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Abstract.  We propose a theoretical model describing the radiation 
dynamics in a solid-state coupled-cavity ring laser. Based on the 
numerical simulation conducted within the framework of this 
model, we investigate antiphase harmonic oscillations of counter-
propagating wave intensities. It is shown that the amplitudes and 
frequencies of self-modulation oscillations in cases of in-phase and 
antiphase cavity couplings differ significantly. In the case of anti-
phase coupling, a new possibility of increasing the scale factor with 
increasing perimeter of the additional cavity is found. The depen-
dence of the frequency of self-modulation oscillations on the optical 
nonreciprocity produced in the main cavity by a constant magnetic 
field is studied experimentally. Comparison of experimental and 
theoretical results shows good agreement between theory and 
experiment. 

Keywords: solid-state ring laser, coupled cavities, self-modulation 
oscillations, optical nonreciprocity, scale factor, laser gyroscopy. 

1. Introduction 

The sensitivity of a ring laser to rotation and the possibility of 
increasing it are important for problems related to the appli-
cations of laser gyroscopes (LGs). One way to increase the 
scale factor and the sensitivity of an LG is based on the use of 
a strong anomalous dispersion medium placed inside a laser 
cavity (see [1 – 3] and references therein). Eliseev [1] theoreti-
cally investigated the possibility of increasing the scale factor 
in a semiconductor laser whose resonator is filled with a dis-
persive medium. Shahriar et al. [2] predicted theoretically the 
possibility of increasing the scale factor by a factor of 106 with 
the use of intracavity anomalous dispersion media. A detailed 
analysis of the possibilities of using gas anomalous dispersion 
media to increase the scale factor in an LG based on 
helium – neon lasers was carried out by Salit at al. [3], who 
showed that the use of such linear gas media for this purpose 
is unpromising. 

Another approach to increasing the scale factor of an LG 
is based on the use of coupled ring lasers (without the use of 
any intracavity highly dispersive medium). Laser gyroscopes 
include systems that employ optical angular rotation velocity 

sensors of two types: 1) ring lasers that generate counterprop-
agating waves with different frequencies inside the laser cav-
ity, and 2) sensors in which the external laser radiation is 
transmitted in counterpropagating directions through a 
Sagnac interferometer (or a ring resonator). The LGs with a 
sensor of the first type are called active, and the LGs with a 
sensor of the second type are called passive. For passive LGs, 
the possibility of increasing the scale factor by means of cou-
pled ring resonators was shown theoretically in [4 – 6]; This 
conclusion was confirmed in [4] by experimental results. 

In the case of active LGs, in accordance with the theo-
retical studies carried out in Refs [7 – 9], one can expect that 
the use of coupled cavities will allow a substantial increase 
in the scale factor K. In these works it was shown that cou-
pled ring resonators make it possible to control intracavity 
dispersion and realise conditions, which arise under anoma-
lous dispersion and lead to an increase in K. However, as far 
as we know, these results have not been verified experimen-
tally to date. 

Previous studies have shown that harmonic antiphase 
self-modulation oscillations of the intensities of counterprop-
agating waves with a frequency that depends on the angular 
rotation velocity are excited in solid-state ring lasers (SRLs), 
in particular in miniature ring chip lasers, due to the competi-
tion of counterpropagating waves. This generation regime 
was called the self-modulation regime of the first kind 
(SMR1). The first experimental and theoretical studies of this 
regime in diode-pumped annular chip lasers were performed 
in Refs [10 – 13]. 

Using SRLs operating in the self-modulation regime, it is 
possible in principle to create one of the versions of an active 
LG, which differs from the conventional method of measur-
ing the rotational velocity. In a conventional LG, a beat sig-
nal, which arises during interference of counterpropagating 
waves as a result of their mixing outside the cavity, is pro-
cessed, and in the variant using SMR1 it is necessary to mea-
sure the frequency of intensity self-modulation of one of the 
counterpropagating waves emerging from the laser cavity. 
The advantage of this type of sensors is the absence of a lock-
in zone (self-modulation oscillations are retained even at zero 
rotation velocity). SMR1 is the main regime of operation for 
miniature monolithic ring-shaped chip lasers, but the possi-
bilities of using such sensors for navigation applications are 
limited by the small value of the scale factor K, due to the 
small size of the chip laser. The situation could change with 
increasing K by means of coupled ring resonators. 

