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Abstract.  Self-modulation oscillations of the intensity of a solid-
state coupled-cavity ring laser are theoretically investigated. The 
results obtained analytically show that external optical coupling 
allows the frequency of self-modulation oscillations to be varied in 
a wide range (from a few kilohertz to hundreds of megahertz). 
Using coupled cavities, it is possible to significantly weaken the 
influence of the coupling of counterpropagating waves through 
backscattering on the self-modulation frequency and to increase the 
scale factor that determines the dependence of the self-modulation 
frequency on the rotation velocity. 

Keywords: solid-state ring laser, coupled cavities, self-modulation 
oscillations, laser gyroscope, scale factor. 

1. Introduction 

In studies related to the applications of laser gyroscopes 
(LGs), considerable attention is paid to the possibility of 
increasing their scale factor and sensitivity. It was shown the-
oretically and experimentally in Refs [1 – 5] that the LG scale 
factor can be increased by using an anomalous dispersion of 
light in a medium placed inside the laser cavity. At a critical 
value of the anomalous dispersion, a pole appears in the 
expression for the scale factor, and it is shown in [1, 2] that in 
this case it is possible to increase the scale factor by 105 times. 
Using a passive ring cavity filled with rubidium vapour, Smith 
et al. [3] increased the scale factor by 2.4 times. An analysis 
carried out in [4] showed that linear gas media with anoma-
lous dispersion are not promising for use in LGs based on 
He – Ne lasers. For semiconductor ring lasers, the possibility 
of using anomalous dispersion to increase the scale factor was 
discussed in [5]. 

Another method of increasing the scale factor, based on 
the use of coupled cavities, was investigated theoretically in 
Refs [6 – 8]. Instead of resonances in an intracavity medium 
with an anomalous dispersion, use was made of resonances of 
an additional cavity coupled with the main laser cavity 
through a partially transmitting coupling mirror. The authors 
of [6 – 8] showed that in a coupled-cavity ring He – Ne laser, it 
is possible to control an intracavity dispersion and create an 
anomalous dispersion that allows a large increase in the scale 

factor. Unfortunately, as far as we know, these conditions 
have not yet been implemented experimentally. Smith et al. [9] 
studied theoretically and experimentally the possibility of 
increasing the scale factor for passive coupled cavities. 

Previous studies have shown that antiphase self-modula-
tion oscillations of the intensities of counterpropagating 
waves with a frequency that depends on the angular rotation 
velocity are excited in solid-state ring lasers (SRLs), in par-
ticular in miniature ring chip lasers, due to the competition of 
counterpropagating waves. This generation regime was called 
the self-modulation regime of the first kind (SMR1). The first 
experimental and theoretical studies of this regime in diode-
pumped annular chip lasers were performed in Refs [10 – 13]. 
Using SRLs operating in the self-modulation regime, it is pos-
sible in principle to create one of the versions of an active LG, 
which differs from the conventional method of measuring the 
rotational velocity. In a conventional LG, a beat signal, which 
arises during interference of counterpropagating waves as a 
result of their mixing outside the cavity, is processed, and in 
the variant using SMR1 it is necessary to measure the fre-
quency of intensity self-modulation of one of the counter-
propagating waves emerging from the laser cavity. SMR1 is 
the main regime of operation for miniature monolithic ring 
chip lasers, but the possibilities of using such sensors for nav-
igation applications are limited by the small value of the scale 
factor, due to the small size of the chip laser. 

In [14], the self-modulation oscillations of the intensity 
in a coupled-cavity SRL were investigated experimentally 
and simulated numerically. These studies have shown that 
the use of external optical coupling opens up new possibili-
ties for controlling the frequency of self-modulation oscilla-
tions. The aim of this paper is an analytical study of self-
modulation oscillations and an analysis of the control capa-
bilities of the self-modulation frequency by external optical 
coupling. 

2. System of equations 

Figure 1a shows a schematic of a coupled-cavity ring laser. 
Inside the main ring cavity containing an active element, two 
counterpropagating waves with complex amplitudes E1,2 
propagate. The radiation emitted from the main cavity 
through a partially transmitting mirror M excites the optical 
fields in the external ring cavity and returns again to the main 
cavity through the same mirror. 

