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Abstract.  We have studied distinctive features of the response of a 
fibre-optic current sensor with a spun-fibre sensing loop to short 
current pulses. It has been shown theoretically that, in a reflective 
interferometer, the polarisation mode dispersion (PMD) in the 
sensing spun fibre has no effect on the pulsed output signal of the 
sensor, in contrast to the PMD in a connecting fibre line. The 
response of the current sensor to a rectangular pulse has linear 
edges and its duration is determined by the relationship between the 
current pulse duration and the light propagation time in the spun 
fibre. The transition from a linear edge to the maximum sensor 
response is not accompanied by any transient process. The maxi-
mum response amplitude corresponds to the response to an equiva-
lent direct current at a current pulse duration exceeding the light 
propagation time in the spun fibre. The present calculation results 
and experimental data agree well for current pulses longer than 300 ns 
at a light propagation time in the spun fibre of ~1 ms.

Keywords: spun optical fibre, fibre-optic sensor, response, current 
pulse, Faraday effect.

1. Introduction

At present, Faraday effect fibre-optic current sensors (FOCS’s) 
have attractive engineering, performance and environmental 
characteristics and are being used increasingly in electric 
power engineering and electrometallurgy for accurate dc and 
low-frequency current measurements [1, 2]. Other potential 
application areas of FOCS’s are related to the short response 
time of the magneto-optical Faraday effect (~10–9 s), which 
allows such sensors to be used for accurate pulsed current 
measurements, e. g. in pulsed linear electron accelerators and 
plasma heating and compression systems [3 – 5]. In designing 
such FOCS’s, it is necessary to take into account the physical 
factors that influence the shape of current pulses. However, 
these issues have not yet been addressed in sufficient detail. In 
particular, for assessing the accuracy of FOCS’s it is impor-
tant to know the duration of the transient process for the sen-
sor response to a change in current. In particular, Pimenov 
and Kazachkov [5] assume that, to ensure accurate current 

pulse amplitude measurements, the current pulse duration 
should far exceed the propagation time of light in the sensing 
loop, but this constraint needs to be substantiated. A number 
of studies [6 – 8] were concerned with the limitations on the 
upper limit of the frequency band of FOCS’s due to the finite 
time of light propagation through the fibre of the sensing ele-
ment (transit mechanism).

At present, the most promising FOCS configuration is a 
reflective interferometer with a sensing loop based on fibre 
with a helical structure of built-in linear birefringence (spun 
optical fibre) [9, 10]. Spun fibre possesses a number of unique 
polarisation properties related to the rotation of their bire-
fringence (BR) axes. On the one hand, their BR imparts to 
them a certain polarisation stability to external mechanical 
influences [11, 12]. On the other, if the BR beat length L b con-
siderably exceeds the spin pitch L s of the BR axes, the helical 
structure of the fibre makes it possible to maintain light ellip-
ticity in it near a circular polarisation state, which is necessary 
for the effective Faraday phase shift accumulation [10 – 12].

Another polarisation property of spun fibre is polarisa-
tion mode dispersion (PMD), which leads to different propa-
gation velocities of orthogonally polarised optical waves, 
with a Faraday phase shift accumulating between them (PMD 
mechanism). Because of this, one distinctive feature of pulsed 
current measurements using FOCS’s, related to the use of 
spun fibre as a sensing element, is a possible effect of PMD on 
the response shape and magnitude. This issue has not yet been 
addressed in the literature. The purpose of this work is to 
study the physical mechanisms determining the shape of the 
output signal of reflective interferometer-based FOCS’s using 
spun fibre in the detection of short current pulses.

2. Theory

The distinctive features of polarisation evolution for light 
propagating in media with a helical birefringence structure (in 
particular, in spun fibre) in a steady state have been studied in 
sufficient detail [13 – 19]. The main conclusions necessary for 
theoretical substantiation of pulsed FOCS operation are pre-
sented briefly in Appendix.