The purpose of this paper is a theoretical and experimen-
tal study of self-modulation oscillations of radiation in a cou-
pled-cavity SRL. 
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2. Theory

2.1. System of equations for an external optical feedback SRL 

Figure 1 illustrates a schematic of a coupled-cavity ring laser. 
Inside the main ring resonator containing an active element 
(AE), two counterpropagating waves with complex ampli-
tudes E1, 2 propagate (in Fig. 1 only the wave is shown). The 
radiation emitted from the main resonator through the par-
tially transmitting coupling mirror (M) excites optical fields 
Eс1, с2 in the external ring resonator and returns again to the 
main resonator through the same mirror (Fig. 1 shows only 
the wave Eс1).

We consider a one-dimensional model of a laser in which 
the optical electric fields of the counterpropagating waves 
E ,
opt
1 2  in the main resonator are represented in complex form 

as functions that depend on time and coordinate z directed 
along the cavity axis: 

( , ) [ ( / )]exp iE E z t t z c, ,
opt
1 2 1 2 "w= , 	 (1)

where w is the frequency of optical vibrations; and c is the 
speed of light. The complex amplitudes E1, 2 (z, t) are slow 
functions that vary little over the period of optical oscilla-
tions. These functions describe the counterpropagating trav-
elling waves, and outside the active medium we represent 
them in the form 

E1, 2 (z, t) = E1, 2 (t "  z/c). 	 (2)

The cyclicity conditions (uniqueness of the field) in the ring 
cavity have the form

( , ) ( , )E z t E t z L, ,
opt opt
1 2 1 2= + , 	 (3)

where L is the optical length of the resonator. 
Using (1) – (3), we can obtain the following difference 

equations describing the variation of the complex amplitudes 
E1, 2 (z, t) during the round-trip time T = L/c of the wave inside 
the ring cavity: 

E1, 2 (t) = k1, 2 rtotexp(–iwT )E1, 2 (t – T ), 	 (4)

where k1, 2 are the coefficients of wave amplification during 
passage through the active medium; and rtot is the product of 
the amplitude reflection coefficients of all the mirrors of the 
main resonator. 

Equations (4) refer to the case when there is only one 
main resonator in the ring laser. Below, we obtain a system 
of difference equations, which is valid for a laser with two 
coupled resonators. To this end, we consider the transfor-
mation of the electric field E1(t) on the coupling mirror M 
(Fig. 1). We denote by EA(t) and EB (t) the value of the field 
E1(t) at points A and B (before and after reflection from the 
coupling mirror) inside the main resonator. Passing through 
the coupling mirror, the wave E1(t) enters the additional 
resonator and causes a change in the amplitude of the wave 
field Ec1(t) propagating in this cavity. We denote by EC (t) 
and ED (t) the values of the field Ec1(t) at points C and D 
(before and after reflection from the coupling mirror) inside 
the additional resonator. The field conversions on the cou-
pling mirror have the form 

EB (t) = rEA(t) + tr EC  exp(ij),	 (5)

ED (t) = rEC(t) + tr EA exp(ij). 	 (6)

Here r and tr = r1 2
-  are the amplitude coefficients of 

reflection and transmission for the coupling mirror; and the 
factor exp(ij) takes into account the phase shift j of the 
transmitted wave with respect to the reflected wave. 

Taking into account the propagation of the fields inside 
the main and additional cavities, as well as the amplification 
of light with the coefficient k1 as it passes through the active 
medium, we obtain the expressions: 

EA(t) = k1 re EB (t – T ),	 (7)

EC (t) = rc ED (t – Tc ). 	 (8)

Here re is the effective coefficient, equal to the product of the 
reflection coefficients of all the mirrors of the main resonator, 
with the exception of the coupling mirror, and the coefficient 
that takes into account the field attenuation, which arises 
from all other losses in the main resonator; rc  is an analogous 
value for an additional resonator; and Tc is the round-trip 
time of light inside the additional resonator. 

