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Abstract.  A generalisation is found of previously known quantised 
spiral beams in the form of closed non-self-intersecting plane 
curves. An analytic expression is obtained for the distributions of 
the complex amplitudes of the fields of these beams. It is shown 
that the intensity of such light fields can reach zeros on the gener-
ating curve and the generalisation allows the number of zeros to 
be controlled inside the closed curves, which is important for 
applied problems. The issue of the extremal properties of the 
orbital angular momentum of generalised quantised spiral beams 
is investigated. 
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1. Introduction 

Spiral beams are light fields that retain their intensity distri-
bution to within scale and rotation during their propagation 
and focusing. These light fields are modes of specific laser 
cavities with field rotation. Work [1, 2] considered spiral 
beams, whose intensity distributions in planes orthogonal to 
the propagation direction have the form of plane closed 
curves. These beams will be called bundles in the form of 
closed curves. Figure 1 shows an example of the initial gener-
ating curve and the distribution of the intensity and phase of 
the corresponding beam. 

It was also shown [1, 2] that such light fields admit the 
existence of a certain quantisation condition relating the area 
under the curve and the Gaussian beam parameter. Quantised 
beams have found wide application in various problems of 
analysis and synthesis of light fields [2]. The characteristic 

properties of these beams are, firstly, the absence of zeros of 
the intensity on the generating curve, and secondly, the inde-
pendence of the intensity distribution from the choice of the 
initial point on this curve. 

The distribution of the complex amplitude of the spiral 
light fields contains, as a rule, optical vortices, or wave front 
dislocations [3], and they have a nonzero orbital angular 
momentum (OAM). Light fields with a nonzero OAM attract 
attention of opticians of the most diverse directions. For 
example, an international conference was held in 2017, the 
main topic being devoted to such light fields [4]. For example, 
Vallone [5] studied the issues of the formation of light fields 
with a nonzero OAM and discussed various applications of 
these fields, Wang [6] considered the problem of quantum 
information processing, and Banzer [7] described the applica-
tion of the fields with a nonzero OAM for ultrahigh resolu-
tion microscopy.

The authors of Refs [1, 2] presented analytical expressions 
for the complex amplitudes of the beam fields in the form of 
closed curves and obtained conditions for their quantisation. 
One of the obvious methods of experimental realisation of 
such fields is the calculation and formation of amplitude and 
phase masks, as well as illumination of their ‘sandwich’ by a 
uniform-intensity beam. 

The aim of this paper is to demonstrate that for closed 
curves one can obtain some generalisation of spiral light 
fields. These generalised fields possess properties that are 
both known for and different from ordinary quantised spiral 
fields.

2. Quantised spiral beams 

Ordinary quantised beams have a characteristic property con-
sisting in the fact that there are no zeros of the complex ampli-
tude of the field z(t) = x(t) + ih(t) on the generating curve 
S(z, z*|z(t), t Î [0, T ]) (see Appendix) [1, 2]: 

|S(z, z*|z(t), t Î [0, T ])| ¹ 0,   z = x + iy, 

where T is the period.
There are various formulations of this statement. Suppose, 

for example, that for some closed curve the following condi-
tions hold [1]: 

1) the curve starts and ends at the origin: 

x(0) = x(T ) = 0,   y(0) = y(T ) = 0; 

2) the function ( )tso  is sign-constant (which is equivalent 
to the absence of self-intersecting curves), where s is the area 
bounded by the contour z(t); 
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Figure 1.  Generating curve and its corresponding distributions of the 
intensity and phase of the spiral beam. 
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3) the area of the region bounded by the curve satisfies the 
quantisation condition 

2 [ ( ) ( ) ( ) ( )]dx y x y n4 2
t

0
pt t t t t s- = =o oy , 

where n = 0, 1, 2, . . . is also equal to the number of zeros inside 
the curve z(t). 

Then, the following inequality holds: 
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Let us show this. Integrating this expression, we obtain 
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where L is the total length of the curve, and l(t) is its current 
length. Transforming (1) in the standard way, we obtain the 
expression 

[ ( ) ( )]expI L x t y t
T 2 2

0
= + - -y

	
t

( ) [ ( ) ( ) ( ) ( )]cos dR t x y x y2
0

# t t t t t-o o') 1y

	
( )
( )

2 ( )arccos d
l t
R t

ll t t- o

o
o= G3 . 	 (2)

Here ( ) ( ) ( )R t x t y t2 2
= +o o o .

