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Abstract.  The propagation of a unipolar light pulse with a duration 
of less than one period in a two-level resonant amplifying medium is 
studied theoretically. In the process of amplification, the unipolar 
pulse becomes bipolar. The effect of the relaxation time on the 
shape and duration of the amplified pulse is demonstrated. It is 
found that the electric pulse area (integral of electric field strength 
with respect to time) is conserved, in contrast to the area under the 
long pulse envelope (integral of slowly varying field amplitude with 
respect to time), which, in the case of long pulses, satisfies the 
McCall – Hahn area theorem.

Keywords: subcycle pulses, attosecond pulses, attosecond science, 
coherent effects, amplification of unipolar pulses, electric pulse 
area.

1. Introduction

Presently, extremely short pulses (ESPs) with a duration on 
the order or even less than the period of light wave oscilla-
tions have been obtained [1 – 5]. The generation of such pulses 
has led to an active study of their interaction with matter 
[6 – 11]. Short pulses with a duration of less than one period 
(subcycle pulses) made it possible to use them to control the 
dynamics of wave packets in matter and contributed to the 
birth of attosecond science [12 – 14]. Simultaneously, the issue 
of obtaining pulses with a high degree of unipolarity z is being 
currently discussed (see reviews [15, 16], and also works 
[17 – 21] and references therein):
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Strictly unipolar pulses (UPs) contain a splash of a single-
polarity field (half-wave), in contrast to the ordinary multi-
cycle bipolar pulses, in which the degree of unipolarity z is 
close to zero. Because of the presence of a constant compo-
nent, UPs can be used to effectively control the dynamics of 
wave packets in matter, exerting a unidirectional action on 
electric charges [15]. 

The duration of such subcycle UPs may be less than not 
only the polarisation relaxation time T2 and the population 
difference T1 in a resonant medium, but also than the period 
of natural oscillations of resonant transitions in a medium. In 
the first case, coherent interaction of pulses with a medium 
occurs and self-induced transparency (SIT) may appear when 
a 2p SIT pulse propagates in a resonant medium without 
losses [22 – 24]. Coherent propagation in resonant media is 
well studied in the case of long [22 – 24] and extremely short 
bipolar pulses [25 – 30] with a zero electric area (integral of 
electric field strength). Despite these advantages of UPs, their 
interaction with resonant amplifying media has not been fully 
investigated so far. The UP propagation in absorbing media 
was mainly studied [31 – 34]. Analytical results were obtained 
in a number of works, but they mainly concern the stationary 
soliton solutions [35 – 38]. Moreover, the solutions are found 
using different approximations and do not describe the UP 
propagation dynamics. The propagation of video pulses in 
various nonlinear absorbing media with no regard to the 
media relaxation and in the approximation of unidirectional 
propagation was considered in [6].

A separate issue is the propagation of subcycle UPs in a 
resonant amplifying medium. Coherent amplification of 
bipolar ESPs was considered earlier [39 – 43]. To date, the 
dynamics of long pulses in a coherent amplifying medium, 
when the slowly varying envelope approximation (SVEA) 
and the rotating wave approximation (RWA) are valid, is well 
studied (see reviews [23, 44, 45] and references therein). A 
characteristic feature of amplification is that, in the case of 
coherent propagation of a long pulse in an amplifying 
medium, when the SVEA and RWA are valid, it is possible to 
form a 2p-pulse which transforms the medium into the ground 
state with a simultaneous decrease in the pulse duration. 
However, in the case of subcycle UPs, the amplification 
dynamics can be considerably more complicated due to the 
short duration of UPs and the inapplicability of SVEA and 
RWA. For such pulses, because of the inapplicability of the 
pulse envelope notion, the McCall – Hahn area theorem loses 
its meaning [26 – 30]. In this case, as shown in [43, 46 – 48], the 
electric area of the pulse is preserved (see Section 2). Moreover, 
analytical and numerical solutions of the Maxwell – Bloch 
equations [36 – 38, 45] were derived under a number of 
assumptions and are unsuitable for the correct description of 
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UP amplification. For example, the medium relaxation and 
rapid oscillations at the optical frequency of resonance transi-
tions were neglected (see Section 2).

To obtain a more detailed picture of the subcycle pulse 
propagation in a resonant medium with a minimal number of 
simplifying assumptions, numerical calculations are neces-
sary. In this connection, we consider the UP propagation 
dynamics of subcycle (attosecond) duration in a two-level 
resonant amplifying medium for the case when the input 
pulse duration tp is less than the period T0 = 2p/w0 of natural 
oscillations of the resonance transition.

