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Abstract.  We consider a model of a dissipative four-wave mixing, 
mode-locked fibre ring laser with an intracavity interferometer. 
The necessary conditions required for mode locking are presented. 
A pulse train generation is numerically simulated at different repe-
tition rates and gain levels. Admissible ranges of values, for which 
successful mode locking is possible, are found. It is shown that 
in  the case of normal dispersion of the resonator, a laser with an 
intracavity interferometer can generate a train of pulses with 
an energy much greater than that in the case of anomalous disper-
sion. 

Keywords: generation of high-repetition-rate pulse trains, fibre ring 
laser, dissipative four-wave mixing. 

1. Introduction 

Laser sources of high-repetition-rate ultrashort pulses are in 
demand in a number of applications of modern photonics, 
i. e. optical communication, signal processing, comb spectrum 
generation, etc. [1 – 3]. One of popular variants of such sources 
are short-cavity lasers, for example, semiconductor disk lasers, 
which make it possible to achieve a repetition rate of hundreds 
of GHz [4, 5]. One more variant combining the advantages, 
such as compactness, reliability, high beam quality, convenient 
output, etc., is passive harmonically mode-locked soliton 
fibre lasers [6, 7]. The most common mechanism of mode 
locking in fibre lasers is the use of saturable absorbers or 
schemes with a nonlinear dependence of transmission on 
power, in particular, due to nonlinear polarisation evolution 
(NPE) [8, 9]. In these schemes, a uniform distribution of a 
large number of pulses along the resonator, i.e., harmonic 
mode locking, results from mutual repulsion of pulses, for 
example, due to gain saturation and relaxation [10, 11]. 
However, it is shown that this mechanism is not stable at 
sufficiently close interpulse distances, i.e., at high repetition 
rates [12 – 14]. 

A so-called self-induced modulation instability based 
on  dissipative four-wave mixing (DFWM) is a promising 

mechanism for realising harmonic mode locking with a high 
repetition rate in fibre lasers [15, 16]. The essence of this 
effect is that among a set of longitudinal resonator modes it is 
necessary to select only two (symmetric with respect to the 
gain maximum) modes, in which the gain exceeds the losses. 
The remaining modes generated during the four-wave mixing 
(FWM) process are located in the frequency domain where 
the losses predominate, and they receive energy only through 
parametric interaction. 

The key element of such a scheme is a high-Q filter, which 
allows selection of the above two main modes and suppression 
of all other modes of the resonator in the region of positive 
gain, i.e., in the frequency range where the gain exceeds the 
losses. A similar filter can be, for example, a Fabry – Perot 
interferometer. Also promising is the use of a high-Q fibre-
coupled microcavity, with the latter being not only a filter, 
but also a nonlinear element [17]. 

As a result of filtration, a comb-like equidistant spectrum 
is formed in the resonator. Then, in the course of nonlinear 
FWM, all its harmonics, i.e. cavity modes remaining after 
filtering, are automatically locked [18, 19]. In the time repre-
sentation, this pattern is equivalent to generation of pulses 
uniformly distributed over the resonator, with a repetition 
rate equal to the frequency difference of the original funda-
mental central modes. The repetition rate is given by the free 
spectral parameter (FSR) of the filter, and its maximum (in 
the ideal case of a filter with an infinitely high resolution) is 
limited only by the width of the gain line. The use of such a 
scheme allows the generation of pulse trains with a repetition 
rate of up to 1 THz and higher [17, 20].

Korobko et al. [21] considered a model of a fibre ring laser 
with an intracavity interferometer, which generates a regular 
pulse train with a widely tunable repetition rate (with a change 
in the FSR of the interferometer). One of the results of work 
[21] is the establishment of the fact that mode locking via 
DFWM can be realised in a wide range of repetition rates, 
while an important role is played by the tuning of polarisers, 
which eliminates the mode locking through nonlinear polari-
sation evolution. Harmonic NPE mode locking can also be 
realised in this scheme, but only in a rather narrow range and 
at much lower repetition rates. One of the variants of NPE 
mode locking is the formation of pulse structures that are 
different from a train of pulses uniformly distributed across the 
cavity, for example, pulse trains with an interpulse distance 
controlled by means of an interferometer [22]. The obtained 
results are in qualitative agreement with the experimental data 
[20, 22, 23]. 

