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Abstract.  Using the coupled-wave method, we consider anharmonic 
Bloch oscillations of light in an array of waveguides, taking into 
account the coupling between waveguides up to the third order. It is 
shown that the beam trajectory is periodic, with the trajectory oscil-
lating within a single period. 
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1. Introduction 

The great interest shown to date by researchers to arrays of 
waveguides is due to the fact that they allow the behaviour of 
signals propagating in them to be controlled and managed. 
Theoretical investigation of optical phenomena in the arrays 
of interacting waveguides is based on the use of the coupled-
mode method. An important task is to study an array of 
waveguides whose optical parameters vary depending on the 
number and position of the waveguide in the array. Khadzhi 
et al. [1] studied the properties of the light propagation in pla-
nar semi-infinite waveguide arrays, whose propagation con-
stants and coupling constants change according to the given 
laws, depending on the waveguide number. The possibility of 
creating Chebyshev arrays of the first and second kind, as 
well as Laguerre, Legendre, Hermitte, Jacobi and Gegenbauer 
arrays was also predicted. Purchel et al. [2] studied for the first 
time optical Bloch oscillations in an infinite array of wave-
guides, the propagation constant of which increases in pro-
portion to the waveguide number. It was shown that the tra-
jectory of the optical beam exciting the waveguide group from 
the end face periodically oscillates. In this case, each wave-
guide interacts only with the nearest neighbours. 

At present, more complex optical structures such as zig-
zag waveguide arrays with the second-order coupling are of 
considerable interest. The authors of Refs [3 – 5] studied 
anharmonic Bloch oscillations in an array of waveguides, in 
which the propagation constant is proportional to the wave-
guide number in the array, taking into account the first- and 
second-order couplings. Gozman et al. [5] generalised the 
result obtained in [2] to the case of zigzag arrays. An analyti-
cal solution to the system of equations for the amplitudes of 

coupled modes was found and a formula for the trajectory of 
the optical beam was obtained.

In this paper we present an analytical solution of an infi-
nite system of coupled-mode equations for an array in which 
the propagation constant contains a correction proportional 
to the waveguide number in the array, and in addition, the 
coupling of the first, second and third orders is taken into 
account. The results presented below are a generalisation of 
the results from Refs [2 – 5]. 

2. Statement of the problem. Basic Equations 

The starting point of our study is the system of coupled-mode 
equations:
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where aj (z) is the modal amplitude of the jth waveguide as a 
function of the longitudinal coordinate z; a is the correction 
to the propagation constant; and g1, g2 and g3 are the first, 
second and third order coupling constants, respectively. 
Following [5], we move from the amplitudes aj (z) to their 
Fourier transforms and obtain the differential equation: 
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Using the boundary condition ( , )| ( )a k z a kz 0
0

== , we find the 
general solution to this equation in the form 
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Assuming below that the function a0(k) has a sharp peak at 
k = k0 and expanding expression (3) in a Taylor series in the 
vicinity (k – az) – k0, we obtain 

a(k, z) = a0(k – az)exp[ij(z) + i(k – az) – k0 y(z)], 	 (4)

where 
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Substituting (4) into (2), we find solutions for the field ampli-
tude aj (z) and the intensity |aj (z)|2, similar to solutions (20) 
and (21) from [5]. Then for the trajectory of the optical beam 
in the ( j, z) plane for j0 = 0 and k0 = 0, we obtain 
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It is seen from (7) that the function j(z) is periodic and depends 
on the z coordinate along the waveguide with a period z = 
2p/a. Moreover, j(z = 0) = j(z = 2p/a) = 0. The period 
decreases monotonically with increasing parameter a. We 
find the extrema of the function j(z) within the same period 
0 £ z £ 2p/a by equating the derivative dj /dz to zero. The 
position of the extrema is determined by the equations

sin az = 0, 	 (8)

g1 – 3g3 + 4g2 cos az + 12g3(cosaz)2 = 0. 	 (9)

It follows from (8) that, regardless of the values of the 
parameters g1, g2 and g3, one of the extrema of the trajectory 
j(z) is found at z = p/a, where j = 4(g1 + g3)/a. Thus, beginning 
with the waveguide with j = 0, the beam first moves from 
waveguide to waveguide perpendicular to the waveguide axes, 
reaches the waveguide with the number j = 4(g1 + g3)/a, then 
returns to the initial waveguide with j = 0, passing along its 
axis the distance z = 2p/a. Figure 1 shows the trajectory of the 

beam with one maximum and one minimum within one 
period. Comparing this result with the analogous result from 
[5], we can conclude that when the third-order coupling is 
taken into account, the moving beam is additionally shifted to 
the right by the number of the waveguides, Dj = 4g3 /a. 

From the equation (9) we obtain two solutions for the 
positions of the beam extrema: 
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The extremum positions essentially depend on the values of 
the parameters g1, g2, g3 and a. In the limit g3 ® 0, from (10) 
we arrive at the solution obtained in [5]: cosaz = – g1(4g2)–1. 
Hence, it can be seen that additional solutions for extrema 
exist only for g1/(4g2) < 1, which, as shown in [5], are defined 
by formulas 
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In the general case, when g3 ¹ 0 and the condition g1 < 
min[4g2 – 9g32; 3g3 + g22 /(3g3)] is fulfilled, the solutions for the 
extremums are as follows:
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If 4g2 – 9g32 < g1 < 3g3 + g22 /(3g3), then there are two additional 
extrema at 
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3. Discussion of results 

Figure 1 shows the dependences j(z) for different values of the 
parameters. It can be seen that within one period there can be 
either two, or four, or finally six extrema. Each extremum is 
found at certain values of the variable z and the waveguide 
number j, i.e., as the beam of light propagates, diffusion takes 
place in a direction perpendicular to the propagation direc-
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Figure 1.  Spatial trajectory of the beam for the correction to the propagation constant, a = 0.2, and the coupling constants of the first, second and 
third orders: (a) g1 = 0.9, g2 = 0.012, g3 = 0.001; (b) g1 = 0.9, g2 = 0.83, g3 = 0.015; and (c) g1 = 0.5, g2 = 0.499, g3 = 0.05.
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tion. This result indicates that with allowance for the addi-
tional coupling between the waveguides (in this case, third-
order coupling), the spatial structure of the beam trajectory is 
enriched by a pair of additional extrema. The result obtained 
allows us to state that when all couplings in the array are 
taken into account, up to the Nth order, the centre of the 
propagating beam will move in the space of variables (  j, z) 
along the curve 
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which is a natural generalisation of solution (7) and solution 
(24) from [5]. In this case, the curve ( j, z) can have 2s extrema 
within the same period. 

Thus, we have considered anharmonic Bloch oscillations 
in an array of optical fibers, taking into account the coupling 
between waveguides up to the third order. It is shown that the 
beam trajectory is a periodic function, and there exist oscilla-
tions of trajectories with six extrema within the same period. 
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