Light propagating in spun fibre of length L is a linear 
combination of orthogonal elliptically polarised modes, u and 
u, whose azimuths rotate together with the BR axes (screw 
modes) [17]. For L s /2L b << 1, the ellipticity of these modes is 
near unity (quasi-circular modes). In this approximation, the 
refractive indices of the modes, nu, u, are given by

nu, u » n
k k

n
k4 2 2

,u
0 0 0

! ! !
s b g g
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where nr  is the effective refractive index of the fundamental 
mode in the fibre with no allowance for anisotropy; n ,u ur  = 
nu, u (g = 0) are the refractive indices of the modes in the 
absence of a magnetic field; b = ksl – kf = k0(nsl – nf ) is the dif-
ference between the propagation constants of the slow and 
fast linearly polarised waves in a thin layer of the fibre, which 
is determined by the built-in linear BR nsl – nf; k0 = w/c; w = 
2pc/l is the frequency of the light; l is its wavelength; c is the 
speed of light in vacuum; g = kr – kl = 2VBz is the Faraday 
effect-induced difference between the propagation constants 
of the circularly polarised modes; V is the Verdet constant of 
the fibre material; Bz is the magnetic induction vector compo-
nent along the light propagation direction; and s = L s /(2L b). 
Note that the difference between the refractive indices of 
modes u and u is of the order of  l/L b.

In the geometric optics approximation, the spatiotempo-
ral (t, z) trajectories of light rays propagating in spun fibre are 
determined by the equation of propagation [20]

d
d
t
z

n
c

= ,	 (2)

into which nu, u from (1) should be substituted. In the absence 
of a magnetic field, integrating (2), we obtain
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where we introduce times zero, at which the light rays emerge 
from the origin: t0u, u. This is necessary for taking into account 
the PMD in the connecting line through which light is cou-
pled into the spun fibre. The waves pass the entire path L in a 
time tu, u = n ,u ur L/c.

Note first of all that, in the general case of the transient 
magnetic field of a current pulse, g and, in turn, nu, u are func-
tions of both time t and coordinate z (the path passed by the 
ray). Because of this, the variables in Eqn (2) can only be sep-
arated in some particular cases. At the same time, since the 
Faraday effect is weak, the z-coordinate in the function g (t, z) 
can be replaced, with a sufficient degree of accuracy, by the 
coordinate ( )z t,u ur , corresponding to the propagation of rays 
in the absence of a magnetic field. As a result, the refractive 
indices nu, u become functions of time: nu, u = nu, u(t,  ( )z t,u ur ).

Consider the phase shift between waves u and u propaga
ting in spun fibre over length L in the circular polarisation 
approximation. Waves u and u arrive at the point z = L with 
time delays Dtu, u relative to the propagation time of a light ray 
in the absence of a magnetic field. Then, integrating the equa-
tions of propagation (2) for waves u and u we obtain
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where we take into account that g << k0n ,u ur  because of the 
small magnitude of the Faraday effect. Using (4), we find 
Dtu, u:
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As a result, the total time delay between the waves at the point 
z = L is given by

Dt = t0u + tu + Dtu – (t0u + tu + Dtu)

	 = 
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Given that nur  – nur  = sb/(2k0), the phase shift can be deter-
mined as
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In (7), the first and second constant terms are determined by 
the PMD of the connecting fibre line (which leads to different 
ray entrance times, t0u ¹ t0u) and the PMD of the spun fibre 
(nur  ¹ nur ), respectively. The last two terms are the integrals of 
the functions g = (t,  ( )z t,u ur ) along the time window of ray 
propagation and determine the Faraday phase shifts for each 
wave. Replacing time integration by integration with respect 
to the coordinate, we can rewrite the same expression in the 
form
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Note that the main contribution to the final phase shift (at 
Dt0 = 0) is made by the second term in (7) and (8). For exam-
ple, in the case of a spun fibre with a built-in BR beat length 
L b = 9 mm and spin pitch L s = 3 mm, this term is about 
19p m–1, whereas even in considerable magnetic fields (at elec-
tric currents of hundreds of amperes) the phase shift 2p 
between circularly polarised light waves in silica fibre arises 
at fibre lengths of tens of metres or more.