In the present work, we continue to study the features 
of DFWM mode locking in a fibre ring laser with a built-in 
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interferometer. The main attention is paid to the selection of 
modes necessary for generation and to the comparison of the 
results obtained for anomalous and normal dispersions of the 
resonator. 

2. Model 

A typical experimental realisation of the model in question is 
shown in Fig. 1a. Elements of a fibre ring resonator are an 
active erbium-doped fibre (EDF), a passive single-mode 
fibre (SMF) segment, a polarisation-sensitive isolator (PSI) 
and polarisation controllers (PC1 and PC2). The generated 
radiation is coupled out from the resonator via a fibre output 
coupler (OC2). As a built-in intracavity interferometer, we 
use a tunable Mach – Zehnder interferometer (MZI) with an 
adjustable optical delay line. The repetition rate of the generated 
pulse train is determined by the free spectral parameter of the 
interferometer: 

n º FSR	 (1)

(for the MZI, FSR = c/nDL, where DL is the difference 
between the arms of the interferometer, c is the speed of 
light, and n is the refractive index of the fibre). 

Because the purpose of this work is to study mode locking 
via DFWM, we assume that the polarisation controllers are 
adjusted so that the light propagation is described by the 
scalar Ginzburg – Landau equation for one linear polarisa-
tion component. This can be done at a certain orientation of 
the controllers relative to the polarisation vector, with the 
mode locking being excluded due to the nonlinear polarisation 
evolution, because the radiation losses during the passage 
through polarisation-sensitive elements in this case do not 

depend on the intensity [21]. The equivalent scheme of the 
resonator, used for simulations, is shown in Fig. 1b. 

In simulations we used a classical approach, i.e. the descrip-
tion of the propagation of light in an active fibre using the 
Ginzburg – Landau equation [24] 

A AA
¶
¶

¶ ¶
| | ,i i

z
A

t
A

gA
t2 2 2

2 2g
g

f
2

2
2

2

2b
g

b
+ - = +

¶ ¶ 	 (2)

where A is the amplitude of the linearly polarised electric field 
in the fibre; z is the coordinate along the fibre; and b2g and gg 
are the group velocity dispersion and Kerr nonlinearity coef-
ficient of the active fibre, respectively. The gain filtering is 
taken into account in the parabolic approximation: b2f = g/Wg

2, 
where Wg is the gain line width. The saturated gain factor g is 
averaged over the simulation window and is expressed as 
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where g0 is the small-signal gain; E is the saturation energy 
of the gain; and twin is the size of the simulation window. The 
propagation in a passive SMF is described by the standard 
nonlinear Schrödinger equation (NSE) 
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where b2 is the group velocity dispersion and g is the Kerr 
nonlinearity of the SMF. 

The intracavity interferometer is described by the concen-
trated transfer function TI º A'(W)/A(W), where A'(W) and 
A(W) are the input and output amplitudes in the frequency 
domain. In the model, as a intracavity interferometer, we used 
a two-pass MZI [25] with a transfer function TI (W) º T2(W), 
where 

T = RMZ – (1 – RMZ) exp(–iW/FSR),	 (5)

with the branching ratio of the RMZ signal being assumed 
close to ideal: RMZ = 0.51. The FSR parameter is chosen 
so that its transmission maxima |TI | exactly coincide with the 
cavity modes. A prerequisite for harmonic mode locking 
through DFWM is also the fact that the centre gain frequency 
w0 is halfway between the transmission peaks |TI | of the 
interferometer. The frequency w is defined as w = W – w0. 
In  this case, the resonator modes with frequencies wk = 
±2pFSR(1/2 + k), where k = 0, 1, 2, …, are in the transmis-
sion peaks of the interferometer. The frequency difference of 
the two centre modes w±1 = ±pFSR determines the period 
of the generated pulse train (trep = 1/FSR = nDL/c) and speci-
fies the phase difference between adjacent pulses, equal to ±p. 
The latter ensures mutual repulsion of neighbouring pulses 
and stability of the pulse train, which is extremely important 
at high pulse repetition rates and small interpulse distances. 

