b can exceed unity, and 
this is beyond the frameworks of the used approximation. 
Therefore, we terminate the calculations at the field magni-
tude restricted by Eqn (4).

The size of an ideal quantum dot should lie in the strictly 
determined interval between the ‘lower’ and ‘upper’ critical 
radii [9]. The limitation from below is due to the following 
reason. In the centre of the potential well, the electron density 
[the function c(r), joined at the boundary of the quantum dot] 
has a node. Outside the well, the electron density of the 1s 
state exponentially decreases. Therefore, inside the well the 
electron density must have a maximum. In this connection, 
the minimal possible radius of the ideal quantum dot is  

/[2(2 )]R m U* /
min in 0

1 2'p=  [17, 19, 20]. The maximal possible 
radius is Rmax = 3Rmin, in this case the second energy level of 
the 2s state appears in the well. As easily seen from Eqn (16), 
a weak external field somewhat increases both radii, practi-
cally conserving their ratio.

It is worth paying attention to a circumstance, which in 
our opinion is very important. The delta-function potential is 
commonly considered as a limit of a ‘sequence’ of wells 
becoming more and more narrow and deep. If so, solutions 
(8), (12), and, above all, conditions (13) for the energy level 
must continuously transit into the delta-function well solu-
tion. However, there is no such transition, which follows 
already from the existence of the minimal radius, and the fact 
that 0

"3
Rmin

U0
"  does not change anything. For this reason, in 

the delta-function potential method the energy of the bound 
state is an arbitrary external parameter. In this method the 
known transcendental equation for the complex energy (see, 
e.g., [11], [25], etc.) is an analogue of condition (16). It can be 

easily obtained from Eqn (3) requiring the scattering length to 
be independent of the external field. However, this equation 
offers no possibility to select particular values of the binding 
energy and describes only the behaviour of the energy level 
known in advance in the external field.

4. Discussion of results and conclusions 

Now we can proceed to the discussion of the results obtained. 
Figure 1 presents the dependences of the Stark shift on the 
field strength for ideal quantum dots of different size. The 
field strength itself here and in other Figures is normalised to 
the field

(2 ) / ( )E m U e* / /
in0

1 2
0

3 2 '= ,
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Figure 1.  Dependences of the Stark shift value on the electric field for 
the quantum dots with the radius (a) 2.5 and (b) 3.5 nm. Here and in 
Figs 2 – 4 the monotonic curves are calculated using Eqn (16), the oscil-
lating curves are calculated using the exact formula (13). The electron 
masses in the interior and exterior domains are min

* = 0.05m and mex
* = 

0.1m, respectively, and the relative permittivity of the quantum dot ma-
terial is E  = 2. 
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and the shift of the real part of the level is normalised to the 
potential well depth |U0 |:

( ) /ReSht W W U0 0= - ,

where W0 is the binding energy of the level in the absence of 
the external field, i.e., in the limiting case E ® 0. The mono-
tonic curves are computed using the approximate ‘smoothed’ 
formula (16), and for the oscillating ones the exact expression 
(13) was used. The calculation was carried out for the follow-
ing set of model (but quite realistic) parameters: min

* = 0.05m, 
mex

* = 0.1m, E  = 2. One can see that the field dependence of 
the Stark shift is much more complex and interesting than 
that in the delta-function potential approximation (the latter 
is close to the monotonic curves). The oscillations consider-
ably affect the shift. As seen from Eqn (15), these oscillations 
are related to the contribution from those saddle points that 
vanish in the delta-function well approximation. Overall, 
their frequency is inversely proportional to the field strength, 
and the amplitude depends on the field in a complex way. 
Roughly speaking, it is proportional to the field and inversely 
proportional to the binding energy, which, in turn, depends 
on the field. Therefore, the relative value of the oscillation 
amplitude at first increases with the field growth and then 
begins to fall so that finally the envelopes of the oscillating 
curves converge to the monotonic ones. We recall that the 
limitation b < 1 restricts the domain of reliable calculations. 
We also note that with the growth of the well size even the 
sign of the Stark shift may change.

Figure 2 presents the dependences of the Stark shift on the 
electric field for different values of the relative permittivity of 
the quantum dot material. In our opinion, the dependences 
are rather curious. The calculation is carried out at the same 
mass ratios as in Fig. 1 and at the fixed radius of the quantum 
dot R = 3 nm. The following values of permittivity were cho-
sen: E  = 0.25, 1 and 4. It is seen that the smoothed values of 
the shift rather weakly response to the change in relative per-
mittivity. In other words, the averaged value of the shift 
weakly depends on the field inside the potential well. This 
independence is enhanced by our approximation (4). On the 
contrary, the oscillating part of the Stark shift is rather sensi-
tive to the interior field. Generally, this fact agrees with the 
logics of the known pseudopotential approximation [9]. It is 
clear that exactly the interference effects that determine the 
shift oscillations are most sensitive to the local variations of 
the wave function.

Now let us proceed to the consideration of the electric 
field dependence of the energy level width (the imaginary part 
of the complex energy). We recall that the imaginary part of 
the complex energy is related to the probability of the state 
decay, and in our case (one bound energy level in the well) the 
only possible decay channel is the transition of electron into 
the conduction band of the matrix (conditionally referred to 
as ionisation). Thus, the imaginary part of the energy is the 
ionisation probability per unit time. In Fig. 3, this dependence 
is presented for three different diameters of the quantum dot. 
We use the same field and energy units and the same values of 
constants as in Fig. 1. As above, we use the approximate for-
mula (16) for the monotonic curves and Eqn (13) for the oscil-
lating ones. One can easily see that the oscillations here are 
less significant than in the case of the Stark shift. Their behav-
iour depending on the field has generally the same character 
as in the case of the Stark shift. Naturally, the probability of 
electron extraction from the potential well for the fixed field 

decreases with increasing well width. As above, the domain of 
calculations is restricted by the condition b < 1.