Below, expressions (7) and (8), derived for light propaga
ting through spun fibre in the forward direction, are consi
dered in greater detail for some particular cases:

1. The absence of PMD in the sensing fibre under consid-
eration (nur  = nur  = nr ), which corresponds in the limit (b ® 0) 
to isotropic fibre. If there is also no PMD in the connecting 
fibre line before the fibre under consideration, so that t0u = t0u, 
there is no constant term in the phase shift. At the same time, 
the integrals in (7) and (8), which determine the Faraday 
phase shift of each wave, are calculated along the same path 
in the t z plane, so they are identical.

2. If the fibre under consideration has no PMD (nur  = nur  = 
nr ), but there is PMD in the connecting fibre line [for example, 
if it is based on a linear polarisation-maintaining (PM) fibre], 
the former arguments of the integrands in (8) are shifted in 
time. Because of this, the waves (u and u) generally have dif-
ferent Faraday phase shifts. For example, in the case of a 
reflective configuration in which light is reflected from a mir-
ror at the end of the fibre under consideration and then tra
vels backwards, the time delay of polarisation mode propaga-
tion in the connecting line (PMD) may lead to a ‘temporal 
splitting’ of the output signal of the current sensor interfer-
ometer (see below for details).
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3. In the most general case, when there is PMD in both 
the connecting line and the fibre under consideration (spun 
fibre), both constant terms in (7) and (8) differ from zero. The 
Faraday phase shifts of the waves are then calculated by inte-
gration along different paths in the t z plane. As a result, the 
waves make different contributions to the resultant phase 
shift.

4. In the case of spun fibre, the integrals in (7) and (8) 
coincide only at a constant current. This is well demonstrated 
by formula (8), where the former argument of the function g 
is independent of z.

For further analysis of the output signal of a reflective 
interferometer, consider light propagation after reflection 
from the mirror at the end of the spun fibre. The phase shift 
between the backward-propagating waves can be found by 
replacing s with – s in all the expressions derived above. As a 
result, the constant phase shift defined by the second term in 
(7) and (8) is compensated. Since the light propagating back-
wards in the connecting line has an orthogonal polarisation 
mode, the constant phase shift due to the PMD in the con-
necting line is also compensated after the light passes the 
entire optical path in the forward and backward directions. 
As a result, the total phase shift between the operating waves 
in the case of a spatially uniform external magnetic field of a 
current (i. e. when g is independent of the latter argument: 
g(t, z) = g(t) = 2VBz(t)) can be found, to first order in ~l/L b, 
as
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where t = nrL/c is the light propagation time in one direction 
in an isotropic fibre with a refractive index nr . If there is no 
PMD in the connecting line, t0u u = t0, the expression for the 
total phase shift simplifies to
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n
Vc B t t2

z
t

t 2

0

0 t+

r y .	 (10)

In particular, in the case of a direct current and closed fibre 
loop, we obtain Dj = 4VBzL = 4VI0 [9, 12]. Note that this 
expression completely coincides with an analogous expres-
sion derived for an isotropic fibre with a refractive index nr . 
Thus, due to the reflective interferometer configuration, the 
PMD of the spun fibre has a negligible effect (to first order in 
~ l/L b) in the case under consideration.

3. Current pulse detection by a low-coherence 
reflective interferometer

Consider how a low-coherence reflective interferometer detects 
a single rectangular current pulse of amplitude I0 and dura-
tion T, beginning at time t' = 0 (here and in what follows, 
primes refer to the time measured from the beginning of the 
current pulse). Figure 1 shows a simplified schematic of the 
interferometer. The components important for subsequent ana
lysis are the connecting line ( 4 ) and the sensing fibre loop ( 6 ) 
with a mirror ( 7 ). The connecting line can be made from both 
PM and spun fibre. If the connecting line is based on PM 
fibre, a wave plate is mounted at the input of the sensing loop. 
A current-carrying conductor ( 8 ) is placed in the centre of the 
loop. Two orthogonal linearly polarised light waves having 
equal intensities are launched into the fibre line ( 4 ) through 
the common interferometer input/output ( 1 ) and a polariser 

( 2 ). A quarter-wave plate ( 5 ) converts the linear polarisa-
tions of the waves into circular ones. In the loop ( 6 ), the cir-
cularly polarised light waves acquire Faraday phase shifts 
proportional to the magnetic field of the current. After reflec-
tion from the mirror ( 7 ), the waves pass the optical path in 
the backward direction and the result of their interference is 
recorded by a photodetector (not shown in Fig. 1).