In [14] we obtained a system of differential and difference 
equations relating to a laser with two coupled cavities. The 
excitation of counterpropagating waves with complex ampli-
tudes Ec1, c2 in the external cavity is described by the difference 
equation 
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Ec1, c2 (t) = rc exp(–iwnTc ± iWcTc /2)

	 ´ [rEc1, c2 (t – Tc) + tr exp(ij)E1,2(t – Tc)]. 	 (1)

Here, r and t r1r = - 2  are the amplitude coefficients of 
reflection and transmission for the coupling mirror M 
(Fig. 1b); the factor exp(ij) takes into account that the trans-
mitted wave with respect to the reflected wave acquires a 
phase shift equal to j; rc is the effective coefficient, which is 
equal to the product of the reflection coefficients of all the 
mirrors of the additional cavity, with the exception of the 
coupling mirror (this factor also takes into account the field 
attenuation due to all other losses in the additional cavity); Wc 
is the difference of eigenfrequencies for counterpropagating 
waves in the additional cavity; Tc is the round-trip time of the 
light inside the additional cavity; and wn is the eigenfrequency 
of the main cavity for the generated counterpropagating 
waves in the absence of rotation. 

We will assume that the frequency of self-modulation oscil-
lations wm is small in comparison with the interval between 
neighbouring axial modes 1/Tc of the additional cavity: 

wmTc << 1. 	 (2)

Then we can pass from difference equations (1) to differential 
equations, using the relation 

( ) ( ) ( )E t T E t T E t, , ,c c c c c c c c1 2 1 2 1 2- = - o . 	 (3)

In addition, we will consider the case of a low-Q additional 
cavity, assuming the effective reflection coefficient rc to be 
small: 

rc << 1.	 (4)

In this case, we can neglect the term with the factor rEc1, c2 in 
comparison with the term with the factor tr exp(ij)E1,2  in the 
right-hand side of Eqn (1). 

In a laser with a low-Q additional cavity there is no accu-
mulation of an intracavity field due to multiple round trips, 
and the resonance properties of the additional cavity are 
weakly manifested. This cavity basically plays the role of an 
optical delay line for the time of a single pass through it (Tc). 

As a result, the system of equations obtained in [14] relating 
to a laser with two coupled cavities takes the form

(1 ) iE T
Q
E E

2 2, , , ,c1 2 1 2 1 2 1 2!a w W
+ =-o

	 ( )i m E
T
l N E N E E

2 2, , , , , ,1 2 2 1 0 1 2 2 1 1 2 1 2
s a+ + + +!u , 	 (5)

+(1 ) | | | |T N N N N a E Eth1 0 0 0 1
2

2
2h= + - -o ^ h

	 N aE E N aE E* *
1 2 1 2- -+ - , 	 (6)

where 

(1 ) [ (2 /2)]exp iT
r r T T,
c

c c cn1 2
2 !a j w W= - - . 	 (7)

The following notations are used in equations (5) and (6): 
w/Q is the bandwidth of the main cavity (the losses inside the 
cavity are assumed equal for counterpropagating waves); w is 
the optical frequency; Q is the Q-factor of the cavity; W is the 
difference of eigenfrequencies for counterpropagating waves 
in the main cavity; s is the laser transition cross section; l is 
the length of the active medium; T is the round-trip time of 
the light inside the main cavity; T1 is the longitudinal relax-
ation time; a = T1cs/(8'wp) is the saturation parameter; and 
c is the speed of light. The pump rate is equal to Nth(1 + h)/T1, 
where Nth is the threshold population inversion, and h is the 
excess of the pump power over the threshold value. The linear 
coupling of counterpropagating waves is determined phe-
nomenologically by the introduced complex coupling coeffi-
cients

( )exp im m1 1 1J=u ,     ( )exp im m2 2 2J= -u , 	 (8)

where m1,2 are the moduli of the coupling coefficients, and J1,2 
are their phases. 

The population inversion is expanded in a series of spatial 
harmonics with allowance for the zeroth (N0) and second 
(N±) harmonics: 

N(z, t) = N0(t) + N+(t)exp(i2kz) + N–(t)exp(– i2kz),	 (9)

where k is the wave number. Because of the interference of the 
counterpropagating waves, the light intensity inside the cavity 
changes periodically along the cavity axis z and, as a result of 
saturation of the population inversion by the intracavity field, 
lattices are formed in the active medium, the amplitudes of 
which are determined by the harmonics N±. 

