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Abstract.  A new experimental method is proposed for recon-
structing supermode profiles of a multicore fibre (MCF), small 
corrections to the propagation constants of its cores and cou-
pling coefficients between the cores without phase-sensitive mea-
surements. The method is based on intensity measurements in 
the cores at the output of several MCF segments differing in 
length, using several configurations of controlled light launch 
into the cores at the fibre input (in the simplest case, by sequen-
tially exciting each core), followed by numerical treatment using 
an iterative algorithm. The use of the method is demonstrated 
experimentally for a seven-core fibre. Using numerical simula-
tion, we assess the stability of the method and the effect of the 
number of measurements on the accuracy of fibre parameter 
reconstruction.

Keywords: multicore fibres, propagation constants, coupling coef-
ficients, supermodes.

1. Introduction

Multicore fibres (MCFs) have attracted a great deal of atten-
tion as promising media for high-speed information trans-
fer systems [1] and as components of various photonic 
devices and laser systems [2]. There is particular interest in 
MCFs with a relatively strong optical coupling between 
their cores, which may lead to efficient radiation transfer 
between them. Such fibres have great potential for many 
applications, including high-speed information transfer 
with coherent space-division multiplexing based on coding 
using fibre supermodes [3] or modes with an orbital angu-
lar momentum [4], quantum optical devices [5], nonlinear 
switches and saturable absorbers for mode-locked lasers 
[6], nonlinear endoscopy [7] and even narrow-band filters 
for astronomical observations [8]. In recent years, ever 
increasing attention has been paid to the use of passive and 
active MCFs as key components of high-power laser and 

amplifier systems [9], where they can be used for the ampli-
fication, transmission and control of high-power laser 
beams, while maintaining a high degree of coherence 
between their cores.

In an MCF with strong coupling between its cores, the 
mode parameters of individual cores and coupling between 
modes should be controlled with high accuracy to ensure 
proper predictable interaction, especially if there is strong 
nonlinearity characteristic of high-power laser systems. It is 
important to note that, as a result of even small deviations 
of the fibre structure (shape and arrangement of the fibre 
cores) and small additional variations in the refractive index, 
caused by either distinctions between the core preforms or 
inhomogeneous mechanical stress, the mode propagation 
constants and coupling coefficients between cores differ 
from those computed for an ideal structure. Such small dif-
ferences have a significant effect on light propagation and 
should be monitored and taken into account in designing 
and performing experiments for gaining insight into nonlin-
ear processes in MCFs. In designing and fabricating MCFs, 
one should take measures to reduce the effect of these fac-
tors, and a proper experimental method of measuring guid-
ance parameters is needed for monitoring. Moreover, for 
performing full-scale numerical simulations with realistic 
parameters of experimentally fabricated MCFs, the actual 
parameters of their cores and coupling between them, which 
determine the properties of their guided modes, should be 
known with high accuracy.

Sufficiently accurate measurements of deviations of the 
fibre structure from an ideal one during the fibre fabrication 
process are a challenging problem [10]. For example, micro-
scopic examination of a fibre end face fails to ensure sufficient 
accuracy in measurements of the geometric shape of cores 
and gives no way of measuring refractive index variations. 
Direct measurements of guidance parameters of fibres also 
face serious difficulties. For fibres with weak core-to-core 
coupling, some information about coupling coefficients can 
be gained using optical time domain reflectometry (OTDR) 
and a long length of fibre [11], but corrections to propagation 
constants then remain unknown. More complete information 
about the guidance properties of MCFs can be obtained by 
measuring the field amplitude and phase at the MCF output, 
but absolute phase measurements are difficult to perform in 
experiments.

In this paper, we present a method based on measuring 
the light intensity at the output of several MCF segments dif-
fering in length and then solving an inverse problem for find-
ing the parameters of interest.