Total losses in the resonator (including on connectors 
and couplers) are taken into account by a separate concen-
trated transfer function of the attenuator, Tatt º A'(W)/A(W) = 
const < 1, where A'(W) and A(W) are the input and output 

PSI
OC1

AODL Output

OC2

PC2

PC1

SMFM1

M2

DL1

DL2EDF

a

b

Isolator

Interferometer
(FSR) EDF

(g, Eg, Wg, gg, b2g)

SMF
(g, b2)

Attenuator
(Т)

Figure 1.  (a) Experimental scheme of a dissipative four-wave mixing, 
mode-locked laser [20] and (b) resonator scheme used for simulations: 
( DL1, DL2 ) pump diode lasers; ( M1, M2 ) multiplexers; ( OC1, OC2 ) 
output couplers; ( PSI ) polarisation-sensitive isolator; ( AODL ) adjust-
able optical delay line. 
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amplitude, respectively. Equations (2) and (4) with boundary 
conditions corresponding to Fig. 1b are modelled using 
the standard method of stepwise Fourier transforms [24]. The 
parameters used in the simulation are presented in Table 1. 
Note that to simplify the discussion we did not consider the 
dispersion and nonlinear control problem, i.e., the distribu-
tion of dispersion and nonlinearity over fibre elements of the 
resonator is uniform: b2 = b2g, g = gg, which corresponds to the 
total dispersion B2S = ±0.015 ps2 and the nonlinearity GS = 
0.025 W–1. Different signs of the dispersion B2S indicate that 
cases of both anomalous and normal dispersion of the resonator 
were considered. 

The gain line in the parabolic approximation is defined 
as  g(z)(1 – w2/Wg

2) with the full width at half maximum 
W2 gTw = . Thus, for l = 1.55 mm, the chosen width Dl 

corresponds to ~18 nm, which agrees with the parameters of 
modern amplifying structures based on erbium-doped fibres. 
The saturation energy, determined by the pump power, varied 
in the range from 0.5 to 50 pJ in the simulation window twin = 
212 ́  0.0125 ps = 5.12 ps at different FSR values of the inter-
ferometer. A change in the saturation energy made it possible 
to change in simulation the value of the frequency domain in 
which the gain exceeded the losses. For example, to generate a 
train of pulses with a repetition rate of ~1 THz in a resonator 
with the anomalous total dispersion of B2S = –0.015 ps2, it is 
necessary to set Eg = 0.8 pJ, which provides the required 
positive gain bandwidth (slightly more than 2p ´ 1012 s–1 » 
7 nm for the wavelength l = 1.55 mm). The purpose of the 
numerical experiments was to find the region of variation of 
the parameters in which it is possible to implement mode 
locking through DFWM. 

3. Mechanism of mode locking through  
dissipative four-wave mixing (necessary  
conditions) 

In this section, we consider the main features of the processes 
occurring in a DFWM fibre laser cavity and introduce the 
main notations, which are illustrated in Fig. 2. The most 
important point is the separation of the two main resonator 
modes n1 and n–1, located symmetrically with respect to the 
gain maximum G. In the frequency domain in which the value 
of the total gain G exceeds the total losses of the resonator 
(they include output losses, fibre attenuation, splicing losses, 
etc.), only these modes should exist. This frequency domain 
is  called the region of positive gain. As already noted, we 
assume that the nonlinear losses caused by the passage 
through polarisation-sensitive elements are eliminated by 
adjusting the polarisers. Thus, the losses considered are spec-
trally homogeneous and completely linear, i.e., they do not 
depend on the radiation power. As a result, the width of the 
positive gain band, where the condition G+(w) > 0 is satisfied,

G+ = G – Loss, 

G = exp ( , )dg z zw; Ey  = exp ( ) ( / ) dg z z1 g
2w W-6 @' 1y ,

is determined only by the parameters of the active fibre – the gain 
line width Wg, small-signal gain g0 and saturation energy Eg. 