Consider now the case when the longitudinal component 
Bz of the external magnetic field generated by a current is con-
stant throughout the spun fibre at a given instant in time. In 
practice, this can be ensured e. g. by coiling the spun fibre 
around a current-carrying conductor perpendicular to the 
plane of the loop. The time dependence g(t) ~ Bz(t) is then 
rectangular in shape.

The propagation of light waves in spun fibre can be illus-
trated by t – z diagrams, which show the trajectories of rays 
entering the spun fibre at different instants of time. The tra-
jectories are solutions to the equation dt/dz = n/c, the inverse 
of Eqn (2), and the slope a of such a trajectory is determined 
by the refractive index n. The trajectory of wave u in t – z dia-
grams will be shown by a solid line, and that of wave u, by a 
dashed line. The backward propagation of the waves will be 
treated as a continuation of their forward propagation from 
the mirror to the interferometer output with the correspon
ding replacement of the refractive indices: nu, u « n’u, u (and 
nsl, f « nf, sl for the PM fibre in the connecting line). Note also 
that, in all the figures below, the slopes of trajectories are 
shown substantially different for clarity of illustration, 
whereas actually the angle difference is small: Da » (nu – nu)/c » 
bs/(2k0) << nr /c.

3.1. Configuration with no connecting line (no delay)

Figure 2 shows ray propagation diagrams in the t z plane for 
a configuration with no connecting line. The shaded area in 
Fig. 2 corresponds to the region where light waves propagat-
ing in the spun fibre interact with the magnetic field generated 
by a current pulse of duration T (which begins at t' = 0). The 
time dependences of the phase shifts (9), corresponding to the 
t – z ray propagation diagrams, in terms of time t' can be cal-
culated by the formula

Dj(t' ) = , Tt( ) ( )d d
n
Vc B t t t

n
VcB

t t2 2
z

2

0 0

2

0
P- = -

t t- -

l l
r ry y 	(11)

and are presented in the left panels in Fig. 2. Here, B0 is the 
longitudinal magnetic induction component corresponding to 
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Figure 1.  Simplified schematic of the current sensor interferometer:	
( 1 ) light input/output; ( 2 ) polariser; ( 3 ) oriented fusion splice (45 ° be-
tween the BR axes); ( 4 ) PM fibre of the connecting line; ( 5 ) quarter-
wave plate; ( 6 ) sensing loop; ( 7 ) mirror; ( 8 ) current-carrying conductor.
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a given current I0 and the function P (t, T ) is unity for 0 £ t £ T 
and zero elsewhere.

It is seen from the diagrams in Fig. 2 that the magnetic 
field of the current influences the phase difference between the 
rays that emerged from the source in the time range t1 £ t £ t6. 
In the case of a long current pulse (T > 2t, Fig. 2a), the rays 
that emerged at time t1 will arrive at the end of the spun fibre 
exactly at time t3 = t1 + 2t, when the current will be turned on. 
Starting at this instant of time, there will be a signal at the 
photodetector output, as shown in the right panel in Fig. 2a. 
All the rays that emerged from the source in the time range 
t1 £ t £ t3 = t1 + 2t will accumulate the phase shift only in 
that part of their trajectory lying in the shaded area. Since the 
trajectory in the t z plane is linear with high accuracy, the 
accumulated phase shift will also increase linearly for time 2t. 
The waves that emerged in the time range t3 £ t £ t4 = t3 + 
(T – 2t) accumulate the Faraday phase shift throughout their 
propagation, so the output signal will be constant for time 
T – 2t, DjH = 4VNI0, where N is the number of turns in the 
fibre coil, i. e. the signal will be equal to the response to an 
equivalent direct current. In the time interval t4 £ t £ t6 = t4 + 
2t, the situation will be opposite to that in the initial step: the 
rays will only partially accumulate the phase shift, which will 

be smaller for the rays that emerged later. Finally, the rays 
that emerged in the range t > t6 will not interact with the mag-
netic field of the current pulse and the output signal will be 
zero starting at time t6 + 2t. It is worth noting that transitions 
from the edges to the top are sharp (with no gradual transi-
tion).