A method for measuring coupling coefficients between cores  
and corrections to mode propagation constants in multicore fibres

N.A. Kalinin, A.V. Andrianov, A.V. Kim

https://doi.org/10.1070/QEL16635

N.A. Kalinin Institute of Applied Physics, Russian Academy of 
Sciences, ul. Ul’yanova 46, 603950 Nizhny Novgorod, Russia; 
Lobachevsky State University of Nizhny Novgorod, prosp. Gagarina 
23, 603950 Nizhny Novgorod, Russia;	
A.V. Andrianov, A.V. Kim Institute of Applied Physics, Russian 
Academy of Sciences, ul. Ul’yanova 46, 603950 Nizhny Novgorod, 
Russia; e-mail: alex.v.andrianov@gmail.com	

Received 16 February 2018	
Kvantovaya Elektronika  48 (4) 384 – 389 (2018)	
Translated by O.M. Tsarev



385A method for measuring coupling coefficients between cores and corrections

2. Description of the method

Consider the propagation of monochromatic light in a multi-
core fibre with N identical cores, each having only one funda-
mental mode. The light intensity is taken to be sufficiently low 
for nonlinear effects to be neglected. Coupling between the 
cores is taken to be weak enough for the associated changes in 
mode profile in each core to be neglected and, at the same 
time, strong enough to ensure efficient energy transfer 
between the cores if light propagates over a distance exceed-
ing the characteristic length scale for nonuniformities of 
parameters along the length of the fibre.

The amplitude of a linearly polarised electric field in 
each core can then be represented in the form Ei (z, t) = Ai(z) 
´ Fi(x, y) exp(iwt – ib0z), where i = 1, 2, . . . , N is the number 
of the core; Fi(x, y) is the fundamental mode profile in the 
ith core; b0 is the propagation constant; and Ai(z) is a slowly 
varying amplitude. Let the propagation constants of differ-
ent cores, b1, b2,…, bN, in general differ slightly. Then, we 
take b0 = (b1 + b2 + … + bN)/N, and the difference between 
the phase shift in the core, exp(–i bi z), and exp(–i b0 z) will be 
taken into account in the slowly varying amplitude Ai(z). 
The mode profile F(x, y) is normalised so that the optical 
power is |Ai(z)|2. Light propagation is then described by the 
equations
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where D bj = bi  – b0 are corrections to the propagation con-
stants and cij are the coupling coefficients between the 
cores [12]. If the fibre material does not absorb, we have cij 
= cji and both bi and cij are real. Let A(z) be a column vec-
tor of the slowly varying amplitudes [A1(z), A2(z), . . ., 
AN (z)]. The above equation can then be written in matrix 
form [13, 14]:
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Thus, light propagation in this regime is fully described by 
matrix C, whose elements are corrections to propagation con-
stants and coupling coefficients, which are independent of the 
z coordinate. This equation is markedly easier to solve if we 
find a set of orthonormal eigenvectors (L1, L2, . . . , LN ) and 
the corresponding eigenvalues (l1, l2, . . . , lN) of matrix C. Then 
we have CLi = liLi and
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(dij = 1 at i = j and dij = 0 at i ¹ j ). For matrix C, such vectors 
always exist, and l1, . . . , lN are real numbers because matrix C 
is Hermitian. These vectors will then correspond to the eigen-
modes (normal modes) of the coupled cores, also referred to 
as supermodes, and l1, . . . , lN are equal to their propagation 
constants relative to b0. Any A(z) vector can then be expanded 
in terms of the eigenvectors: A(z) = p1(z)L1 + p2(z)L2 + . . . + 
pN (z)LN, where
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The expansion coefficients satisfy the equation dpi /dz = ili pi, 
so pi (z) = pi (0)exp(ili z) and
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Thus, if matrix C is known, the solution A(z) is easy to 
find. The inverse is also true: if a sufficient number of pairs of 
the amplitudes at the MCF input [A(0)] and output [ (A L ), 
where L  is the fibre length] are known, we can reconstruct 
matrix C. However, measuring the phases arg(Ai (L )) and 
arg(Ai (0)) requires much effort, so it is of particular interest 
to reconstruct matrix C if one can measure only the inten-
sity at the input of each core [|A1(0)|2, |A2(0)|2, . . . , |AN (0)|2] 
and that at their output [|A1(L )|2, |A2(L )|2, . . . , |AN (L )|2]. 
Since there is no information about the phase, a larger 
number of measurements are needed than in the case of a 
known phase.