The calculation is based on the numerical solution of the 
system of Maxwell – Bloch equations that do not contain the 
above approximations. It is found that the coherent amplifi-
cation dynamics of a subcycle pulse is essentially different 
from that for long pulses, when the SVEA and RWA are 
valid. In particular, for the first time, the rule of the electric 
pulse area conservation obtained analytically from Maxwell’s 
equations [43, 46 – 48] for the amplifying medium is illustrated 
on the basis of numerical simulation. It is shown that the 
dynamics of the amplified pulse essentially depends on the 
medium relaxation time, which was not previously taken into 
account.

2. Theoretical model and basic notions 

The basic notion widely used in describing coherent resonant 
interactions of long pulses (containing a large number of peri-
ods of field oscillations) with resonant media is the notion of 
the area under the pulse envelope (integral of the slowly vary-
ing field amplitude with respect to time) [22 – 24]:

3
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where d12 is the dipole moment of the transition, and e(t) is the 
slow envelope of the pulse. The pulse area evolution in the 
coherent propagation of long pulses is described by the 
McCall – Hahn area theorem [22 – 24]. If the pulse duration 
is of the order of the field oscillation period and less, SVEA 
and RWA, and, as a consequence, the area theorem, are not 
applicable. For ESPs, we can speak about the pulse electric 
area, which, within the framework of one-dimensional con-
sideration, retains its value for any longitudinal coordinates 
[43, 46 – 48]:
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Here, A is a constant. Further, as in [36 – 38], we choose A = 
2d12/' . To study the dynamics of subcycle pulse amplification 
in a resonant amplifying medium, we use the Maxwell – Bloch 
system of equations. Due to the small (subcyclic) duration of 
the incident pulse, SVEA and RWA are not used in this sys-
tem of equations, which has the form [17 – 34]:
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where P is the polarisation of medium, N0 is the concentra-
tion of active centres, E is the electric field intensity with a 
fixed linear polarisation; c is the speed of light in vacuum, w0 
is the resonant transition frequency of a medium ( l0 = 2pc/w0 
is the resonance transition wavelength), and n0 is the popula-
tion difference of two operating levels in the electric field 
absence.

The medium is described by Eqns (4) – (7) in the two-level 
approximation using the density matrix formalism. Equation 
(4) describes the evolution of the off-diagonal element of the 
density matrix  r12, while Eqn (5) – the behaviour of the popu-
lation difference n º r11 –  r22 between the ground and excited 
states of the two-level system. The medium polarisation P is 
related to the off-diagonal element of the density matrix r12 
by expression (6).

Currently, the Maxwell – Bloch system of equations 
(4) – (7) is actively used to study the coherent propagation of 
ESPs in a resonance medium [17 – 34]. If the pulse duration 
reaches a subcycle value, the question arises as to the applica-
bility of the two-level approximation in describing the reso-
nant medium. It should be noted that any state of a quantum 
system can be described on the basis of states with certain 
energy, which constitute a complete set. Up to the ionisation 
threshold, the states of the continuous spectrum are excluded 
from consideration, so that only the discrete spectrum 
remains. In this case, it is necessary to find out how many 
levels are sufficient to describe the phenomenon in question 
with certain accuracy. On the basis of numerical calculations 
conducted in [30, 41 – 43], it has been shown that the main 
features of the coherent propagation of ESPs with single-
cycle and subcycle durations (in particular in the SIT regime) 
in two-level amplifying and absorbing media are qualitatively 
similar to the case of multilevel systems and with taking into 
account the inhomogeneous broadening [49]. Moreover, the 
two-level system is the simplest object that has been used for 
many years in studying the coherent interaction of short 
pulses with matter [21 – 34]. This model makes it possible to 
understand at an elementary level the main features of the 
coherent UP propagation in a resonance medium, and may 
serve as a first approximation for more complex models. 
Therefore, in the present work, for simplicity and clarity, a 
two-level approximation is also used, with inhomogeneous 
broadening of the spectral transition being neglected. In addi-
tion, we neglect the diffraction of radiation, which is justified 
in the propagation of beams at the distances smaller than the 
diffraction length, and solve the one-dimensional propaga-
tion problem.

