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Abstract.  We consider a nondegenerate parametric process w3 ® 
w1 + w2 and simultaneous sum frequency generation w1 + w3 ® w4 
and w2 + w3 ® w5 in periodically poled quadratic crystals. An 
algorithm is proposed for the numerical description of the system 
evolution with full allowance for the quantum-mechanical interac-
tion of all five plane monochromatic modes and pump depletion. The 
behaviour of the average number of photons of interacting modes 
and their mutual correlations is studied. An effect of inversion of 
the mutual correlation of the modes of the generated light is found. 

Keywords:  periodically poled crystals, nondegenerate parametric 
process, sum frequency generation.

1. Introduction 

One of the research directions of periodically poled crystals 
with a quadratic nonlinearity [1 – 7] is stipulated by the fact that 
the study of the quantum statistical characteristics of the light 
formed in such crystals is important not only for purely theo-
retical but also for applied problems of quantum information 
science. For example, the correlation characteristics of the gen-
erated light beams are used to produce quantum images [4, 5]. 
In solving such problems, the semi-classical field approxima-
tion (S method) is usually applied for the linearisation of non-
linear classical and operator equations [1, 2, 4, 5, 8]. This method 
makes it possible to obtain solutions in an analytical form, 
which in turn allows an analysis of interacting modes in thin 
periodically poled crystals with weak energy exchange. 
However, with increasing energy exchange and a noticeable 
depletion of the pump, the accuracy of the description is lost. 
The best approximation is given by perturbation theory (P 
method) [9, 10], but this is achieved by complicating the calcu-
lation by increasing the number of terms of higher orders. A 
more accurate quantum solution (Q method) can be obtained 
by numerical diagonalisation of the interaction Hamiltonian 
and finding the eigenvectors and eigenvalues of the quantum 
states [11 – 13]. It should also be noted that there is another 
method for solving problems of quantum nonlinear optics, 
which is based on polynomial algebra [14]. 

In the present paper, the quantum problem of the interac-
tion of all plane monochromatic modes is solved with the 

depletion of the pump taken into account. The results differ 
from those obtained by approximate calculation methods in 
the case of strong energy exchange, when there is a noticeable 
depletion of the pump. The dynamics of the average number 
of photons in modes and their mutual correlation is shown, 
which is especially important for computer processing of 
information under noisy conditions, because the known cor-
relation dependences allow one to extract efficiently a useful 
signal against the noise background, for example, when 
working with quantum ghost images [4, 5]. 

2. Processes in a periodically poled crystal 

Let five plane monochromatic modes characterised by the 
photon annihilation operators a1t , a2t , a3t , a4t  and a5t  at optical 
frequencies w1, w2, w3, w4 and w5 collinearly propagate inside 
a periodically poled quadratic crystal. The operators satisfy 
the standard commutation relations: [ , ]a aj k jkd=+t t . At the 
same time, there occur three processes: parametric generation 
of subharmonics and frequency up-conversion by summing 
the frequencies of subharmonics with the pump frequency: 

w3 = w1 + w2,	
(1a)

dk3 = k3 – k1 – k2 + m3G3 = Dk3 + m3G3,

w1 + w3 = w4,	
(1b)

dk4 = k4 – k1 – k3 + m4G4 = Dk4 + m4G4,

w2 + w3 = w5,	
(1c)

dk5 = k5 – k2 – k3 + m5G5 = Dk5 + m5G5.

Here, kj are the moduli of the wave vectors of the mode with 
frequencies wj ; j = 1 – 5; Dkq is the wave detuning of the cor-
responding process for a homogeneous crystal; q = 3, 4, 5; 
mq = ±1, ±3, ±5, ... are the orders of quasi-phase matching; 
and Gq = 2p/Lq is the wave number (modulus of the pseudo-
vector) of the lattice of the domain structure with a period Lq. 

The quasi-phase matching for processes (1a) – (1c) corre-
sponds to Dkq = 0. Simultaneous quasi-phase matching in the 
same domain structure with G = G3 = G4 = G5 can be realised, 
for example, for different orders of quasi-phase matching mq 
or for different coherence lengths Lq = p/Dkq = Lq /(2mq). We 
numerically calculated the values of mq and Lq for one domain 
structure with the wave number G when the equality dkq = 0 
is met to the fifth decimal place. The values of the quasi-
phase-matching orders m3,4 = 1 [for processes (1a) and (1b)], 
m5 = 3 [for process (1c) are found for coherence lengths L3,4 » 
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128.5 mm, L5 ≈ 42.8 mm and extraordinary wavelengths l1 = 
4.55 mm, l2 = 4.041 mm, l3 = 2.166 mm, l4 = 1.476 mm, 
l5 = 1.373 mm in a periodically poled LiNbO3 crystal. 

