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Abstract.  We consider the problem of measuring red blood cell 
deformability by laser diffractometry in shear flow (ektacytome-
try). A new equation is derived that relates the parameters of the 
diffraction pattern to the width of the erythrocyte deformability 
distribution. The numerical simulation method shows that this 
equation provides a higher accuracy of measurements in compari-
son with the analogous equation obtained by us earlier. 

Keywords: red blood cell deformability, diffractometry, laser ekta-
cytometry, data processing algorithms. 

1. Introduction 

An urgent task of medical diagnostics is to measure the 
deformability of red blood cells, defined as a measure of the 
cell ability to change shape under the action of external forces 
[1 – 3]. To assess the deformability, it is necessary to measure 
the deformation of red blood cells subjected to some known 
external force. The task is complicated by the fact that the 
erythrocyte ensemble is nonuniform in its properties, and 
measurements need to be carried out quickly and for a large 
number of cells. One way to solve this problem is the applica-
tion of laser diffractometry of erythrocytes in shear flow 
(ektacytometry) [4 – 6].

In a laser ektacytometer, an erythrocyte suspension is 
placed between two glass plates, one of which is fixed and the 
other moves. Thus, erythrocytes are subjected to shear stress. 
Then, the suspension is illuminated by a laser beam. As a 
result, a diffraction pattern appears on the observation screen 
installed in the far zone. This pattern is recorded by a video 
camera and transmitted to a computer, where it is processed 
according to a certain algorithm. This method is described in 
more detail in our papers [7 – 9]. The algorithm of data pro-
cessing is based on the idea of how the laser beam is scattered 
on an ensemble of blood cells. Thus, there arises a physical 
problem of finding a relation between the characteristics of 
the diffraction pattern observed in the ektacytometer and the 
parameters of the blood sample to be determined. 

In [9 – 12], we proposed several data processing algorithms 
that allow one to measure the statistical characteristics of 
erythrocyte deformability, namely, the mean deformability, 

width and asymmetry of erythrocyte deformability distribu-
tion. Experiments with specially prepared blood samples 
[10,  11] show that these algorithms are quite efficient, but it is 
necessary to improve accuracy and reliability of measurements. 

For the analysis of the diffraction pattern (DP), the con-
cept of an isointensity curve (IC) is introduced. This is the 
curve on which the intensity I of the scattered light has a cer-
tain definite value. Uniformly deformable erythrocyte ensem-
bles (blood of healthy donors) exhibit isointensity curves of 
ellipsoidal shape. At the same time, for nonuniform ensem-
bles (blood of patients with sickle-cell anaemia or specially 
prepared blood samples), isointensity curves have a rhom-
boid shape. As was shown in [13], the features of the isointen-
sity curve shape manifest themselves most vividly in the 
peripheral part of the DP, where the intensity of the scattered 
light is about an order of magnitude smaller than the intensity 
of the central diffraction maximum. In this paper, we propose 
an algorithm that makes it possible to work with that part of 
the diffraction pattern that is most sensitive to the parameters 
of the red blood cell ensemble. This region is located near the 
boundary of the central diffraction maximum. 

2. Characteristic points of the diffraction pattern 

A convenient characteristic of the isointensity curve is a 
dimensionless parameter 

/ ( )I I I 0=u ,	 (1)

where I(0) is the light intensity at the DP centre. Let us assume 
that 

Iu  << 1,	 (2)

i.e., the isointensity curve in question lies at the periphery of 
the central maximum of the DP.

An example of the isointensity curve is shown in Fig. 1. 
The same figure illustrates the concept of characteristic 
points. These are the intersection points of the isointensity 
curve with the diagonals of the rectangle that surrounds this 
line. The points located in the middle of the sides of the rect-
angle are called polar points. 