The frequency separation between the two main symmet-
rical modes of the resonator, n1 and n–1, is determined by the 
FSR parameter of the intracavity interferometer (for example, 
a constant of the Fabry – Perot interferometer, or a path dif-
ference in the MZI). After mode locking, this frequency sepa-
ration determines the repetition rate of the pulses generated in 
the resonator. Since the nonfundamental modes of the reso-
nator, nk (|k| > 1), are formed via FWM of the fundamental 
modes, all frequencies of the resonator modes can be expressed 
as nk = FSR(k " 1/2), where the sign ‘–’ is chosen for k > 0, 
and ‘+’ for k < 0. It is also important to note that the selectiv-
ity of any intracavity interferometer decreases with increasing 
FSR, i.e., the filtering of side modes at high FSR values 
becomes more difficult. 

The conclusion from the above discussion is that for the 
necessary modes to be successfully assigned, two main condi-
tions must be fulfilled simultaneously; when they are exe-
cuted, the DFWM-based mode locking is automatic. First, all 
resonator modes (except for the fundamental ones, n1 and n–1) 
must be outside the region of positive gain, i.e.,

FSRG
2
3

!+` j < 0.	 (6)

Secondly, the intracavity interferometer should ensure that 
all side modes are filtered in the transmission peaks closest 
to  the gain maximum. The frequencies of the neighbouring 
modes of the laser resonator after filtration differ from each 
other by the value Dn = 1/Tr < FSR, where Tr is the round-trip 
time of the resonator. A prerequisite is that the transmission 
difference of the interferometer, H(n), for the fundamental 
and side modes should be higher than the difference in the 
total gain experienced by these modes. Figure 2 shows these 
differences for the fundamental mode n1 and the nearest side 
mode: 

Table  1.  Parameter values used in simulations.
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Figure 2.  Scheme of the fundamental mode (n1 and n–1) filtration and 
nonfundamental mode (n±2 and n±3) generation during mode locking 
through dissipative four-wave mixing: G is the gain; H is the transmis-
sion of the interferometer; Loss is the level of losses; vertical lines are the 
amplitudes of modes. 
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G+(FSR/2 – Dn) – G+(FSR/2) < H(FSR/2) – H(FSR/2 – Dn).

Taking into account dH/dn = 0 for n = FSR/2, one can obtain 

( /2)
d
d FSRG
n
+  < H ( /2)

d
FSR

2
1

2

2
T

n
nd .	 (7)

It can be seen that condition (7) is more easily satisfied for 
short resonators with a relatively large free spectral range Dn 
and a broad gain line. To fulfil this condition, a high selec-
tivity of the intracavity interferometer is also required (the 
second derivative d2H/dn2 should assume a large positive 
value in the transmission maximum at n = FSR/2). Because 
the selectivity of the interferometer decreases with increasing 
FSR, and the value of dG+ /dn increases, then at a certain 
maximum value of FSR condition (7) ceases to be satisfied, 
i.e., it limits the maximum achievable repetition rate FSRmax 
of pulses obtained via DFWM. 

Condition (6), in turn, is satisfied starting from some min-
imum value FSRmin, i.e., it limits the minimum achievable 
repetition rate. If the condition FSRmax > FSRmin is fulfilled, 
the system can successfully generate pulse trains via DFWM; 
in the FSRmin – FSRmax range, it is in principle possible to 
adjust the repetition rate due to local adjustment or the 
replacement of the intracavity interferometer by an element 
with a different FSR value. 

The width of the pulse spectrum increases with increasing 
integral gain in the system; therefore, in the indicated band of 
the generated pulse rates, FSRmin – FSRmax, for each FSR 
value there exists an interval of the integral gain Gmin – Gmax, 
in which conditions (6) and (7) are satisfied. At the extreme 
points of FSRmin and FSRmax, this interval closes, and at 
some intermediate FSR point the interval Gmin – Gmax is 
maximal, and so the region of conditions (6) and (7) is 
bounded on the plane (FSR, G) by the curves connecting the 
vertex of the maximum gain with the extreme points (FSRmin, 
Gmin1) and (FSRmax, Gmin2). From the physical point of view, 
instead of the integral gain, it is more instructive to use the 
saturation energy Eg, which characterises the pumping at a 
given small-signal gain g0. As a result, the region of successful 
selection of the main resonator modes (or, in other words, 

the mode-locking region) can be represented in coordinates 
(FSR, Eg). Examples of such regions are given in Section 4 
(Fig. 5). 

