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Abstract.  We study the influence of a nonstationary nonlinear 
response of a medium on self-compression of soliton-like laser 
pulses in active fibres with a finite gain bandwidth. Based on the 
variational approach, we qualitatively analyse the self-action of the 
wave packet in the system under consideration in order to classify 
the main evolution regimes and to determine the minimum achiev-
able laser pulse duration during self-compression. The existence of 
stable soliton-type structures is shown in the framework of the 
parabolic approximation of the gain profile (in the approximation 
of the Gnizburg – Landau equation). An analysis of the self-action 
of laser pulses in the framework of the nonlinear Schrödinger equa-
tion with a sign-constant gain profile demonstrate a qualitative 
change in the dynamics of the wave field in the case of a nonsta
tionary nonlinear response that shifts the laser pulse spectrum from 
the amplification region and stops the pulse compression. Expressions 
for a minimum duration of a soliton-like laser pulse are obtained as 
a function of the problem parameters, which are in good agreement 
with the results of numerical simulation.

Keywords: self-compression of laser pulses, active fibre, nonstationary 
nonlinear response. 

1. Introduction 

The issue of laser generation of high-energy ultrashort laser 
pulses is an area of active experimental research and an object 
of theoretical physics that studies the nonlinear dynamics of 
wave fields with time scales comparable with a field cycle. The 
importance of this range of tasks is due to a large number of 
their applications in science, engineering, and technology. As 
such, we note the study of ultrafast processes, generation and 
detection of THz radiation [1, 2], generation of high harmonics 
[3, 4], formation of attosecond pulses [5], and acceleration of 
electrons and ions [6].

Currently, there exist several approaches to the genera-
tion of ultrashort laser pulses. The most attractive one relies 
on the use of solid-state laser systems based on broadband 
amplification, for example, in Ti : sapphire crystals and/or in 

parametric amplifiers. They can enable the generation of 
ultrashort laser pulses with sufficiently high energies [7, 8]. 
One more technique of obtaining high-power laser pulses is 
based on the broadening of a wave-packet spectrum in a high-
pressure gas and on the subsequent compression of a wave 
packet using gratings or chirped mirrors. An alternative 
method is self-compression of laser pulses (a decrease in the 
duration of a wave packet without the use of external linear 
dispersion elements) during their propagation in a medium 
with Kerr [9, 10] or ionisation [11 – 13] nonlinearities. A simi-
lar mechanism for generating petawatt laser pulses uses self-
compression due to the relativistic nonlinearity of plasma 
[14, 15]. 

At the same time, it is necessary to single out laser pulse 
shortening mechanisms, which are associated with an adiabatic 
change in the parameters of a soliton-type wave field during 
its propagation in a nonlinear medium. In this case, one 
can expect to obtain wave packets having a good temporal 
contrast. We note some papers in which self-compression of 
soliton-like laser pulses was experimentally and theoretically 
investigated: self-compression in a gain medium [16, 17], in 
a waveguide system with a monotonically decreasing linear 
dispersion [18, 19], and in a waveguide in the presence of cubic 
and ionisation nonlinearities [20], as well as adiabatic self-
compression of three-dimensional laser pulses during their 
self-focusing when the dispersion length is less than the dif-
fraction length [21 – 23]. 

Thus, the successful development of fibre lasers stimulates 
the study of the possibility of replacing components of solid-state 
laser systems with fibre-optic ones, which can dramatically 
increase the attractiveness of relevant applications. Being inferior to 
solid-state systems in power characteristics, fibre lasers and non-
linear optical devices have such advantages as high efficiency of 
conversion of pump energy into radiation energy caused by the 
waveguide geometry, efficient heat removal and high quality of 
the laser beam spatial profile, as well as low cost, compactness, 
and lack of adjustment during operation. 

Recently, the idea of amplifying wave packets in an array 
of independent waveguides has been discussed to obtain laser 
pulses with extremely high power [24, 25]. In a medium with 
an anomalous group velocity dispersion, amplification of 
laser pulses can also be accompanied by an adiabatic decrease 
in the laser-pulse duration [16, 17] if a soliton-like laser pulse, 
whose dispersion length is much smaller than the inverse gain 
increment, is injected at the fibre input. In this case, amplifica-
tion of the wave field can be regarded as a small perturbing 
factor during the wave-packet propagation. The requirement 
that the gain increment be small increases the need for using 
significant lengths of interaction between the radiation and 
the medium. Obviously, in the course of the adiabatic decrease 
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in the laser-pulse duration, there can arise various negative 
factors such as nonlinear response nonstationarity, higher-
order dispersion, and possible inhomogeneities in fibre. 