We introduce a Cartesian coordinate system with the ori-
gin at the centre of the diffraction pattern (the centre of the 
rectangle in Fig. 1). We denote the coordinate of the right 
polar point and the upper polar point by xp and yp, respec-
tively. The coordinates of the characteristic point lying in the 
region x > 0 and y > 0 will be denoted by xc and yc. We intro-
duce the polar point parameter D and the parameter of the 
characteristic point Q, defining them by the formulas 
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We believe that the parameters D and Q, as well as the param-
eter Iu , can be measured using a laser ektacytometer.

3. Theoretical model 

Following Refs [7 – 12], we model a red blood cell ensemble in 
shear flow of a laser ektacytometer by a set of flat elliptical 
disks with semi-axes a = a0(1 + e) and b = b0(1 – e), where a0 
and b0 are the mean lengths of the semi-axes, and e is a ran-
dom parameter of the red blood cell shape. The validity of 
such a model is justified by the fact that in the region of small 
scattering angles, the erythrocyte model in the form of a flat 
disk provides sufficient accuracy [7]. We assume that the aver-
age value of the parameter e is equal to zero (áeñ = 0), and the 
probability density distribution w(e) is symmetric, i.e., w(e) = 
w(– e). 

The ensemble of red blood cells is characterised by the 
parameters 

s = a0 /b0,   áe2ñ = m,	 (4)

where s is the average deformability and m is the width of the 
erythrocyte deformability distribution for the investigated 
blood sample; angular brackets denote averaging over the 
ensemble of particles. We assume that m << 1, i.e., the inho-
mogeneity of erythrocytes with respect to deformability is 
relatively weak. Our next task is to express the parameters of 
the blood sample (4) through the DP characteristics (3) and 
construct a measurement algorithm on this basis. 

As was shown in [12], for the conditions in question, the 
isointensity curve is described by the formulas x = Arcosj 
and y = Brsinj. Here A = q1z/(ka0); B = q1z/(kb0); z is the 
distance from the measuring volume to the observation 
screen; k = 2p/l is the wavenumber; and l is the wavelength of 
the light wave. The dependence r(j) is given by 
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where 

/( )f I 40
2b= u ;	 (5)

and H = cos(2j). The quantities q1 = 3.82 and b = – 0.4 are the 
parameters of the Bessel function of the first order. The first 
of them is equal to the argument of this function, at which the 
function vanishes, and the second one is equal to the deriva-
tive of the function at this point. 

Using the above formulas, we can calculate the coordi-
nates of the polar and characteristic points, namely, xp = Ar(0), 
yp = Br(p/2), xc = (1/ 2 )Ar(p/4) and yc = (1/ 2 )Br(p/4). Note 
that r(j = 0) = r(j = p/2). It follows that Q = r(p/4)/r(0), 

xc /xp = yc /yp,	 (6)

s = D, 	 (7)

and

/
Q

f2 1 1
2 5

0m
m

=
+ -

-

^ h
.	 (8)

Relation (6) means that the coordinates of the polar and char-
acteristic points of the isointensity curve are related to each 
other as shown in Fig. 1. Formulas (7) and (8) solve the above 
problem, relating DP parameters (3) and erythrocyte ensem-
ble characteristics (4). 

4. Algorithm of data processing 

Solving equation (8) with respect to m, we obtain 

/
( )
f Q
Q

5 1 1
2 1

0
m =

+ -

-

^ h
. 	 (9)

Formulas (7) and (9) represent an algorithm for measuring 
the mean deformability s and the erythrocyte deformability 
dispersion m in a blood sample under study. The algorithm 
consists in the following. First, one should choose the isoin-
tensity curve in accordance with condition (2) on the DP 
obtained with the help of an ektacytometer from this blood 
sample. Then it is necessary to determine the coordinates of 
the polar and characteristic points xp, yp, xc and yc (shown in 
Fig. 1) of the isointensity curve and also to measure the value 
of Iu, equal to the ratio of the light intensity at the given isoin-
tensity curve to the intensity of the central maximum of the 
DP. After that the parameters D, Q and f0 are calculated from 
formulas (3) and (5) and, finally, the parameters s and m are 
determined from formulas (7) and (9). 