Experimentally, the simplest case is when light is launched 
into only one core at the fibre input, i.e. |Ai (0)|2 = 0 for all i ¹ k 
and |Ak (0)|2 = I. For convenience, we take I = 1. At the output 
of the fibre (of length L ), we will then observe some intensity 
distribution over its cores: |A1(L )|2, |A2(L )|2, . . . , |AN (L )|2. 
After M series of measurements at different fibre lengths, 
L1, . . . , ,LM  we will have a data set, | ( )|I A Lexp

ijk i j
2

= , for light 
launched into the kth core at the fibre input. Note that it is 
reasonable to choose the lengths L1, . . . , LM  so that they cor-
respond to a uniform coverage of at least one period of energy 
transfer between adjacent cores. Next, using this data set we 
find a matrix Cu  such that the discrepancy
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tudes calculated by formula (3) for light launched only into 
the kth core at the fibre input and matrix C equal to Cu . 
Thus, if we can find matrix C such that the discrepancy D 
is near zero, matrix C can be thought to approach the 
sought matrix   Cu  and describe light propagation in the 
fibre.

Matrix C can be found numerically using an iterative 
algorithm. In effect, the problem reduces to finding a mini-
mum of a function of several variables, which can be done 
using a large number of distinct approaches. Most classic 
approaches are, however, inapplicable if there are a large 
number of unknown variables, and much effort is needed to 
compute the function. In the case under consideration, the 
number of independent real variables is N(N + 1)/2 and rises 
sharply as the number of cores, N, increases. Note that, to 
compute the discrepancy D, it is necessary to find the eigen-
vectors of an N ´ N matrix, which requires a considerable 
computational time. In view of this, we employed the stochas-
tic gradient descent method [15].

The algorithm begins with matrix Cu , obtained from the 
refractive index profile for an ideal geometric structure of 
the fibre, and iteratively improves the approximation. In 
each iteration, each matrix element is changed at random 
within some range Dc and then D is computed. The symmet-
ric matrix elements are changed in the same way, so that the 
condition cij = cji is satisfied. In each iteration, some number 
T of such changes are made in the same matrix and then the 
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approximation that ensures the lowest D value is chosen. If 
this value is better than the preceding one, matrix Cu  is 
replaced by the changed matrix that ensures the lowest D 
value. Otherwise, the random changes made are thought to 
be too large to continue the search for a maximum, so the 
maximum change Dc is multiplied by r < 1 and the algo-
rithm continues to work. This allows us, on the one hand, to 
reduce the computational cost at the beginning of operation, 
where the current approximation is rather far from the 
optimal one, and, on the other, to eventually find the 
optimal approximation with sufficient accuracy. Moreover, 
increasing the number of iterations, we increase the num-
ber of changes, T, in each step, which serves the same pur-
pose. The initial value of Dc was taken to be max|cij |/2, 
with r = 0.995. The initial value of T was 20, and T was 
linearly increased to 50 in the iterations. It is worth not-
ing that, if a reasonable approximation of Cu  cannot be 
found from the refractive index profile or in another way, 
the algorithm can operate with zero initial approxima-
tion, but the initial value of Dc should then be taken in the 
same order as the expected maximum coupling coeffi-
cients.

Note that a method based on the principle of measuring 
the output intensity distribution over the MCF cores for dif-
ferent light launch configurations at the fibre input and then 
adjusting parameters of the system was proposed by Mosley 
et al. [16]. However, their method is based on measuring the 
output intensity only at a single fibre length and has serious 
limitations: all the coupling coefficients are taken to be identi-
cal, only coupling with nearest neighbours is taken into 
account, and the fibre length should be considerably shorter 
than the beat length. As shown below, measurements at only 
one fibre length drastically degrade the accuracy of fibre 
parameter reconstruction.