For a coupled-cavity laser, taking into account transfor-
mations (5) – (8), the system of difference equations (4) takes 
the form: 

E1, 2 (t) = k1, 2 re exp(–iwT )

	 ´ [rE1, 2 (t) + tr exp(ij)Ec1,c2(t – T )],	 (9)

Ec1, c2 (t) = rc exp(–iwTc)

	 ´ [rEc1, c2 (t) + tr exp(ij)E1, 2(t – Tc)]. 	 (10)

Here equations (9) determine the generation of counterpropa-
gating waves E1, 2 inside the main resonator, taking into 
account the effect of the fields Ec1, c2, and equations (10) – the 
excitation of counterpropagating waves in the external reso-
nator by waves E1, 2. This system of equations must be supple-
mented by equations for the inverse population in the active 
medium. Using them, we can calculate the coefficients k1, 2. 
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Figure 1.  Scheme of a coupled-cavity ring laser. 
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Equations (9), (10) are applicable for the analysis of both 
single-mode and multimode generation with a large number 
of axial modes. We consider below single-mode generation, 
and the losses in the main resonator per single round trip are 
assumed to be small. In this case, the gains are close to unity 
and can be written in the form k1, 2 = 1 + sNl/2, where s is 
the stimulated emission cross section at the laser transition; 
N is the population inversion density; and l is the length of 
the active element. After the difference equations (9) are 
replaced by differential equations, the system of equations 
for a coupled-cavity SRL, generalising a system of analo-
gous equations for a single-cavity SRL [14, 15] takes the 
form: 

i iE
Q
E E m E

2 2 2, , , , ,1 2 1 2 1 2 1 2 2 1!
w W

=- +o u

	 ( )
( )exp i
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r
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2

2
2h= + - -o 	 (11)
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2

2
2

0 1 2=- - -+ + +
o ,

( ) [ ( /2)]exp iE t r T,c c c c c1 2 "F W=

	 [ ( ) ( ) ( )]exp irE t T t E t T, ,c c c r c1 2 1 2# j- + - . 	 (12)

The following notations are used in equations (11) and (12): 
w/Q is the bandwidth of the main resonator (the losses inside 
the cavity are assumed equal for counterpropagating waves); 
Q is its Q-factor; T1 is the longitudinal relaxation time; a = 
T1cs (8 ) 1

# ' pw -  is the saturation parameter; W and W c are the 
frequency nonreciprocities of the main and additional resona-
tors, arising from the Sagnac effect during rotation; F = 
wnTc; and wn is the eigenfrequency of the main resonator for 
counterpropagating waves in the absence of rotation. The 
pump rate is given in the form Nth(1 + h)/T1, where Nth is the 
threshold density of the inverse population; and h is the excess 
of the pump power above the threshold. The linear coupling 
of counterpropagating waves is determined by phenomeno-
logically introduced complex coupling coefficients 

( )exp im m1 1 1J=u ,    ( )exp im m2 2 2J= -u , 	 (13)

where m1, 2 are the moduli of coupling coefficients; and J1,2 
are their phases. 

The inverse population density is expanded in a series of 
spatial harmonics 

N(z, t) = N0(t) + N+(t)exp(i2kz)

	 + N–(t)exp(–i2kz),  N+ = N–
* 	 (14)

taking into account the zero harmonic N0 and the second har-
monics N±. Because of the interference of counterpropagat-
ing waves, the radiation intensity inside the resonator changes 
periodically in space (along the z axis of the resonator), and as 
a result of the population inversion saturation, lattices are 
formed in the active medium, the amplitudes of which are 
determined by the harmonics N±. 

Note that equations (11), (12) are written for the case of 
generation at the frequency of the gain line centre. In addi-
tion, in these equations the optical frequency w is set equal to 
wn (w = wn). 