Note that for the degenerate case the quasi-phase-matching 
condition was analysed in [6, 7], where the conditions for its 
realisation were found. We have calculated the quasi-phase 
matching for the case of nondegenerate generation.

The Hamiltonian of the interaction of the processes under 
consideration is represented in the form [1, 2]:

( ) . .,H cH h a a a a a a a a aint 1 2 3 1 1 3 4 2 2 3 5b g g= + + ++ + +t t t t t t t t t t 	 (2)

where h is the Planck constant; b and g1,2 are the coefficients 
of nonlinear interaction; and H.c. is the Hermitian conjuga-
tion. Expression (2) is an approximation of plane monochro-
matic modes under a collinear interaction. In this case, the 
transverse spatial structure of the beams is assumed to be 
homogeneous.

The operator equations of motion along the z axis inside 
the periodically poled crystal in the Heisenberg representa-
tion are described by the expression 

j
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t t6 @ 	 (3)

In the semi-classical field approximation, the pump is assumed 
to be classical with a constant amplitude |B3| and the phase 
j3: B3 = |B3|exp(ij3). 

We introduce the reduced interaction length z = bz and the 
dimensionless nonlinear coupling coefficients x1,2 = g1,2 /b. 
The system of equations of motion becomes linear: 
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Its solutions can be found by means of the Laplace transform: 
at(z) = Q(z)at(0), where at(z) = ( ( ), ( ), ( ), ( )a a a a1 2 4 5z z z z+ +t t t t )T, T is 
the transpose operation, and at(0) is the vector of the mode 
operators at the input of the periodically poled crystal. The 
coefficients Q(z) differ somewhat from those given in [1, 3], 

since we have considered the more general case of arbitrary 
phases and amplitudes B3. Here 
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In a more accurate approximation (in the perturbation 
theory approximation), the interaction of all five modes and 
the nonlinear terms of the interaction length are taken into 
account. The evolution operator in the Schrödinger represen-
tation for Hamiltonian (2) has the form 

( ) ( / )exp iU H hintz z= -t t .	 (4)

Because the Hamiltonian is in the exponent of the evolution 
operator, the Hamiltonian can be expanded in a Taylor series: 

( ) ( / )exp iU H hintz z= -t t

	 1
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z z= + - + - +
t t

c cm m  .	 (5)

It was calculated up to the 12th order in the interaction 
parameter z, and the photon annihilation operators a1t , a2t , 
a3t , a4t  and a5t  were found for five modes: 

(0)j j j( ) ( ) (0) ( ) (0) [ , ]ia U a U a
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More precisely, the quantum problem can be solved as 
follows. We write down the matrix elements of the annihila-
tion operator in the energy representation:

| |a n a n nj j n n 1n n d= = -l ll
t t .	 (7)

Similarly, the matrix elements of the creation operator a j
+t  

are expressed. Then the interaction Hamiltonian (2) takes the 
form:

3 4 52 3 3a a aint )= ( . .H ch a a a1 1 2 2+ + ++ + +
1b g gH a a al l l l l l l l l lt t t t t t t t t t ,	 (8)

where 
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jEt  are the identity matrices of the corresponding modes; 
j( )a n nl
t  is the matrix; and the sign 7  denotes the tensor product. 
We diagonalise the interaction Hamiltonian (8) and find 

its eigenvectors and eigenvalues. The evolution operator in 
the matrix representation is calculated by the formula 
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( ) ( )| |exp iU m mm
m

M

0

z l z= -
=

t / ,	 (9)

where M = (n1 + 1) (n2 + 1) (n3 + 1) (n4 + 1) (n5 + 1); nj is the 
number of photons in modes; |m  is the eigenvector with the 
number m of photons for the eigenvalue lm of the interaction 
Hamiltonian (8): | |m mint ml=Hlt . 

The density matrix is calculated from the formula 

( ) ( ) (0) ( ) .U UQr z z r z= +t t t t 	 (10)

Here, ( ) | |0 0 0r y y=t  is the density matrix of the initial state 
for all five modes at the input of the periodically poled crystal. 
In the tensor representation this matrix takes the form: 

(0) (0) (0) (0) (0) (0)1 2 3 4 57 7 7 7r r r r r r=t t t t t t .	 (11)

3. Mean values of the number of photons 
and correlation of modes 

Let us calculate the average values of the number of photons 
and correlation coefficients of the second order, or the factor 
g(2), in the modes for the three methods in question by the 
formulas
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Here, the subscripts for g(2) denote the mode numbers for 
which the correlation coefficient is calculated, and the calcu-
lation method (S, P, Q). 