Note also a known method that allows one to reconstruct 
mode profiles and group velocities in multimode fibres and is 
based on spatially and spectrally resolved output field mea-
surements [17]. This method requires a broadband light 
source and is incapable of reconstructing propagation con-
stant corrections: only corrections to the group velocities of 
modes can be reconstructed.

3. Experimental verification of the method

To experimentally verify the performance capability of the 
method, we used a seven-core fibre with rather closely 
spaced cores. The fibre was fabricated at the Fiber Optics 
Research Center, Russian Academy of Sciences, by a tech-
nique similar to that described by Egorova et al. [18]. The 
structure of the fibre is shown in Fig. 1a. Laser light (wave-
length l = 1550 nm) was sequentially launched into all the 
fibre cores. In each case, we measured the light intensity at 
the fibre output using an infrared camera (Ophir Spiricon 
Pyrocam IV). The fibre was then cut off and measurements 
were repeated.

Measurements were performed at different (M = 20) 
fibre lengths and then the above algorithm was applied. To 
verify the results, we compared the intensity profiles mea-
sured along the fibre in each core and those calculated using 
a reconstructed C matrix. Figure 2 presents examples of 
such profiles and the profiles calculated using the initial 
approximation of matrix C (obtained from the refractive 
index profile).

It is seen that the curves obtained using the final C 
matrix (Fig. 2b) reproduce all the features of the measured 
curves. At the same time, the C matrix derived from an 
‘ideal’ refractive index profile (Fig. 2a) yields a different 
curve. Thus, the described method allows one to construct 
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Figure 1.  (a) Structure of the fibre and (b) examples of intensity distri-
butions visualised using an IR camera; Dn is the core – cladding index 
difference.
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Figure 2.  Measured (dashed lines) and reconstructed (solid lines) light 
intensities in cores vs. MCF length for several cores: data obtained us-
ing (a) the initial approximation of matrix C and (b) the best approxi-
mation found.
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an approximation of the matrix describing light propaga-
tion in a given fibre. Note that the measured intensity does 
not completely coincide with the intensity calculated using 
the iterative algorithm. This may be due to various factors, 
e.g. to additional changes in the structure of the fibre, cou-
pling coefficients along the fibre, polarisation dynamics 
left out of account, nonmonochromaticity of propagating 
light and uncertainties in experimental intensity measure-
ments.

Figure 3a shows reconstructed profiles of fibre super-
modes and their propagation constants (relative to b0). It is 
seen that, on the whole, the supermode profiles are similar to 
those of an ‘ideal’ fibre with the same parameters, but the 
existing distinctions determine a very different type of light 
propagation. Also shown in Fig. 3b are corrections to the 
propagation constants b1, b2,…, bN for each fibre core, nor-
malised to the difference between the propagation constant of 
silica ( bs = nw/c) and that of one core: bs – b.

The algorithm for optimising matrix Cu  was implemented 
in C ++. About 15 000 steps were required for experimental 
data. The computational time was ~1 min on a personal com-
puter. Thus, this method requires no large computational 
resources. Figure 4 shows the discrepancy D against the num-
ber of steps.

4. Stability of the method

Since the proposed method of solving the inverse problem for 
reconstructing corrections to propagation constants and cou-
pling coefficients is based on searching for a minimum of a 
function of many variables, it is important to recognise in 
which cases the best solution found is indeed similar to the 
sought matrix C and in which cases the algorithm found a 
local minimum far from the sought matrix C. Since input 
Ii (L j ) data can be inaccurate for various reasons (including 
inaccurate light launching into one core and noise in the 
detector array of the camera), the parameter D is not always 
zero, even if the Cu  solution found approaches the sought 
matrix C.

To assess the accuracy of the method, we numerically 
simulated light propagation in a nonideal fibre with known 
parameters and then the parameters were reconstructed from 
known intensities at different points, Ii (L j ). Next, we com-
pared the reconstructed matrix Cu  with the input matrix C 
that was used to calculate the Ii (L j ) intensities.