Equations (5) and (6) are written for the case of genera-
tion at the gain line centre. In these equations, the optical fre-
quency w is set equal to wn. The sensitivity to rotation arises 
from the Sagnac effect: in the main and additional cavities, 
there appears a difference of the eigenfrequencies for the 
counterpropagating waves [15, 16] 

n L
S8p
l

JW =
o
,	 (10a)

L
S8

c
c
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l

JW =
o
, 	 (10b)

where l is the laser wavelength. It is assumed in (10) that the 
main cavity is filled with an optical medium having a refrac-
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Figure 1.  Schematic of (a) a coupled-cavity ring laser and (b) a wave on 
the coupling mirror M:	
(M31, M2, M3) mirrors of the main cavity; (M) coupling mirror; (M4, 
M5, M6) mirrors of the additional cavity; (AM) active medium; E1, rE1 
and trexp(ij)E1 are the amplitudes of the incident, reflected and trans-
mitted waves, respectively. 
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tive index n, and there is no medium in the additional cavity; 
S, Sc are the projections of the area vectors of the main and 
additional cavities on the rotation axis; and L, Lc are the 
perimeters of ring cavities. 

3. Self-modulation oscillations of intensity

3.1. Derivation of basic formulas 

It is possible to find an approximate analytical solution of the 
system of equations (5) and (6) by assuming that the self-mod-
ulation oscillation frequency wm is large in comparison with 
the fundamental relaxation frequency ( / ) /Q Tr 1w w h= . We 
will use the method of successive approximations with respect 
to a small parameter 

e = wr /wm << 1. 	 (11)

In the zeroth approximation, we neglect the modulation of 
the population inversion with the frequency of self-modula-
tion oscillations and take into account only the constants of 
the spatial harmonics N0 and N±; we write the harmonics N± 
in the form 

N± = Nr ± iNi. 	 (12)

In this approximation, Eqns (5) and (6) for the complex field 
amplitudes E1,2 are a system of two first-order differential 
equations with constant coefficients. 

For simplicity, we assume that the complex coupling coef-
ficients m ,1 2u  are complex-conjugate (symmetric coupling with 
the same moduli of coupling coefficients, m1 = m2 = m, and 
phases J1 = J2 = 0). In accordance with equations (5), the 
complex amplitude E1 can be represented in the form 

/
2 ( / / ) ( )

i
i

E
lN T m

E Q lN T E E T E2 c
1

2 0 2 2 2

s
w s bW

=
+

+ + - - -

+

o o
, 	 (13)

where 

b = br + ibi

(1 ) ( /2)cos cosr r T T1
r c c c

2b F W= - ;	
(14)

(1 ) ( /2)cos sinr r T T1
i c c c

2b F W= - ;

2 Tcnj wF = - .

The parameter F determines the phase of the external optical 
coupling. It depends on the phase shift j between the waves 
reflected and transmitted by the coupling mirror, and also on 
the phase shift wnTc in the additional cavity. In the general 
case, for an arbitrary phase F, the analysis turns out to be 
very cumbersome. Next, we consider two particular cases: 
F  = 2pp, i.e. in-phase optical coupling and F  = 2pp + p, i.e. 
antiphase coupling ( p is an integer). 

It follows from (14) that in the case of in-phase optical 
coupling

(1 ) ( /2)cosr r T T1
r r

s
c c c

2b b W= = - ,	
(15)

(1 ) ( /2)sinr r T T1
i i

s
c c c

2b b W= = - ,

and in the case of antiphase coupling

(1 ) ( /2)cosr r T T1
r r

a
c c c

2b b W= =- - ,	
(16)

(1 ) ( /2)sinr r T T1
i i

a
c c c

2b b W= =- -

Substituting (13) into equation (5), we obtain for the com-
plex amplitude E2 a second-order differential equation with 
constant coefficients. The characteristic frequencies w1,2, 
found from this equation, must be real quantities. This condi-
tion is satisfied if 

2
( )

T
l N

Q T
T
1

2
r

r c

i c i
0

s w b
b

b bW
= - +

+

- ,	 (17)

Nr = 0. 	 (18)

The frequencies w1,2 are determined by the expressions: 
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- . 	 (19)

Expressions for the field amplitudes of the counterpropagat-
ing waves in the self-modulation regime can be written in the 
form