It is seen in Fig. 2b that, for T < 2t, because of the 
short pulse duration none of the rays accumulates the 
Faraday phase shift throughout its propagation. In par-
ticular, the rays that emerge in the time range t3 £ t £ t4 = 
t3 + (2t – T ) accumulate the phase shift during only a part 
(T/2t) of their propagation time. Accordingly, the ratio of 
the maximum output signal to the signal corresponding to 
the shift DjH at the direct current I0 will also be T/2t. The 
output signal increases and decreases at the same rate, but 
for time T < 2t.

3.2. Configuration with a connecting line (with a delay)

Figure 3 shows t – z diagrams illustrating phase shift accu-
mulation for each wave and the shape of the resultant out-
put signal at a particular length, l > 0, of a PM fibre-based 
connecting line. In this case, because of the different light 
propagation velocities in the PM fibre of the connecting line 
(PMD in the fibre), the waves will arrive at the beginning of 
the spun fibre at different instants of time. As a result, the 
time intervals Т + 2t during which the waves interact with 
the magnetic field of the current pulse and generate an out-
put signal will be displaced relative to each other (see the 
output signal in the right of Fig. 3). Moreover, the contribu-
tion of each wave to the output signal will lag the beginning 
of the current pulse, t' = 0, because after interactions in the 
spun fibre the light passes the delay line in the backward 
direction. The delay times t'sl and t'f are determined by the 
light propagation times along the slow and fast BR axes of 
the PM fibre in the backward direction: t'sl, f = nsl, f l/c. 
Figure  4 shows the contributions of the two waves to the 
shape of the resultant output signal at different delay line 
lengths. Thus, the overall delay of the response of the system 
is t'f  and the time shift between the output signals of the two 
waves is Dt' = t'sl – t'f = l(nsl – nf )/c. In particular, at a suffi-
ciently long delay line length, when Dt' ³ T + 2t, the output 
signal splits into two components and its amplitude decreases 
twofold.
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2t

0

t

t
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0 L 2L z

0 L 2L z

DjH Dj
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T
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Djh DjDjH
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Figure 2.  Spatiotemporal diagrams illustrating phase shift accumula-
tion during the detection of a rectangular current pulse of duration ( a ) 
T > 2t and ( b ) T < 2t.

t

t2

t1

0 l l+L l+2L 2 l+2L z Djh/2 Dj

t'

t'sl

t'f

0

Figure 3.  Spatiotemporal diagram illustrating phase shift accumulation 
during the detection of a rectangular current pulse in a configuration 
with a connecting line.
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4. Experimental setup

Figure 5 shows a schematic of the experimental setup, which 
is a simplified version of a reflective interferometer-based 
FOCS and includes a rectangular current pulse generator and 
oscilloscope. The FOCS comprises a superluminescent light 
source ( 1 ) with a centre wavelength of 1550 nm and band-
width of 20 nm, directional coupler ( 2 ), polariser ( 3 ), discrete 
Faraday rotator ( 4 ), connecting fibre line ( 5 ), sensing fibre 
coil ( 6 ) and Fresnel reflector ( 7 ) on its end. The sensing coil 
was placed in a toroidal copper wire solenoid ( 9 ), through 
which a rectangular electric current pulse ( 8 ) produced by a 
generator ( 12 ) was passed. The time constant of the current-
controlling circuit (tLR » 50 ns) was determined by a resistor 
( 10 ). The current pulse shape was controlled using a small 
resistance ( 11 ). Using the rotator ( 4 ), the operating point of 