The function ( )ll t2 o  has a constant sign; therefore, accord-
ing to the integral mean value theorem, expression (2) takes 
the form: 
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where t1 Î [0, T ]. Taking L through the parentheses, we 
obtain the relation 
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Now let z1(t) be the quantised curve for n = 1; then, 
( )n t1z  is the n-quantised curve, and expression (4) takes the 

form 
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Let us investigate the expression ( ) [ ( )expR t Ln nx t2 1- - 
( )]ny t2 1 . It can be seen that, starting from some n, it becomes 

less than unity, and then relation (4) cannot be equal to zero. 
Many numerical experiments have shown that this property is 
typical of quantised beams with any value of the quantisation 
parameter n. Unfortunately, no strict proof of this fact has 
been obtained so far. 

Now let the curve be self-intersecting. Without loss of gen-
erality, we choose the position of the curve and its parametri-
sation so that the origin of the curve coincides with the origin 
and the self-intersection point (Fig. 2). It follows from [1] that 
other cases can be reduced to the above-mentioned ones. 
Thus,  z(0) = z(t0) = z(T ) = 0, where t0 is the coordinate of the 
self-intersection point. 

In this case, since ( )tso  is a sign-variable function (the 
round-trip direction changes), expression (2) will be the sum 
of two integrals: 
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Figure 2.  Appearance of a self-intersecting curve. 
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Each integral, like the case described by expression (3), 
becomes modulo less than unity for some n, which is no lon-
ger possible to say about the sum. This is the reason for the 
absence of a constant sign of the function ( )tso . Therefore, it is 
impossible to judge the absence or presence of zeros on the 
generating curve.

3. Generalised quantised spiral beams 

Let 

-( , | ( ), [0, ]) expS z z t t T zz f z2!z
r r=*
*

e `o j	 (5)

be a quantised spiral beam in the form of the curve z(t). We 
introduce the parameter A; then, 

-( , | ( ), [0, ]) expS z z t t T zz f Az
2
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is a generalised quantised beam, and the zeros of its field will 
be at points 

j j{ } (2/ )z z A( )A
= , 	 (7)

where zj are the zeros of the function f (z/r). 
Without loss of generality, we assume that A is positive 

and real. It is seen from (6) and (7) that for a closed curve 
there is always an A (if zj ¹ 0) such that zj (2/A) = z(tj). This 
will happen (Fig. 3) if the two conditions:
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j
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are met. It is obvious that as the parameter A decreases, zero 
vanishes from the region of the closed curve. Figure 4 shows 
the results of numerical simulation of the intensity and phase 
distributions of spiral beams for different values of A. From 
the comparison of Figs 1 and 4 it is clear that the number of 
zeros inside the curve is really different for different values of 
the parameter A. This means that the rigid relationship 

between the number of zeros inside the generating curve and 
the quantisation parameter vanishes. 

The number of zeros inside the curve is an important char-
acteristic for applied problems. It sets the OAM value for 
optical manipulation of microscopic objects. When process-
ing contour images [8], it is essential to determine the angle of 
rotation of the recognisable contour with respect to contours 
from the database. To do this, in the case of ordinary quan-
tised beams, curves with a small value of the quantisation 
parameter are taken, when the number of zeros inside the cor-
responding curve is small: according to Vieta’s theorem, the 
expansion coefficients of the entire function f (z) are found 
more accurately, and therefore the angle of rotation is also 
obtained more accurately. Thus, changing the parameter A is 
an alternative way of changing the number of zeros inside the 
curve. 

The generalisation of (A1) in Appendix will be the for-
mula 
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It is characteristic that the quantisation condition for (9) will 
be the same as for (A1). Indeed, by writing conditions (A2), 
(A3) and (A4) for (9), we obtain an equality equivalent to 
(A7) with the substitutions  z ® z(A/2), F (а) ® F (а, А) and 
F1(a), F2(a) ® F1(a, А), F2(a, А). Thus, we find the quantisa-
tion condition equivalent to (A7). 