2.2. Results of numerical simulation

In the absence of external optical coupling, as was established 
above, the SMR1 arises in a wide range of laser parameters in 
a SRL. As shown in this paper, this regime can also be 
observed in a coupled-cavity SRL. The characteristics of self-
modulation oscillations were found by solving numerically 
equations (11) and (12). 

The SRL parameters were set as follows. It was assumed 
that the main resonator is a monolithic ring resonator cut 
from a YAG : Nd crystal (a resonator of a ring chip laser 
[13,  16]). The perimeter of the main resonator was L = 5 cm, 
and the reflection coefficients were r = 0.97 and re = 0.93, 
which corresponds to the main resonator bandwidth w/Q 
equal to 4.5 ´ 108 s–1. The coupling coefficients were assumed 
equal: m1 = m2 = m = 1.3 ´ 106 s–1. In this case, the frequency 
of self-modulation oscillations in the absence of optical non-
reciprocity (W = 0) in a chip laser without an additional reso-
nator is 206 kHz. The excess of the pump above the threshold 
was h = 0.09. These parameters refer to an Nd : YAG ring 
chip laser, which was used in the present work in experimental 
studies. The perimeter of the additional ring cavity Lc in these 
experiments was 86.5 cm. The coefficient rc, which determines 
the losses in the additional cavity, was not experimentally 
measured, and its value (0.35) was chosen so that the param-
eters of the self-modulation oscillations (amplitude and fre-
quency) were consistent with those measured in the experi-
ment. The system of equations (11), (12) also includes two 
parameters characterising the phases of the optical coupling 
of the main and additional resonators: F = wnTc and the 
phase shift j between the reflected and transmitted waves on 
the coupling mirror. The results of numerical simulation pre-
sented below were obtained for j = 0. 

Numerical simulation showed that at F = wnTc = 2pp, 
where p is an integer (when the lengths of the main and addi-
tional cavities differ by an integer number of times), an exter-
nal optical coupling leads to a decrease in losses in the main 
resonator and to an increase in the amplitude of self-modula-
tion oscillations. This coupling of the resonators will be called 
in-phase coupling. At F = 2pp ± p, the external optical cou-
pling increases losses in the main resonator and reduces the 
amplitude of self-modulation oscillations. This optical cou-
pling of resonators will be called antiphase coupling. 

Figure 2 shows the time dependences of the counterpropa-
gating wave intensities I1, 2 = a|E1, 2|2 in the case of in-phase 
coupling, calculated in the absence of frequency nonreciproc-
ity (W = Wc = 0) and for the values of other laser parameters 
indicated above. As can be seen from the figure, there is an 
antiphase sinusoidal modulation of the counterpropagating 
wave intensities, characteristic of the SMR1. 

Numerical simulation has shown that the frequencies of 
self-modulation oscillations, fm = wm/2p, in the case of in-
phase and antiphase couplings differ. In the absence of fre-
quency nonreciprocity, the frequency fm for the in-phase cou-
pling and the above parameters is the smallest: fms = 183 kHz. 
In the case of antiphase coupling, fm, on the contrary, assumes 
the largest value: fma = 217 kHz. 

In numerical simulations, we calculated the dependence of 
the frequency of self-modulation oscillations on the optical 
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nonreciprocity W of the main cavity. Figure 3 shows the 
dependence of fm on W in cases of in-phase and antiphase cou-
plings of the cavities. These dependences are measured at the 
above parameters, when the main resonator is a monolithic 
ring cavity based on a YAG : Nd crystal with a perimeter L = 
5 cm and a perimeter Lc = 86.5 cm of an additional ring cav-
ity. The dependence for the case of an antiphase coupling of 
the cavities at Lc = 7 m is also presented.

Based on the calculations performed, we can determine 
the change in the scale factor K = dfm /dW  when use is made 
of an additional resonator. In the case of an antiphase cou-
pling, the value of K normalised to the scale factor of the chip 
laser without an additional cavity, with a perimeter Lc1 = 
86.5  cm of the additional cavity, virtually does not change (K1 
= 1.05) due to the optical coupling. With the increase in the 
perimeter of the additional resonator to Lc2 = 7 m, the scale 
factor increases to K2 = 1.7. 