E1,2 = A1,2 exp(iw1t) + B1,2 exp(iw2t). 	 (20)

Substituting (20) into Eqns (6), we obtain a system of alge-
braic equations for the unknown constants A1,2, B1,2, and Ni. 
Taking into account the fact that the solution of a similar 
system of equations is described in detail in [17, 18], we omit 
the intermediate calculations and give only the results 
obtained: 

Ni = 0, 	 (21)
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The self-modulation frequency wm is equal to the beat fre-
quency of two spectral components: 

( ) ( ) ( )
( )

T T
m

T1 1
2

m
r c i c r c

i
1 2 2 2

2

2

2

w w w
b b b

bW
= - =

+ +
+

+

- . 	 (24)

In formulas (17), (19), (22) – (24), the quantities br and bi 
should be set equal to r

sb  and i
sb  in the case of in-phase opti-

cal coupling and to r
ab  and i

ab  in the case of antiphase cou-
pling. 

We will not perform a detailed analysis of the amplitude 
characteristics of self-modulation oscillations in this paper; 
the main attention is paid to the analysis of frequency charac-
teristics. Note that the obtained results are approximate. In 
formula (24), in the first approximation with respect to the 
parameter e [see (11)], there is a displacement of the self-mod-
ulation frequency, caused by the interaction of self-modula-
tion oscillations with relaxation oscillations [19, 20]. 
Corrections in the first approximation will be considered 
below in the numerical solution of equations (5) and (6). 
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3.2. In-phase optical coupling 

In the case of in-phase coupling, as follows from (17), losses in 
the main cavity decrease, which leads to an increase in the 
average intensity of the SRL output and the amplitude of the 
self-modulation intensity oscillations. 

Let us consider the effect of external optical coupling on 
the frequency of self-modulation oscillations in the case of in-
phase coupling. First, we confine ourselves to the case when 
the additional cavity is insensitive to rotation [the projection 
Sc of the area vector on the rotation axis in (10b) is zero or 
small]. In this case, Wc = 0, and formula (24) is substantially 
simplified. With in-phase coupling of cavities, this formula 
yields the expression 

( ) /r r T T
m

1 1
m m

s

c c
2

2 2
w w W

= =
+ -

+ . 	 (25)

In the absence of the additional cavity (rc = 0), the self-modu-
lation frequency is determined by the known formula wm = 

m2 2W+ . It follows from (25) that for the in-phase coupling 
of cavities, the frequency wm is less than its value m2 2W+  
in the absence of external optical coupling. 

Figure 2 shows the dependence of the self-modulation fre-
quencies fm = wm /2p on the perimeter Lc of the additional 
cavity for different parameters of external optical coupling. 
The dependence in Fig. 2a is calculated under the following 
assumptions. It was assumed that the main cavity is a mono-
lithic ring cavity on a YAG : Nd crystal (a cavity of a ring chip 
laser). The perimeter of the main cavity is L = 5 cm, the reflec-
tion coefficient of the coupling mirror is r = 0.97, and the 

bandwidth of the main cavity is w/Q = 4.5 ´ 108 s–1. The cou-
pling coefficients were assumed to be the same: m1 = m2 = 
m =1.3 ´ 106 s–1. In this case, the frequency of self-modula-
tion oscillations in the absence of optical nonreciprocity 
(W = 0) in a chip laser without an additional cavity is 206 kHz. 
Excess of pumping above the threshold is h = 0.1. The effec-
tive reflection coefficient rc for the additional cavity was 
assumed to be 0.25. The solid curve in Fig. 2a is calculated 
from formula (25) for W = 0, and the points show the results 
obtained on the basis of a numerical solution of the system of 
equations (5) and (6) for the given parameters. 

The dependence of the self-modulation frequency fm on 
the perimeter Lc of the additional cavity, shown in Fig. 2b, 
was obtained for an amplitude reflection coefficient of the 
coupling mirror, r = 0.7, which is larger than that for Fig. 2a. 
The remaining parameters for Fig. 2b have the following val-
ues: rc = 0.23, L = 10 cm, m = 1.3 ´ 106 s–1, and h = 0.03. 

It is seen from Fig. 2 that the effect of external optical 
coupling increases significantly with increasing transmission 
coefficient of the coupling mirror, 1 – r2. The results in Fig. 2 
show that with in-phase optical coupling makes it possible to 
substantially reduce the self-modulation frequency. 