5. Testing the algorithm in a numerical  
experiment 

Let us check the algorithm on the example of a bimodal 
ensemble of red blood cells. This ensemble consists of cells of 
only two types. In the model of elliptical disks, the cells of the 
first type have the dimensions a1 and b1 and the shape param-
eter e1, so that a1 = a0(1 + e1) and b1 = b0(1 – e1), and the cells 
of the second type have the dimensions a2 and b2 and the 
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Figure 1.  Isointensity curve, its polar (p) and characteristic (c) points.
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shape parameter e2, so that a2 = a0(1 + e2) and b2 = b0(1 – e2). 
The thicknesses of all disks are assumed to be the same and 
equal to h. We denote the fraction of particles of the first type 
in the ensemble by p.

The shape of the particles of both components of the 
ensemble for the given shear stress will be characterised by the 
parameters 

s1 = a1/b1,   s2 = a2/b2.	 (10)

Three dimensionless parameters (s1, s2, p) completely deter-
mine the bimodal ensemble of red blood cells. These param-
eters are the initial data for a numerical experiment. The 
remaining parameters are expressed through them as fol-
lows [9]: 

s M M s s2
1 2= + + ,   ( ) ( / )M s s p 1 21 2= - - ,

s s
s s
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+
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2
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Next we consider a symmetric bimodal ensemble of cells for 
which 

p = 1/2,   s1 = 1. 	 (11)

Physically, this ensemble corresponds to a mixture of deform-
able and undeformable blood cells. Such ensembles are inter-
esting, in particular, from the point of view of testing algo-
rithms for data processing [10, 11, 13, 14]. Under conditions 
(11), the only parameter of the ensemble of cells is the value of 
s2, which characterises the deformation of the deformed com-
ponent of the ensemble for the given shear stress. In this case, 

s s2= ,   
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s
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-
c m .	 (12)

The light intensity distribution in the DP for such an 
ensemble has the form: 
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where I0 is the laser light intensity; N is the total number of 
red blood cells irradiated by the laser; |g|2 = 4sin2(Dj/2);  Dj = 
kn0h(n – 1); n is the absolute refractive index of the material 
from which the particles are composed; and n0 is the absolute 
refractive index of the medium surrounding the particle.

In (13) we introduce the function 

G(x) = [2J1(x)/x] 2, 	 (14)

where J1(x) is the Bessel function of the first order. Function 
(14) satisfies the condition G(0) = 1. Note that formula (13) 
describes the distribution of the light intensity at those points 
of the observation screen where the direct laser beam does not 
fall. 

The normalised light intensity distribution in the diffrac-
tion pattern has the form 
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This function obeys the condition ( )I 0 1=u .
We introduce the effective radius of the red blood cell, 

defining it by the formula 

c a b0 0 0= .	 (15)

This is the radius of a circle, the area of which is equal to the 
average area of the base of the elliptic disk that models the red 
blood cell. As the scale of the DP we choose

x0 = z/(kc0).	 (16)

Then, we introduce dimensionless variables 

/a a c0=u ,    /b b c0=u ,    /x x x0=u ,    /y y x0=u .	 (17)

In this case, 
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For the bimodal ensemble in question, a a c1 1 0= u , b b c1 1 0= u ,  
anda a c2 2 0= u , b b c2 2 0= u , where

a b
s
s

1
2
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u u ;   a a s2 1=u u ;   /b b s2 1=u u ;    s s2= . 	 (19)

It follows that
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This formula describes the light intensity distribution in the 
diffraction pattern for the considered bimodal ensemble of 
erythrocytes with characteristics (11). Here, the normalised 
light intensity Iu  is determined by the (1), the function G(x) by 
formula (14), the dimensionless coordinates xu  and yu  are 
defined by formulas (15) – (17), the parameters a1u , b1u , a2u , b2u  
by formulas (10), (19). An example of a DP constructed from 
formula (20) is shown in Fig. 2a. Figure 2b demonstrates one 
of the isointensity curves. Note that such diffraction patterns 
and isointensity curves give blood samples for certain dis-
eases, in particular, for sickle-cell anaemia [1].