the interferometer was displaced by 90 °. The output signal of 
the interferometer was detected by a photodetector ( 14 ). The 
time constant of the photodetector, tph, was ~75 ns. The sen
sing coil and connecting line were made using spun fibre with 
a built-in linear BR beat length Lb = 9 mm and spin pitch Ls = 
3 mm. To reduce the effect of magnetic interference from the 
current being measured on the connecting line, it had the form 
of a multiturn coil. In this study, we used a short (~10 m) line. 
The spun fibre of the sensing coil was wound onto a 20-mm-
long, 14-mm-diameter bobbin with a number of turns N1 = 
2000. The number of turns of the solenoid was N2 = 25. The 
calculated double pass time 2t of light in the coil was 1120 ns.

The output signal of the sensor, proportional to the phase 
shift Dj and, accordingly, to the current pulse amplitude, 
was picked up at the photodetector output. The characteristic 
of the interferometer was not linearised because signals cor-
responded to small Faraday phase shifts (under 0.1 rad). Its 
sensitivity was calibrated by comparing the amplitudes of 
pulsed signals and the output signal from an equivalent direct 
current.

5. Results and discussion

Figure 6 shows the shapes of a current pulse (lower trace) and 
the output signal of the sensor (upper trace) at a single current 
pulse duration in the solenoid T = 2000 (T > 2t), 1120 (T = 2t) 
and 500 ns (T < 2t) and a current through the solenoid I0 = 
133 mA. In our experiments, the inverse of the duty factor 
was 1000. Figure 7 shows the measured relative amplitude 
Djh /DjH and relative full width at half maximum T1/2 /(2t) of 
the detected pulses as functions of the relative current pulse 
duration Т/(2t). The dashed lines represent calculation results. 
Measurement accuracy was determined by the signal to noise 
ratio.

Consider first a factor related to the finite time of interac-
tion between the light and the magnetic field of the current. 
The FOCS response Dj to a single rectangular current pulse 
has the shape of an isosceles trapezium, which degenerates 
into a triangle at Т = 2t (see Fig. 6b). The response edges have 
the form of a linear function with a slope proportional to the 
current pulse amplitude. At Т ³ 2t, the edge width ted is equal 
to the light propagation time in the spun fibre: ted = 2t. At 
Т < 2t, we have ted = Т. The response amplitude at Т ³ 2t is 
equal to the response to an equivalent direct current: Dj = 
DjH = 4VN1N2I0. At Т < 2t, it decreases as Djh = DjH (Т/2t) 
at a given pulse amplitude, which leads to an increased uncer-
tainty in current pulse amplitude measurements. The present 
experimental data are in satisfactory agreement with calcula-
tion results. Since in our calculations the transition from a 
linear edge to a flat top has no transient process, the experi-
mentally observed transient process of reaching a maximum 
response of duration tadj » 250 ns has an instrumental origin. 
It is determined by the time constant of the photodetector, 
tph » 75 ns, and the width of the current pulse edges, which 
are in turn determined by the time constant of the LR circuit 
(tLR » 50 ns).

The instrumental time constants have a significant effect 
on the shape of the FOCS response if they are comparable to 
the current pulse duration. The effect shows up first of all as a 
distortion of the flat top of the response trapezium (see Fig. 6c). 
It is important to note that the transient process has no effect 
on the maximum FOCS response if the current pulse being 
detected has a rectangular shape at T > tadj. This is confirmed 
by measurements of the full width at half maximum of the 
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Figure 4.  Time diagram of the phase shift during the detection of a rec
tangular current pulse in a configuration with a connecting line (with a 
delay) for lengths l0 < li < l5 (i = 1 – 4) and l5 = c (T + 2t)/(ns l – nf ).
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Figure 5.  Schematic of the experimental setup: 	
( 1 ) light source; ( 2 ) coupler; ( 3 ) polariser; ( 4 ) Faraday rotator; ( 5 ) 
connecting fibre line; ( 6 ) measuring fibre coil; ( 7 ) mirror; ( 8 ) current 
being measured; ( 9 ) solenoid; ( 10 ) current-controlling resistor; ( 11 ) 
control resistor; ( 12 ) rectangular current pulse generator; ( 13 ) dual-
beam oscilloscope; ( 14 ) photodetector.
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response (see Fig. 7b), which approaches the theoretical value 
2t = 1120 s at low values of T. The lag of the response behind 
the current (~400 ns) is due to both the above-mentioned 
instrumental factor and the light propagation time in the con-
necting line.