4. OAM of generalised quantised spiral beams 

The generalised quantised spiral beams depend on the param-
eter A, and so it makes sense to investigate the extremum con-
ditions for their specific OAM. 

It is known [1, 2] that for ordinary spiral beams the value 
of the specific OAM is determined by the expression ( r = 1, 
n = 0)

A

A

z0

(0, 0)

Figure 3.  Scheme of motion of zeros with changing the parameter A. 

a

b

Figure 4.  Generating curve and its corresponding distributions of the 
intensities and phases of the spiral beams for A = (a) 2.2 and (b) 1. 
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where cm
1  are the coefficients of the expansion of the spiral 

beam in the Laguerre – Gauss modes LG0 m. 
For generalised spiral beams, the specific OAM
 

! | |

! | |
L

m A c

m m A c

2 2

2 2( )
A

m m

m

m
m

m m

m

m
m1

2

2
1 2

0

2

2
1 2

0= 3

3

=

=

/

/
. 	 (11)

For the sake of simplicity, we make a substitution 
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Now the extremum condition for the specific OAM will have 
the form 
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It is clear from (13) that 
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Then from (7) and (8) we obtain the relations: 
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From (15), after simple transformations, we find the extre-
mum condition in terms of EA or LA:
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These ordinary second-order nonlinear differential equa-
tions can easily be reduced to first-order equations by using 
substitutions 
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In this case we obtain the relations 
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Returning now to formulas (8) and (9), we find the expres-
sions 
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Then condition (9) takes the form 
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Thus, formula (20) is the difference of products of series.
We use the obvious identity: 
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According to [9], the terms of the last sum in (21) can be rep-
resented in the form 
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Then, using formulas (18) and (19) for the terms on the left-
hand side of (21), we obtain the relation 
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A strict inequality is due to the fact that the square brackets 
contain a doubled difference between the arithmetic mean 
and the geometric mean of two integers. 

Equality (20) will be valid only if one summand (m = m0) 
is present in the sums. In this case, from (16) and (22) we find 
the expressions
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In other cases, the ratio /L EA A increases monotonically with 
increasing A, and conditions (16) and (24) are satisfied only 
for spiral beams constructed for circles centred at the origin. 
Of course, this is in complete agreement with (7) for zj = 0 (  j = 
0, 1, 2, . . .). 

5. Conclusions 

Thus, a new method for constructing quantised spiral beams 
with a different number of zeros inside the generating curve 
and a different value of the OAM is found. Extremal proper-
ties of the specific OAM of the light fields of such beams are 
also studied. Changing the parameter A is an alternative way 
to changing the number of zeros inside a closed curve, which 
is important in solving the problem of recognising contour 
images using spiral beams [8]. From the point of view of 
speed, the change in the quantisation parameter n and the 
introduction of the parameter A are equivalent approaches. A 
comparative analysis of both approaches requires a further 
study. 

Appendix 

According to [1, 2], the complex amplitude of the field of a 
spiral beam in the form of a plane (generating) curve z(t) = 
z(t) + ih(t) in the waist can be represented in the form 
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	 z = x + iy. 

Let us find the condition under which the intensity distri-
butions of the spiral beams constructed for the closed curves 
z(t) and z(t + a) coincide: 
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where F (a) is some real function that does not depend on z 
[otherwise, dividing both sides of (A3) by the Gaussian func-
tion, we obtain that F is an analytic function of z and, conse-
quently, cannot be a real function for all z]. Differentiating 
(A3) with respect to a and using the periodicity of z(t), we find 
the expression 
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Replacing the spiral beam in the first term in (A4) in 
accordance with (A3) and dividing the result by the Gaussian 
function, we rewrite equation (A4) in a symbolic form:
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where f (z) is an entire analytic function; and F1(a) and F2(a) 
are some functions of a. This equality holds for all z and a 
only for F1(a) = F2(a) º 0 [if f (z) has a zero, this is obvious; the 
case where f (z) does not have zeros is also simple]. Therefore, 
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Hence the quantisation condition has the form 
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