3. Results of experimental studies 

In the present work, we studied experimentally a coupled-
cavity SRL. The main cavity was a monolithic ring resonator 

made of a high-quality YAG : Nd single crystal in the form of 
a complex polyhedral prism. Such a monolithic resonator is 
usually used in ring-shaped chip lasers [13, 16]. The laser radi-
ation emitted from the monolithic resonator through the 
dichroic mirror coating applied to the face (M) was returned 
to the monolithic ring cavity with the help of mirrors M1, M2 
and M3, which are part of the additional ring cavity (Fig. 4). 
These mirrors had reflection coefficients close to unity. 
Mirrors M1 and M2 are plane mirrors, mirror M3 is spherical 
with a radius R = 50 cm. The perimeter Lc of the additional 
ring cavity was 86.5 cm. The ring laser was excited by a semi-
conductor laser diode whose radiation was focused and 
directed to the monolithic cavity through the dichroic mirror 
M on the face. 

The time and spectral characteristics of the radiation of 
the coupled-cavity SRL were studied experimentally. In the 
absence of an additional cavity, the ring-shaped chip laser 
operated in the SMR1. When external optical coupling was 
introduced with the help of an additional cavity, this regime 
was maintained. By tuning the perimeter of the additional 
cavity by a value of the order of the laser radiation wave-
length, it is possible to change the amplitude of the self-mod-
ulation oscillations. To conduct experimental studies, the 
perimeter Lc was tuned so that the amplitude of the self-mod-
ulation oscillations became maximal (at a fixed pump power). 
We assume that this tuning of the additional cavity corre-
sponds to the in-phase coupling of the two resonators. 

During the experiments we found that the amplitude of 
self-modulation oscillations is unstable: for times on the order 
of several milliseconds, there are irregular changes in the 
amplitude from the initial (maximum) value that is approxi-
mately three times greater than in the chip laser without exter-
nal optical coupling, which is about 1/3 less than the maxi-
mum. In a coupled-cavity SRL, high-frequency antiphase 
sinusoidal modulation of self-modulation oscillations has an 
irregular low-frequency envelope, which is an alternating 
sequence of intervals with a maximum amplitude of self-mod-
ulation (in-phase intervals) and intervals with a minimum 
amplitude (antiphase intervals). The appearance of such 
alternating intervals is apparently due to the instability of the 
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Figure 2.  Time dependences of the dimensionless intensities of counter-
propagating waves, calculated for a SRL with in-phase coupling of the 
cavities at h = 0.09 (the values of other parameters are given in the text 
of the paper). 
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Figure 4.  Scheme of a coupled-cavity SRL: (RC) monolithic ring cavity; 
(M1, M2) plane mirrors of the external cavity; (M3) spherical mirror.
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phase parameters F = wnTc and j in the SRL in question. 
Figure 5 illustrates an oscillogram of the radiation intensity of 
one of the waves, I1(t) = |E1(t)|2, which shows a transition 
from the antiphase interval to the in-phase one. 

As was already noted in the discussion of the results of 
numerical simulation, the frequencies fm of self-modulation 
oscillations depend on their amplitude. In the case of in-phase 
coupling of the cavities, the self-modulation amplitude is 
maximal, and the frequency fm is the smallest. At a minimum 
self-modulation amplitude, the frequency fm, on the contrary, 
assumes the greatest value. 

The experimental measurements of fm were carried out as 
follows. At a time interval of ~1 ms (measurement interval), 
the spectrum of the laser radiation intensity was measured. 
Each measurement of fm consisted of a series including 20 
recorded spectra. In most of the spectra included in the series, 
the self-modulation frequency corresponded to the in-phase 
coupling, and in the other spectra of this series (no more than 
20 %) the coupling was antiphase. 