It follows from the above analysis that the shape of the 
response (the output signal of the FOCS) to a rectangular cur-
rent pulse with Т < 2t allows one to correct the amplitude 

uncertainty in the measured pulse height, i. e. to convert 
Djh into DjH using time parameters of the response: DjH = 
Djh (2t/Т ). It is worth noting that, according to Chen and 
Newson [8], at a known arbitrary current pulse shape one can 
obtain a relation for a decrease in uncertainty in pulse ampli-
tude measurements using response shape parameters. In this 
study, this was confirmed experimentally for rectangular 
pulses.

The PMD in the connecting line has a relatively weak 
effect on the response shape at a line length corresponding to 
realistic experimental conditions. Below, we present our esti-
mates for a 1-km-long connecting line:

1. Hi-bi line (Lb = 3 mm, l = 1.55 mm). The delay between 
the slow and fast waves is tsl – tf = l l/(cLb) = 1.72 ns. Such a 
delay will distort the response at pulse durations Т < 10 – 20 ns.

2. Spun line (Lb = 10 mm, Ls = 3 mm, l = 1.55 mm). 
Calculation by formula (7) yields tsl – tf = Dj/w = 0.04 ns, 
where Dj = sbL/2. In this case, the delay is even smaller.

6. Conclusions

Characteristics of the output signal of a Faraday effect fibre-
optic current sensor in the detection of pulsed currents have 
been studied theoretically and experimentally. A distinctive 
feature of the described analysis is that spun fibre is consi
dered as a sensing element of a sensor which is a part of a 
low-coherence reflective interferometer. We have investigated 
the influence of two physical mechanisms on the shape and 
magnitude of the pulsed response: transit mechanism, associ-
ated with the finite light propagation time in the sensing spun 
fibre, and polarisation mode dispersion in both the connect-
ing line and spun fibre.

It has been shown that, in the case of a sharp change in 
current, the transit mechanism leads to a sensor response with 
linear edges and a duration determined by the relationship 
between the light propagation time in the spun fibre and the 
current pulse width and that the transition to a maximum 
response is not accompanied by any transient process. The 
experimentally observed additional transient process, of dura-
tion tadj, has an instrumental origin, and its influence causes 
no error in measurements of the maximum amplitude of a 
rectangular pulse of duration T provided that T > tadj.

It has been shown theoretically that, in the case of a reflec-
tive interferometer, the PMD in the spun fibre of the sensing 
loop has to a first approximation no effect on response para
meters, in contrast to the PMD in a connecting fibre (delay) 
line located before the sensing loop.

a b c

Figure 6.  Current pulses (lower trace) and output signal of the sensor (upper trace) at T = ( a ) 2000, ( b ) 1120 and ( c ) 500 ns.
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Figure 7.  ( a ) Relative amplitude h/H and ( b ) relative full width at half 
maximum T1/2 /(2t) of a detected current pulse as functions of the cur-
rent pulse duration. The dashed lines represent calculation results.
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Appendix. Light propagation in a medium  
with a helical BR structure

An electromagnetic wave of optical light propagating in a 
weakly guiding circular dielectric fibre is known to have a pre-
dominantly transverse character. Because of this, in the vast 
majority of applied problems, one usually considers not the 
waveguiding fibre structure but an approximation in which 
plane waves propagate in a continuous medium. The refrac-
tive index of the medium is then taken to equal the effective 
refractive index of the fundamental mode of the fibre. 
Consider light propagation through spun fibre in this approx-
imation.