As in work [30 – 34], equations (4), (5) for the density 
matrix were solved by the fourth-order Runge – Kutta 
method. The wave equation (7) was solved by the method of 
finite differences described in [50]. The spatial integration 
domain had a length L = 30l0. The resonance medium was 
located along the z axis at the centre of the region between the 
points with coordinates  z1 = 9l0 and z2 = 23l0.

In the case of subcycle UPs, the authors of [6, 35 – 38] 
investigated analytically and numerically the UP dynamics in 
amplifying and absorbing media using Eqns (3) – (7). In this 
case, we made a number of assumptions: we used the unidi-
rectional propagation approximation [6] and neglected the 
relaxation terms in Eqns (4) and (5) as well as the term that 
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iw0 r12 (z, t) oscillates rapidly compared to the derivative 
∂r12 (z, t)/∂t in Eqn (4) [35 – 38]. The latter assumption was jus-
tified by the condition of a small pulse duration: w0tp << 1. 
As a result, the system of equations (3) – (7) was reduced to 
the sine-Gordon equation describing the pulse electric area 
evolution in space and time. The total area of such a complex 
wave packet becomes equal to p, and the packet takes in the 
entire energy stored in the medium. Moreover, the carrier 
frequency of the pulse increases and shifts to the blue 
region in the course of its propagation. It is clear that within 
these approximations the pulse electric area (3) will also be a 
variable quantity. However, a more general consideration 
[43, 46 – 48] being free of these approximations shows that this 
area is preserved within the framework of the one-dimen-
sional wave equation (7). The pulse area conservation in the 
amplifying medium leads to a loss of unipolarity during the 
pulse propagation, which is confirmed by the results of the 
numerical calculations given below.3.

3. Results of numerical calculations

A series of numerical calculations was performed by using the 
system of equations (3) – (7). A subcycle UP with an envelope 
in the form of hyperbolic secant was directed from left to right 
into the medium:

E(t) = E0sech(t/tp).	 (8)

The electric area of such a pulse is given by the expression

SE = 2d12E0tpp/' .	 (9)

We studied the dynamics of the field, polarisation, and 
population difference during the pulse propagation in the 
amplifying medium, with variations in the input pulse area, 
medium relaxation time, and input pulse duration.

3.1. The case of small relaxation times of the medium

Consider the pulse amplification with a large input area. An 
example of electric field evolution of a pulse with an input 
electric area SE = 2d12E0tpp/'  = 0.9p is shown in Fig. 1. The 

calculation parameters are as follows: l0 = 700 nm, d12 = 5 D, 
T1 = 100 fs, T2 = 0.005 ps, N0 = 1021 cm–3, E0 = 2.4 ́  105 CGSE 
units, SE = 0.9p, tp = T0 /6 = 388 as, and n0 = 1.

We first consider the case when the relaxation times of the 
medium are small. It can be seen from Fig. 1 that the pulse 
becomes bipolar as it propagates, which is manifested in the 
appearance of subpulses in the form of tails. For clarity, 
Fig. 2 shows the time dependences of the field at the entrance 
to the medium (Fig. 2a), at the medium centre (Fig. 2b), and 
at the exit from the medium (Fig. 2c). During the pulse propa-
gation in the amplifying medium, its amplitude increases at 
the leading edge, while long tails appear at the trailing edge, 
which gradually attenuate. This dynamics is significantly dif-
ferent from the case of coherent amplification of long pulses 
[23, 44, 45], when SVEA and RWA are valid, and the amplifi-
cation is only accompanied by a decrease in the pulse dura-
tion, an increase in the amplitude, and the formation of a 
p-pulse. The appearance of tails is due to the fact that a short 
pulse propagating in the medium causes oscillations of mac-
roscopic polarisation at the resonant frequency of the medium 
transition. This polarisation re-emits the field in antiphase 
with the field of the incident pulse – ‘coherent ringing of the 
medium’, which forms the tails of opposite polarity at the 
trailing edge [51]. This field of the medium re-radiation prop-
agates behind the incident pulse and can amplify, since the 
medium is amplifying. Such a result is qualitatively consistent 
with the analytical result derived in [36 – 38]. The difference is 
that, due to the medium relaxation, these tails attenuate as the 
pulse propagates. 