The resulting relation (7) also makes it possible to more 
accurately interpret the results of numerical simulation of the 
system. Indeed, in numerical calculations, the free spectral 
range of the resonator is inversely proportional to the size of 
the simulation window. For the window ~100 ps, n = 10 GHz. 
In real fibre systems, the intermode distance n does not exceed 
hundreds of MHz. Thus, for the adequacy of the results in the 
simulation, it is necessary to use an interferometer with a 
much lower selectivity in comparison with the interferometer 
used in the real system. The width of the transmission peak 
of the interferometer (5) used at half-height is approximately 
1/6 FSR. A model system with such an interferometer can 
be  compared with a real system including a Fabry – Perot 
interferometer with a high reflection coefficient RFP of the 
mirrors. The width of its transmission peak at half-height is 
FSR(1 – RFP)/ ( )RFPp , which at RFP = 0.9974 gives a value 
close to 1/1200 FSR. Thus, from the point of view of the 
density of filtered modes, the model under consideration with 
a two-pass MZI is equivalent to a system containing a high-Q 
Fabry – Perot interferometer with a resonator round-trip 
time Tr, approximately 200 times larger than the simulation 
window. 

4. Simulation results 

This section presents the results of numerical simulation of 
the system under study, obtained for different FSR values 
of an intracavity interferometer. In their analysis, attention 
will be focused mainly on how the dispersion properties of the 
resonator affect the characteristics of the generated pulses. As 
the initial conditions, the small amplitude noise, consisting 
of 1000 modes with Gaussian statistics, is selected. The results 
show that for selected parameters corresponding to real laser 
systems, after several thousand round-trips of the resonator, 
the modes are locked through DFWM and a regular train of 
pulses with a repetition rate equal to FSR is formed.

First we consider the case of anomalous dispersion of the 
resonator. Figures 3 and 4 (upper row) show the spectra and 
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of anomalous (upper row) and normal (bottom row) cavity dispersion. 
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time dependences of successfully generated pulse trains. Even 
at low saturation energies and low FSR values, not only fun-
damental but also side modes fall into the region of positive 
gain. The frequency range, in which it is possible to select 
the gain in such a way that only two fundamental modes fall 
into the necessary gain region, begins with FSR » 234.5 GHz; 
in this case, Eg » 0.5 pJ. Then, with increasing FSR, the 
interval of permissible gain values increases (Fig. 5a). At 
points corresponding to the maximum values of the gain 
(or  the saturation energy Eg), the peak power and width 
of  the  pulse spectrum are maximal, whereas the duration 
is minimal. At sufficiently high peak powers on the graphs 
of  the instantaneous frequency (see Fig. 4), one can see the 
frequency modulation of the pulses due to the incomplete dis-
persion compensation of self-phase modulation (SPM). The 
range of acceptable gain values reaches a maximum when 
FSR » 700 GHz (Fig. 5a). At higher repetition rates, the 
gain is limited by the second condition (7), which depends on 
the selectivity of the intracavity interferometer used. When 
the gain is close to the threshold, the selectivity of the inter
ferometer used is sufficient to generate a train of pulses with 
the FSR of more than 1 THz, but the quality of the teain 
(contrast, peak power, etc.) is significantly reduced, since the 
intensity of the nonfundamental modes is very small. 

We begin the analysis of the results for the normal disper-
sion of the resonator (Figs 3 and 4, bottom row; Fig. 5b) with 
high FSR values. At a small (near-threshold) gain and high 
repetition rates, the situation is virtually indistinguishable 
from the case of anomalous dispersion – the selectivity of the 
interferometer ensures the filtration of the fundamental 
modes, but the gain is sufficient only for the DFWM locking 
of nonfundamental modes of very low intensity. With a 
decrease in FSR (i.e., with a decrease in the repetition rate), 
there appears a principal difference between the two cases. 
Anomalous dispersion of the resonator compensates for the 
SPM, which leads to the generation of short soliton-type pulses 
with a wide spectrum even at low energies and facilitates the 
generation of nonfundamental modes. The effect of normal 
dispersion and SPM, on the contrary, is co-directed and 
promotes the spreading of the pulse. Generation of the non-
fundamental modes is weaker in this case, and to increase 
their intensity it is necessary to increase the pump power. As 
a result, pulses generated in a resonator with normal disper-