As a model for a nonideal fibre, we chose a seven-core 
fibre with identical cores, each displaced from a symmetric 
position by a random vector with a magnitude within pd, 
where d is the spacing between the cores and the parameter p 
characterizes fibre nonideality and takes values in the range 
0 – 0.1. At the highest value p = 0.1, because of the strong 
exponential dependence on distance the coupling coefficients 
between adjacent cores may differ by a factor of 2 from those 
for the ‘undistorted’ core positions. The coupling coefficients 
for such fibre can be calculated numerically. Next, we calcu-
lated the deviation of matrix C from an ideal one using the 
formula
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and then calculated the intensity in each core for different 
light launch configurations at 2N points and employed the 
algorithm for finding matrix Cu . After carrying out the algo-
rithm, we calculated the deviation of the reconstructed matrix  
Cu  from the sought one:
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If E << E0, matrix C can be thought to be successfully recon-
structed; otherwise, there is no reconstruction. For each p 
value, calculations were performed ten times. The results are 
presented in Fig. 5.

It is seen that, with increasing fibre nonideality, the algo-
rithm more often finds wrong solutions and even impairs the 
quality of approximations (even though the discrepancy D 
decreases considerably). At the same time, even with nonide-
alities where the maximum coupling coefficients differ from 
the initial value by a factor of 2, the algorithm finds the proper 
solution in half of the cases. It should be noted that, if the 
algorithm fails to find the proper solution, this is easy to find 
out because the deviation E is large and the Ii (L j ) curves dif-
fer drastically from the measured ones. We can then restart 
the algorithm, e.g. with another initial approximation or with 
a larger initial step, in order to avoid getting into a local min-
imum.
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Figure 3.  (Colour online) (a) Profiles and propagation constants of su-
permodes and (b) corrections to the propagation constants for each 
core.
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Since the coupling coefficients between adjacent cores are 
exponential functions of distance, they far exceed the other 
coupling coefficients, so the latter have little or no effect on 
the nature of light propagation in the fibre. At the same time, 
since the method does not deliberately separate out the cou-
pling coefficients between adjacent cores, absolute errors in 
reconstructed coupling coefficients between nonadjacent 
cores may turn out to be greater than the coefficients. 
However, as above they play no significant role in light prop-
agation through the fibre.

To examine the effect of the number of initial measure-
ments on the accuracy of the method, we performed analo-
gous numerical simulation. The parameter M was varied 
from 1 to 2N and the parameter p was taken to be 0.03. In the 
course of the operation of the algorithm, the current discrep-
ancy D was determined using only the first m measurements 
(with minimum L j  values). After the end of the operation of 
the algorithm, the discrepancy D was computed using all 2N 
measurements. The results are presented in Fig. 6.

It is seen that, on the whole, the discrepancy D decreases 
as the number of measurements rises, stabilising on average at 

M > 5. It should be emphasised that, if measurements were 
made at only one fibre length (which was in effect proposed 
by Mosley et al. [16]), the discrepancy was several orders of 
magnitude higher and the reconstructed parameters poorly 
described light propagation in the fibre.

5. Conclusions

A method has been developed for reconstructing supermode 
profiles of a multicore fibre, small corrections to the propa-
gation constants of its cores and coupling coefficients 
between the cores. The method is based on intensity mea-
surements and requires no phase measurements. Light 
intensity in the cores at the multicore fibre output is mea-
sured at several fibre lengths and several configurations of 
controlled light launch into the cores (e.g., by sequentially 
launching light into each core). An iterative algorithm has 
been developed which allows the coupling coefficients 
between all cores and corrections to propagation constants 
in each core, i.e. all the parameters that completely define 
the guidance properties of a multicore fibre, to be recon-
structed using such measurements. In contrast to previously 
proposed methods, the method described here places no 
severe limitations on scatter in coupling coefficients and 
allows one to reconstruct their values for all cores (rather 
than for only adjacent ones), which may be important for 
multicore fibres with complex structures. The use of the 
method has been demonstrated experimentally for a seven-
core fibre. Using numerical simulation, we have assessed the 
stability of the method and the effect of the number of mea-
surements on the accuracy of fibre parameter reconstruc-
tion.
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