The procedure for verifying the algorithm is as follows. 
On the isointensity curve, we find polar and characteristic 
points (see Fig. 1), determine their coordinates xpu , ypu , xcu , ycu  
and calculate the parameters D and Q using formulas (18). 
After this, using formulas (7) and (9), we find the parameters 
s and m and compare the obtained values with the exact values 
of these parameters determined by formulas (12). 

6. Results 

Examples of the results of calculations are presented in Figs 3 
and 4. Figure 3 shows the values of the parameter s, which 
characterises the mean deformability of red blood cells, and 
Fig. 4 – the values of the parameter m, which characterises the 
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width of the erythrocyte deformability distribution. For com-
parison, the dashed line in Fig. 4 shows the results of measur-
ing the erythrocyte deformability dispersion performed by the 
algorithm from [10]. 

In the notation used here, this algorithm is described by 
formulas 
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The data presented indicate that in the region of the diffrac-
tion pattern determined by the condition 

. .I0 03 0 075G Gu ,

the algorithm presented in this paper provides a higher accu-
racy of measurements in comparison with the algorithm 
developed in [10]. Deviation of the erythrocyte deformability 
dispersion from the given value is explained by the approxi-
mations used in the derivation of formulas (9) and (21). 

Let us pay attention to the following circumstance. In a 
real experiment, the scattered light intensity on the isointen-
sity curve chosen for measurements can be determined with 
some uncertainty. The question arises about its effect on the 
accuracy of the measurement of red blood cell deformability. 
As can be seen from Figs 3 and 4, a small error in the mea-
surement of the parameter Iu  does not lead to a significant 
error in the measurements of the mean deformability and the 
width of the erythrocyte deformability distribution if these 
measurements are carried out with the help of the proposed 
algorithm of a characteristic point.

7. Conclusions 

We have considered the problem of measuring the erythro-
cyte deformability dispersion by laser diffractometry in shear 
flow (ektacytometry). The analysis has been carried out for 

a b

Figure 2.  (a) Diffraction pattern constructed from formula (20) for s2 = 
2 and (b) isointensity curve corresponding to Iu  = 0.1. 
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Figure 3.  The results of measuring the mean deformability of erythro-
cytes at s2 = (a) 2 and (b) 3. The points are the values of the parameter s 
calculated by formula (7) on the basis of the analysis of the diffraction 
pattern constructed from formula (20). The solid lines are the exact val-
ues of the parameter s found from formula (12).
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Figure 4.  Results of measuring the dispersion of erythrocyte deform-
ability at s2 = (a) 2 and (b) 3. The points are the values of the parameter 
m calculated from formula (9) on the basis of the analysis of the diffrac-
tion pattern constructed from formula (20). The solid lines are the exact 
values of the parameter m found from formula (12), the dashed lines are 
the results of measurements of the erythrocyte deformability dispersion 
performed by algorithm (21). 
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the region of the diffraction pattern lying on the periphery of 
the central diffraction maximum. This area is traditionally 
used in laser ektacytometry of red blood cells and is charac-
terised by high sensitivity to the characteristics of the blood 
sample being studied. For an ensemble of cells with a sym-
metric deformability distribution function, we have devel-
oped an improved variant of the characteristic point algo-
rithm. This algorithm allows one to measure the dispersion of 
erythrocyte deformability in the blood sample under study 
and is mathematically expressed by formula (9). A check car-
ried out by the method of a numerical experiment has shown 
that the new algorithm provides a higher accuracy of mea-
surements in comparison with the algorithm developed by us 
earlier in [10].
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