The calculations were performed for x1 = 0.6 and x2 = 0.4, 
when the modes were in the state | 0y  = |n10 |n20 | 30a |n40 |n50  
at the input (z = 0) of the periodically poled crystal. It was 
assumed that modes 1, 2, 4, 5 were in the vacuum state | 0 , 
and the pump was in the coherent state with an average num-
ber of photons |a30|2 = 3 and phase j30 = p/3. The constant 
initial phase of the pump affects the calculation results, because 
it determines the conditions for the entry of radiation into a 
nonlinear crystal. 

For comparison, we also carried out a calculation for all 
modes, except pump modes, in single-photon states. In this 
case, the general trends described below are preserved.

The correctness of the computations was verified by con-
trolling the commutation relations 

j[ ( ), ( )]a aj z z+t t  = 1  и   j( )z , (a z)[ ]aj +l lt t  = 1.

4. Results and conclusions 

Figures 1 and 2 show the dynamics of the average number of 
photons and correlation coefficients, or, in other words, the 
factor g(2), inside the periodically poled crystal for different 
calculation methods. It can be seen that the S method, like the 
P method, appreciably loses its accuracy when the pump is 

depleted compared to the more accurate quantum calculation 
method (Q).

The curves in Fig. 1 show almost periodic oscillations of 
the average number of photons, in contrast to the curves 
obtained by the approximate methods S and P. At the initial 
stage of the interaction, we first observe the nondegenerate 
parametric process w3 ® w1 + w2 of the decay of the photon of 
mode 3 into two photons of modes 1 and 2, and then the sum 
frequency generation w1 + w3 ® w4 and w2 + w3 ® w5. Then, 
the reverse processes occur, and they compete with each 
other, which is clearly seen from the oscillating character of 
the curves for N1Q, N2Q, N3Q, N4Q, N5Q under strong energy 
exchange, i.e., with increasing z.

For comparison, we have also calculated the average 
mode intensity in the classical description, taking into account 
the depletion of the pump, and also obtained appreciable dis-
crepancies with the quantum computation presented here. 

Figure 2 shows the values of the correlation coefficients, 
or second-order correlation factors. It can be seen that the S 
and P methods lose accuracy even at a relatively small deple-
tion of the pump. The curves calculated by the more accurate 
Q method behave almost like periodic functions. At g(2) > 1, 
pair correlated photons in two modes predominate, whereas 
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Figure 1.  Dynamics of the average number of photons in modes, cal
culated by (a) S, (b) P and (c) Q methods. 
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at g(2) < 1, single uncorrelated photons predominate in the 
same way as the single mode g(2) > 1 corresponds to the 
grouping and super-Poisson statistics of photons, and g(2) < 1 
corresponds to anti-grouping and sub-Poisson statistics [15, 16]. 

One can see from Fig. 2, as well as from Fig. 1 that process 
(1a) is first realised, followed by processes (1b) and (1b). With 
strong energy exchange, all three processes begin to compete 
with each other, which manifest themselves in an almost 
periodic nature of the given curves. As a result of process 
(1b), it is practically impossible to simultaneously observe 
pair coincidences of photon modes 1 and 3, and 2 and 3, 
which confirms the conclusions of [4]. On the other hand, pair 
modes 1 and 2, 1 and 5, 2 and 4, and 4 and 5 are significantly 

correlated and can be used to reconstruct images using com-
puter processing of information by algorithms proposed in 
[4, 5]. It is very important to note that between modes 1 and 4, 
2 and 5, 3 and 4, and 3 and 5 there can be both a mutual 
correlation and an anticorrelation of photons, which is mani-
fested at g(2) < 1. To realise this or other mode, it is necessary 
to choose the appropriate interaction length, taking into 
account an intense energy exchange between the modes. This 
effect of inversion of mutual correlation was established by 
us on the basis of the described quantum calculation of the 
interaction of all five modes, and not only in the case of a 
vacuum state at the input of all modes except pumping, but 
also in the case of single-photon seeding. As follows from 
Figs 2a and 2b, it is practically impossible to detect it by 
known approximate methods.

Thus, we have solved the problem of quantum descrip-
tion of the interaction of plane monochromatic modes in a 
periodically poled crystal. For comparison, the same problem 
has been solved by the method of perturbation theory and in 
the semi-classical field approximation. The similarity of the 
results for all three methods has been observed only at the ini-
tial stage of evolution when the depletion of the pump is insig-
nificant. Considerable discrepancies in question have been 
shown to appear at a later stage. The results of quantum cal-
culations for intense energy exchange between plane mono-
chromatic modes have been obtained by the numerical 
method taking into account the depletion of the pump. 
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Figure 2.  (Colour online) Correlation coefficients calculated by (a) S, 
(b) P and (c) Q methods.