In the case of a uniform helical structure of linear birefrin-
gence (for definiteness, a left-handed helical structure is con-
sidered) and a circular birefringence induced by an external 
magnetic field (Faraday effect), the transverse components of 
the dielectric permittivity tensor et, which appears in the mate-
rial equations D = etE and characterises the dielectric proper-
ties of the medium, have the form [17, 21, 22]
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where er  is the average permittivity of the medium (with no 
allowance for its anisotropy), determined by the effective ref
ractive index of the unperturbed fibre,  er  = n2r , and x = 2p/Ls 
is the spatial angular rotation frequency of the linear birefrin-
gence axes with a pitch Ls. The constants d and g, which 
determine the linear and circular birefringence, can be expres
sed through the corresponding differences between propagation 
constants, b = ky – kx and g = kr – kl, as {d, g} = {b, g}nr /k0.

In the general case, we consider a circular birefringence 
nonuniform in the light propagation direction and slowly 
varying with time, i. e. g = g(t, z). If the variation in g is suffi-
ciently slow, with Dg/g << 1, where Dg is the change during 
the oscillation period T = 2p/w, the time derivatives of et  can 
be neglected in deriving the wave equation. In view of this, the 
wave equation has the form

¶
¶

¶
¶

z c t
E E
2

2

2

2e
=

t
.	 (A2)

A solution to this equation (in the case of plane waves pro
pagating along the longitudinal axis z, Ex, y = Ex, y(z) and Ez = 0) 
will be sought in the form of a combination of two circularly 
polarised waves [21]:
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Substituting the solution into (9), we obtain a system of 
equations for a and k:

( )k k n g a2
0
2 2x d- = + +r^ h,

( )k k n g a2
0
2 2 1x d+ = - + -r^ h.	

(A4)

Note that Eqns (A4) are symmetric with respect to the trans-
formation k ® – k (propagation direction reversal), g ® – g 
and a ® 1/a. Thus, knowing a general solution for a wave 
propagating in the forward direction, we can find the solution 

for a wave propagating in the backward direction by per-
forming the above transformation.

Consider now an approximate solution at d, g << er  and at 
x << k0 (i. e. in the case of a large spin pitch of the axes com-
pared to the wavelength: Ls >> l). A general solution to Eqn 
(A2) for waves propagating in the forward direction has the 
form of a linear combination of solutions of the form (A3) 
with the following coefficients:

a 1 1 1,u
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where ( ) ( )2 1 22 2 2 2x g s x g bW = + + = + + .
It follows from (A5) that, for s £ 1, we have au ® 0 

(+ sign) and a 1
u
-  ® 0 (– sign). Thus, modes u and u are pre-

dominantly left and right circularly polarised, respectively. If 
these modes are considered, to a first approximation, as circu-
larly polarised (quasi-circular), their refractive indices can be 
determined as

nu, u » k
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where we use the expansion W » 2x + bs/2 + g, valid at low 
values of s. The corresponding wave equations in this approx-
imation have the form
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In conclusion, consider reflection of light waves from a 
mirror. Given the symmetry indicated above (k ® – k, g ® – g 
and a ® 1/a), an incident predominantly left circularly pola
rised wave u with ku = nrk0 + W /2 predominantly excites a 
right circularly polarised wave with ukl  = nrk0 – W' /2, and vice 
versa. Here, W' is equal to W with a change in the sign of g. 
After reflection, the refractive indices of the waves transform 
as follows:

nu, u » n k k4 20 0
! !

bs g
r  ® ,uunl  » n

k k4 20 0
" !

bs g
r .	 (A8)

Therefore, when operating waves u and u are reflected from a 
mirror, the constant term in the refractive index due to the 
helical structure changes sign [the second terms in (A8)]. This 
means that, after wave propagation in the backward direc-
tion, the phase difference determined by the helical structure 
of the fibre is completely compensated. At the same time, the 
last term in (A8), determined by the circular birefringence 
induced in the medium, retains its sign upon reflection. As a 
result, light propagation in the backward direction doubles 
the Faraday phase shift between the waves.
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