Finally, the electric area of the pulse is conserved, which is 
illustrated in Fig. 2d, which shows the electric area depen-
dence on the coordinate, obtained in numerical calculations. 
This dependence agrees with rule of pulse area conservation 
derived in [43, 46 – 48]. Calculations show that the field unipo-
larity degree (1) at the entrance to the medium is z = 0.9. It is 
less than unity as a result of the appearance of reflected radia-
tion of opposite polarity. At the exit from the medium, the 
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Figure 1.  Pulse evolution with an initial electric area of SE = 0.9p. The 
calculation parameters are indicated in the text. The resonance medium 
was located along the z axis between the points with coordinates z1 = 9l0 
and z2 = 23l0.
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Figure 2.  Time dependences of the electric field at (a) the medium en-
trance, (b) the medium centre for z = 15l0, and (c) the medium exit for 
z = 20l0 (c), and also (d) the pulse electric area SE (z) at each point inside 
the integration region.
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unipolarity degree decreases to z = 0.26. Thus, the bipolar 
component becomes dominant after amplification in the 
medium.

The rule of the pulse electric area conservation turns out 
essential for the dynamics of the subcycle pulse amplification, 
whereas, in the case of amplification of long pulses, it is quite 
acceptable to use the McCall – Hahn area theorem, according 
to which the area under the pulse envelope (2) changes during 
the pulse propagation.

3.2. The case of large relaxation times of the medium

With increasing medium relaxation time, the oscillating 
polarisation does not have time to attenuate during the pulse 
propagation and emits a field with a phase shift p with respect 
to the incident pulse field. This is manifested in the fact that a 
long undamped tail of opposite polarity appears in the pulse 
during its propagation (Figs 3 and 4). The presence of such 
undamped sign-alternating tails is qualitatively consistent 

with the results of numerical calculations from paper [38] in 
disregard of the medium relaxation, and with approximate 
analytical results [36 – 38], also obtained without allowance 
for relaxation.

The population difference dynamics in the medium in the 
case of large relaxation times is shown in Figs 5 and 6. At the 
exit from the medium, a long pulse is observed, containing a 
long tail of opposite polarity (see Fig. 4c). Accordingly, the 
inversion has a complex dynamics (Fig. 6c). After the action 
of such a long pulse terminates, the medium evolves virtually 
to the ground state with an inversion very close to +1. In this 
case, the field unipolarity degree at the entrance to the medium 
is z = 0.27. It is again less than unity because of the appear-
ance of reflected radiation of opposite polarity. At the exit 
from the medium, the unipolarity degree is even smaller: z = 
0.05.

Consequently, for large relaxation times, a complex wave 
packet is formed in the medium, which acts on the medium 
like a p-pulse, removing virtually the entire energy stored in 
the active medium. However, the pulse electric area is also 
preserved in this case.
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Figure 3.  Pulse evolution with an initial electric area of SE = 0.9p for 
long relaxation times: T1 = 1 ps, T2 = 0.5 ps. Other calculation param-
eters are indicated in the text. The resonant medium was located along 
the z axis between the points z1 = 9l0 and z2 = 23l0.
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Figure 4.  Time dependences of the electric field at (a) the medium en-
trance, (b) the medium centre for z = 15l0, and (c) the medium exit for 
z = 20l0, corresponding to Fig. 3.
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4. Conclusions

Thus, the propagation dynamics of a subcycle UP in a coher-
ent resonant amplifying medium was studied by solving 
numerically the Maxwell – Bloch system of equations without 
the use of SVEA and RWA. The results of numerical calcula-
tions allow for a more complete analysis of the field dynamics 
beyond the framework of a number of approximations 
adopted in previous analytical studies. It is shown that, as the 
pulse propagates, the unipolarity degree decreases: it becomes 
bipolar, and part of the energy obtained from the active 
medium at the leading edge passes over into the rapidly oscil-
lating tails.

It is found that the dynamics of the subcycle pulse propa-
gation is more complicated than in the case of long pulses in 
SVEA and RWA. For long pulses, the area under the pulse 
envelope changes as the pulse propagates, while in general 
case, including the ESP, the pulse electric area is conserved. 
The latter imposes significant limitations on the possibility of 
amplification of subcycle UPs. 

Significant differences in the dynamics of amplification of 
long pulses and UPs have been revealed. If, for long pulses, 
the amplification process is characterised by pulse compres-
sion, an increase in the amplitude, and convergence of the 
area under the envelope to p, then in the case of a subcycle UP 
propagating in the amplifying medium, the components of 
opposite polarity appear. The duration and form of these tails 
depend on the media relaxation time. At long relaxation 
times, the presence of a long, slowly damping tail, consisting 
of a large number of oscillation cycles, is characteristic.
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