sion, comparable in spectral width to soliton-type pulses, have 
a much higher energy and have the form of so-called dark 
solitons – narrow dips in constant intensity radiation [26, 27]. 
The range of permissible gain values reaches a maximum at 
FSR » 300 GHz (Fig. 5b). At lower repetition rates, despite 
an increase in pulse energy, the magnitude of the maximum 
gain decreases. This can be explained by the fact that the 
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spectral width increases at a given power level due to an 
increase in duration – the spectrum width of a strongly fre-
quency-modulated pulse is proportional to the duration and 
chirp (see the leftmost plots of the bottom row in Figs 3 and 4). 

At small FSR, the energy of the generated pulses drops 
sharply. This, as in the case of anomalous dispersion, is 
caused by the fact that even for small values of G, not only 
fundamental modes fall into the region of positive gain. Here, 
however, there is a feature due to the fact that the energy of 
dark solitons is much higher than the energy of soliton pulses 
in a resonator with anomalous dispersion, i.e., for generation 
of pulses in a medium with normal dispersion, even at low 
repetition frequencies, a sufficiently high pump power level is 
required. The regions of successful filtering and automatic 
DFWM mode-locking are compared in Fig. 5b for the case of 
anomalous and normal dispersion of the resonator. 

Note also the dependence of the pulse characteristics 
on the dispersion B2S of the resonator. In particular, as the 
normal dispersion is increased in a certain range of repetition 
rates, it is possible to substantially increase the energy of the 
dark soliton. Finding the exact conditions for generation of 
pulses of maximum energy and increased peak power in this 
scheme is a separate task that goes beyond the scope of this 
paper; this problem will be considered elsewhere. 

5. Discussion of the results and conclusions 

The simulation performed allows us to draw the following 
conclusions. Mode-locking through DFWM can be realised 
both with anomalous and normal dispersion of a fibre ring 
resonator; for its implementation in a real system the intra-
cavity interferometer should have a high selectivity, similar 
to the selectivity of a high-Q Fabry – Perot interferometer. 
Generation of pulses with high repetition rates is also facili-
tated by the presence of a broad gain line of the active 
medium. When these conditions are met, the laser can gener-
ate pulses over a wide range of repetition rates given by the 
FSR parameter of the interferometer. 

For each repetition rate, there is an admissible range of 
gain values. At a small gain, the characteristics of the pulses 
generated in the case of anomalous and normal dispersions 
are close, since the intensity of the nonfundamental modes is 
very low. With increasing gain, the intensity of the nonfunda-
mental modes increases and the spectrum of the generated 
pulses is broadened. In the case of anomalous dispersion of 
the resonator, the generated pulses are soliton-like (the dis-
persion compensates for self-phase modulation) and short. 
In  this case, an increase in the gain level is limited by a 
rapid increase in the intensity of the nonfundamental modes, 
which violates the necessary conditions for the DFWM mode 
locking. Therefore, for anomalous dispersion of the resonator, 
the energy of an individual pulse is small and, for practical 
use, the train of pulses is likely to be further amplified. 

On the contrary, normal dispersion of the resonator at a 
sufficiently high pump level makes it possible to generate 
pulses of considerable energy (inside the resonator, up to 200 pJ 
or higher, see Fig. 4, bottom row), and with increasing pump 
power, the pulse energy can be increased. These pulses have 
the form of dark solitons with linear frequency modulation. 
The width of their spectrum is proportional to the product 
of  duration by the amount of chirp. High linearity of the 
frequency modulation allows a significant compression of 
the pulse after the chirp compensation at the resonator out-

put. In addition, a sufficiently high peak power of output 
pulses allows nonlinear pulse compression methods to be 
used. Thus, lasers with normal dispersion of the resonator 
and DFWM-based mode locking are extremely promising 
sources of ultrashort high-repetition-rate pulses. In using a 
finite pulse compressor based on a length-nonuniform fibre 
[28 – 30], the whole system can be made in an all-fibre design. 
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