Let us now consider the case when the additional cavity 
is sensitive to rotation. Assuming that the splitting Wc of 
the eigenfrequencies of the additional cavity due to rota-
tion is small in comparison with the intermode interval 
1/Tc (WcTc << 1), we obtain from (24) the following simpli-
fied formula: 

( ) /
[ (1 ) / ]
r r T T

m r r T T
1 1

m m
s

c c

c c c
2

2 2 2

w w
W W

= =
+ -

+ - - . 	 (26)

Let us further consider the case when the frequency non-
reciprocity W is created in the main ring chip cavity by means 
of a constant magnetic field [21], satisfying the condition 
W 2 >> m2. Then from (26) we have 

( ) /
( ) /

r r T T
r r T T

1 1
1

m
s

c c

c c c
2

2

w
W W

=
+ -

- - . 	 (27)

Figure 3a shows the dependence of the self-modulation 
frequency fm on the frequency nonreciprocity of the addi-
tional cavity Wc /2p. The straight line is calculated from for-
mula (27) for the amplitude reflection coefficient of the cou-
pling mirror r = 0.993. The remaining parameters are as fol-
lows: L = 5 cm, rc = 0.3, W /2p = 400 kHz, Lc = 100 m, and m = 
1.3 ´ 106 s–1. The points represent the results obtained by 
solving numerically equations (5) and (6) for these parameters 
and for h = 0.05. 

The dependence of the self-modulation frequency fm on 
the frequency nonreciprocity of the additional cavity Wc /2p, 
shown in Fig. 3 (b), was obtained for a larger (than in Fig. 3a) 
amplitude reflection coefficient of the coupling mirror – r = 
0.7. The remaining parameters are as follows: L = 10 cm, rc = 
0.23, W /2p = 400 kHz, Lc = 17 m, and m = 1.3 ´ 106 s–1. The 
straight line is calculated by formula (27), and the points 
show the data found by solving numerically equations (5) and 
(6) for these parameters and for h = 0.03. 

Note that when obtaining the results presented in Fig. 3, 
it was assumed that the nonreciprocity Wc occurs only in 
the additional cavity when rotation is due to the Sagnac 
effect. The dimensions of the main cavity were considered 
small in comparison with those of the additional cavity (S/L << 
Sc /Lc). In this case, in accordance with formulas (10a) and 
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Figure 2.  Dependences of the self-modulation frequency fm on the ad-
ditional cavity perimeter Lc for the amplitude reflection coefficients of 
the coupling mirror r = (a) 0.97 and (b) 0.7.
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(10b), the effect of rotation on the nonreciprocity W can be 
neglected. 

3.3. Antiphase optical coupling 

Antiphase optical coupling increases losses in the main cavity, 
which leads to a decrease in the amplitude of self-modulation 
oscillations. Let us analyse the effect of this coupling on the 
frequency of self-modulation oscillations. First we consider 
the case when the additional cavity is insensitive to rotation 
[the projection Sc of the area vector on the rotation axis in 
(10b) is zero or small]. In this case, from (24) we obtain the 
expression

( ) /r r T T
m

1 1
m m

a

c c
2

2 2
w w W

= =
- -

+ . 	 (28)

It follows that in the case of antiphase optical coupling of the 
cavities, the frequency of self-modulation oscillations is 
always greater than its value m2 2W+  in the absence of 
external optical coupling.

In accordance with Eqn (28), the frequency of self-modu-
lation oscillations increases monotonically with increasing 
the ratio of the cavity perimeters Lc /L = Tc /T. At the critical 
value of this relation

(Lc /L)crit = [rc (1 – r2)]–1. 	 (29)

The denominator in (28) vanishes, which leads to a sharp 
increase in wm. 

In Fig. 4, the solid curve shows the dependence of fm on 
the perimeter Lc of the additional cavity, calculated from 
Eqn (28), and the points represent the data found by solving 

numerically equations (5) and (6). The results in Fig. 4 were 
obtained for L = 10 cm, r = 0.7, rc = 0.23 and h = 0.1. With 
these parameters, the critical length Lcrit of the additional cav-
ity perimeter, in accordance with (28), is equal to 84.9 cm.