During the experiment we measured the dependence of 
the frequency fm of self-modulation oscillations on the optical 
nonreciprocity W/2p, created in the main cavity by a constant 
magnetic field superimposed on a monolithic ring resonator. 
The magnetic field H was produced using a solenoid and was 
proportional to the current I in the coil of the solenoid (H = 
kI ). In a ring-shaped chip laser without an additional cavity, 
the frequency of self-modulation oscillations is determined by 
the approximate formula: 

( / ) ( )f f f k I20
/

0
/

m m m
2 2 1 2 2

1
2 1 2pW= + = +6 6@ @ ,	 (15)

where fm0 is the self-modulation frequency for W = 0; and k1 
is the proportionality coefficient. Having chosen, as in [17], 
the value of the coefficient k1, we can calculate the frequency 
nonreciprocity W. 

Figure 6 shows the experimentally measured dependences 
of fm(W) on in-phase (Fig. 6a) and antiphase (Fig. 6b) inter-
vals. Empty circles indicate the results related to a ring-shaped 
chip laser without external optical coupling, and the filled 
circles to a coupled-cavity SRL. The solid curves correspond 
to a ring chip laser without an additional cavity [they were 
calculated from Eqn (15)], and the dashed curves were 
obtained in numerical simulation in cases of in-phase and 
antiphase couplings. 

As shown in Fig. 6a, the frequencies of self-modulation 
oscillations measured at in-phase and antiphase intervals are 
in good agreement with the calculated values obtained by 

numerical simulation. As was already noted, it was assumed 
in numerical simulation that the phase shift j between the 
reflected and transmitted waves on the coupling mirror is 
zero. The agreement between the results of the numerical sim-
ulation and the experiment does not give grounds for assert-
ing that the condition j = 0 was realised in the experiment. It 
can be shown that for j ¹ 0 the condition of the in-phase 
coupling of the cavities is F = wnTc – 2j = 2pp, and the anti-
phase coupling condition is F = wnTc – 2j = 2pp + p. It fol-
lows that when the perimeter of the additional resonator 
changes by a value on the order of the wavelength, it is pos-
sible to implement in-phase and antiphase couplings even at 
j ¹ 0. 

4. Discussion of results 

A theoretical model describing the radiation dynamics in a 
coupled-cavity SRL is proposed. Based on the numerical sim-
ulation carried out within the framework of this model and 
experimental studies performed with a coupled-cavity SRL, 
we can conclude that the proposed theoretical model gives a 
correct qualitative description of self-modulation oscillations 
in a coupled-cavity SRL. One of the conclusions obtained 
using the proposed model is that the amplitudes and frequen-
cies of self-modulation oscillations in a coupled-cavity SRL 
with in-phase and antiphase coupling of the cavities differ 
substantially. 

To improve the quantitative agreement of theory with 
experiment, it is required to refine the parameters of the cou-
pled-cavity SRL: the values of the losses in the additional cav-
ity and the phase shift between the reflected and transmitted 
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Figure 5.  Time dependence of the radiation intensity of the wave E1. 
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waves on the coupling mirror. In the experiments carried out, 
despite the large reflection coefficients of the mirrors of the 
additional cavity, the losses were large. At rc = 0.35, the losses 
per round trip of the light inside the resonator are 1 – rc2 = 
88 %. The transverse dimensions of the fields (modes) of the 
main and additional cavities differ significantly, and this leads 
to large diffraction losses on the coupling mirror. To reduce 
losses, it is necessary to match the transverse modes of the 
main and additional resonators. 

The use of coupled cavities, as shown in Refs [7 – 9], makes 
it possible to control the intracavity dispersion and realise an 
effective dispersion (close to anomalous) in the main resona-
tor. In the present paper, because of the large losses in the 
additional cavity, the control capabilities of the intracavity 
dispersion turned out to be very limited and it was not pos
sible to approach the case of anomalous dispersion. 
Nevertheless, even with large losses in the additional cavity, 
the change in the dispersion properties of the main resonator 
can contribute to an increase in the scale factor. In the case of 
antiphase coupling of the cavities, a new possibility of increas-
ing the scale factor with increasing perimeter Lc of the addi-
tional resonator is found. It can be significantly increased by 
using an optical delay line in the additional cavity (for exam-
ple, an optical fibre). 
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