The field dependences of the energy level width in quan-
tum dots of similar size for different values of permittivity are 
presented in Fig 4. The same trends as in Fig. 2 are observed. 
The monotonic curves are practically undistinguishable, in 
spite of the considerable range of E  variation. The oscilla-
tions in some sense manifest the difference of permittivity, 
hidden in the averaged curves. The frequency of oscillations 
increases with increasing E , i.e., with a decrease in the electric 
field strength within the volume of the potential well, since it 
is inversely proportional to the fields strength inside the quan-
tum dot, too.

Finally, let us briefly discuss the role of the AC compo-
nent of the field. Equations (13) and (16) that determine the 
value of the complex energy for the DC field have the general 
form
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Figure 2.  Dependence of the Stark shift value on the electric field 
strength for the quantum dots with the radius 3 nm (a) for E  = ( 1 ) 0.25, 
( 2 ) 1 and ( 3 ) 4, as well as (b) for E  = ( 1, 4 ) 0.25 and ( 2, 3 ) 4. The units 
of the field strength and the energy, as well as the electron masses are 
the same as in Fig. 1.
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f1(E ) = f2(E ).	 (17)

To estimate roughly the effect of the AC light wave field, we 
replace E ® E0 + ∆E sin(wt) and assume that the constants 
satisfy the relation E0 >> ∆E. Since the boundary conditions 
(13) and (16) are satisfied at any moment of time, the values 
of complex energy should oscillate in time with the frequency 
w. These oscillations superpose with the intrinsic oscillations 
in the DC field, related to the finite size of the quantum dot 
(see Figs 1 – 4). This superposition can give rise to interesting 
resonance phenomena, the detailed study of which is far 
beyond the scope of the present paper.

Here we restrict ourselves to the simplest version of the 
adiabatic approximation. Let us average over the period the 
previous relation,

( , ) ( , )
T

f E t
T

f E t1 1T T

0 0
=1 2y y ,	 (18)

and take into account the fact that the amplitude of the peri-
odic perturbation is small against the background of the 
direct component of the field:

( )E( , ) ( )sin
d

d
E t

E
f

E t, ,
,

1 2 1 2 0
1 2 0

. wD+f f
( )E
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d
E
f E
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2
1 ,
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2
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After averaging over the period, relation (18) that deter-
mines the complex energy of the level transforms in the fol-
lowing way:

( )
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( )
d

d
d

d
E

E
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E
E
f

E
4
1

4
1

1 0 2

2
0 2

2 0 2

2
0 2D D+ = +

1f f .

One can easily see that even in this primitive version the 
situation with the effect of the wave field is ambiguous. From 
Figs 1 – 4 it is seen that for the monotonic dependences result-
ing from Eqn (16) the contribution from the AC field in the 
adiabatic approximation is rather small, as it could be 
expected. At the same time, according to the exact formula 
(13), the resonance phenomena in the superposition of the 
DC field and the light wave field are quite possible, and this 
possibility is due to exactly the finite size of the potential well. 
In the delta-potential approximation, they vanish in a similar 
way, as the oscillations of the Stark shift and the energy level 
width.

From the obtained results, it is worth making two remarks. 
1. The regularisation method of Gamov quasi-stationary 

states is not as universal as the Zel’dovich method. However, 
in the situations when the divergences are due to the effect of 
the electric field it may be useful. Our method yields simpler 
and better converging expressions.

2. The effect of the electric field on the behaviour of bound 
single-electron states in the wells of finite depth and size (like 
quantum dots) is much more complex and diverse than pre-
dicted by the delta-function potential approximation. The 
main cause of this additional complexity is the oscillations of 
both real and imaginary parts of the complex energy of the 
bound particle in the DC field. These oscillations exist only in 
the finite-size potential well and are principally irreproducible 
using either the delta-potential approximation or the pertur-
bation theory.

Thus, we have constructed the theoretical model describ-
ing the energy spectrum of a 3D quantum dot in the external 
DC and weak AC electric fields, using neither the delta-func-
tion potential approximation, nor the perturbation theory. 
For this purpose, we have proposed a simple method of regu-
larising the Gamov wave function and applied it to the calcu-
lation of the complex-valued energy of the electron that 
describe both the optical spectrum of the system and the 
probability of the state decay (autoionisation). The effect of 
oscillation of the Stark shift and the energy level width in the 
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Figure 3.  Dependences of the energy level width on the electric field 
strength for the quantum dots with the radius ( 1 ) 2.5, ( 2 ) 3 and ( 3 ) 
3.5  nm, the electron effective masses  min

* = 0.05m, mex
* = 0.1m, and E  = 2.
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Figure 4.  Dependences of the energy level width on the electric field 
strength for the quantum dots with the radius 3 nm at E  = ( 1 ) 0.25, ( 2 ) 
1 and ( 3 ) 4; the monotonic curves virtually coincide. The effective mass-
es are the same as in Fig. 3.
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DC electric field, which is possible only in a potential well 
having finite depth and size, was found. 
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