When Lc varies from 10 to 70 cm (Fig. 4a), the self-modu-
lation frequency fm gradually increases from 200 to 1300 kHz. 
When Lc approaches the critical value Lcrit (Fig. 4b), the fre-
quency fm increases sharply, reaching 50 MHz or higher. With 
the lengths of the additional cavity perimeter exceeding the 
critical value (Lc > Lcrit), there are no self-modulation oscilla-
tions in the case of antiphase optical coupling (in this region 
they exist only for in-phase optical coupling). 

Let us now consider the case when the additional cavity is 
sensitive to rotation. We will assume that the splitting Wc of 
the eigenfrequencies of the additional cavity due to rotation is 
small in comparison with the intermode interval 1/Tc, i.e., the 
inequality WcTc << 1 is met. Suppose also that in the main 
ring chip-resonator the constant magnetic field [19] produces 
the frequency nonreciprocity W, which satisfies the condition 
W 2 >> m2. Under these conditions, from (24) we obtain the 
expression 

( ) /
(1 ) /
r r T T
r r T T

1 1
m m

a

c c

c c c
2

2

w w
W W

= =
- -

- - . 	 (30)

It follows that the dependence of the self-modulation fre-
quency on the angular velocity of rotation Jo  is determined by 
the scale factor 

( ) /
( ) /

K
r r T T

r r T T
K

1 1
1

c c

c c
c2

2

J=
- -

- o , 	 (31)

where Kc is the scale factor for the additional cavity, which, in 
accordance with (10b), is 

Kc = 8pSc /( lLc). 	 (32)
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Figure 3.  Dependences of the self-modulation frequency fm on the fre-
quency nonreciprocity in the additional cavity Wc/2p for the amplitude 
reflection coefficients of the coupling mirror r = (a) 0.993 and (b) 0.7. 
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Formula (31) is written under the condition that the dimen-
sions of the main cavity are small in comparison with those of 
the additional cavity (S/L << Sc /Lc). In this case, the influ-
ence of rotation on the nonreciprocity W in (30) can be 
neglected. 

It is seen from (31) that when the perimeter length of the 
additional cavity is close to the critical one (Lc » Lcrit), the 
scale factor Kc sharply increases. At the main cavity perimeter 
L = 10 cm, the amplitude reflection coefficient of the coupling 
mirror r = 0.7 and the effective reflection coefficient of the 
additional cavity rс = 0.23, we find that for Lc = 83.5 cm the 
scale factor is K = 60Kc. 

Above we considered self-modulation oscillations for two 
values of the phase F = 2j – wnTc of external optical cou-
pling. To realise these generation regimes, it is necessary to 
adjust the optical length of the additional cavity. The fre-
quency of the laser light and the cavity perimeter should be 
stable. The instability of these parameters is an additional 
source of error in measuring the velocity of rotation. The 
issues relating to this error and stability of the laser frequency 
necessary for the realisation of the considered generation 
regimes require additional investigation. 

A possible scheme for a SRL with coupled ring cavities 
was demonstrated in [14], where a nonplanar monolithic ring 
cavity was used as the main cavity, in which the polarisation 
of the generated light is circular. When the light passes 
through the coupling mirror, the polarisation is transformed 
into elliptical, close to linear. In the model considered above, 
the polarisation of the light in the coupled ring cavities is 
assumed to be the same (the scalar model of the SRL). In the 
general case, when one of the cavities (or both) is not planar, 
it is necessary to develop a vector model of a SRL with cou-
pled ring cavities. 

4. Conclusions 

We have investigated theoretically the effect of external opti-
cal coupling on the self-modulation oscillations of the inten-
sity of a coupled-cavity SRL. The obtained results have 
shown that external optical coupling allows the frequency of 
self-modulation oscillations, fm, to be varied in a wide range 
(from several kilohertz to hundreds of megahertz). The in-
phase optical coupling makes it possible to weaken the influ-
ence of coupling of counterpropagating waves through back-
scattering and to substantially reduce fm, while the antiphase 
optical coupling, on the contrary, enhances the influence of 
the coupling of counterpropagating waves and leads to an 
increase in fm. 

External optical coupling allows the scale factor to be 
controlled. With the in-phase coupling, the scale factor K, 
which determines the dependence of the self-modulation fre-
quency on the rotational velocity, can be increased to the 
value Kc given by the dimensions of the additional cavity 
(10b). With the antiphase coupling, the scale factor K can be 
increased by two orders of magnitude in comparison with the 
value of Kc. 
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