Peculiarities of self-action of laser pulses are mainly theo-
retically analysed within the framework of the nonlinear 
Schrödinger equation (NLSE) and its generalisations. In the 
NLSE, allowance for additive dissipation, amplification, and 
other effects determined by the physical problem leads to 
another well-known Ginzburg – Landau equation [26 – 29]. 
The localised structures that arise here are called dissipative 
solitons [26, 29]. In contrast to the one-parameter family of 
solitons, in the NLSE the competition of dissipation and 
amplification in the nonconservative regime makes the situa-
tion more definite and stable. Owing to the complexity and 
variety of the processes under consideration, a theoretical 
study in many papers reduces to a numerical modelling of the 
problem, since the nonconservatism of the system signifi-
cantly complicates the use of qualitative methods for studying 
the evolution of wave fields. 

The purpose of this work is to investigate the influence of 
the Raman nonlinearity on self-compression of soliton-like 
laser pulses in active fibres with a finite gain bandwidth using 
an analytical apparatus of nonlinear optics. Using the varia-
tional approach, we qualitatively analyse the self-action of 
the wave packet in the system under consideration in order to 
classify the main regimes of the wave-field evolution and to 
determine the minimum achievable laser pulse duration during 
self-compression as a function of the problem parameters. 

The paper has the following structure. In Section 2, a 
basic equation is formulated for investigating the self-action 
of a laser pulse in an active fibre with a finite gain bandwidth, 
and the variational approach to the nonconservative case is 
generalised. Section 3 presents an analytical and numerical 
analysis of the nonlinear dynamics of a wave packet on the 
basis of the Ginzburg – Landau equation. For the analytical 
investigation of processes in the system, a closed system of 
ordinary differential equations for the characteristic parame-
ters of a laser pulse having a Gaussian intensity distribution is 
obtained using the variational approach. The existence of 
stable soliton-type structures is shown that are ‘pressed’ in the 
spectral region to the edge of the gain band of the active 
medium. The minimum duration of the soliton and its fre-
quency shift due to nonstationarity of the nonlinear response 
are determined as functions of the problem parameters. 
Section 4 theoretically analyses self-compression of laser pulses 
within the framework of the nonlinear Schrödinger equation 
under conditions of a constant-sign gain profile. Using the 
variational approach, a closed system of equations describing 
the dynamics of the laser pulse parameters and an expres-
sion for the minimum duration of a soliton-like laser pulse 
are obtained as functions of the problem parameters. In 
Conclusions we summarise the results of the work. 

2. Formulation of the problem 

Let us consider the self-action of subpicosecond laser pulses 
in an active optical fibre with a finite gain bandwidth, taking 
into account the instantaneous electronic (Kerr) and delayed 
molecular (Raman) nonlinearities. We assume that the carrier 
frequency of the laser pulse lies in the region of the anomalous 
group-velocity dispersion, and the fibre radius is small (on the 
order of the wavelength), so that the propagation in the fibre 
is single-mode. The latter requirement automatically means 
that we neglect the possibility of the wave-field self-focusing 

inside the fibre. It should be noted that the gain saturation of 
the wave packet can be ignored, because the fibre laser media 
have a high saturation energy. For example, the saturation 
energy of erbium laser fibres is ~10 mJ, and the energy of 
injected short laser pulses is less than 1 nJ. As a result, the 
evolution of laser pulses in this case can be described with the 
help of the NLSE: 
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Here, w0 is the carrier frequency of the laser pulse; n0 and n2 
are linear and nonlinear refractive indices; c(w) is the imagi-
nary part of the medium susceptibility; and R is the charac-
teristic time for establishing the nonlinearity. In the accom-
panying coordinate system moving with the group velocity of 
the wave packet, the NLSE can be written in dimensionless 
variables [27]: 
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Here, the longitudinal coordinate t = t – (¶k/¶w)z and the 
evolutionary coordinate z are normalised to the characteristic 
laser pulse duration teff and the corresponding dispersion 
length z0 = 2t2eff /(¶2k/¶w2); Y = E /n z c2 0 0w  is the complex 
amplitude of the wave packet envelope; 
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m = tR /teff ; and G(w) = w0 z0 c(w)/(2n0c). The second term in 
(1) describes the linear dispersion of the medium, the third 
term is responsible for the Kerr nonlinearity, and the fourth 
term is responsible for the nonlinear response inertia. The last 
term describing the process of laser pulse amplification in an 
active medium is represented through the spectral gain G(w).

An obvious simplification of the original equation (1) is 
an analysis of the self-action of a quasi-monochromatic wave 
packet with a spectral width Dw, injected into the active fibre 
with a large gain bandwidth W: W > Dw. The expansion of the 
gain G(w) in a Taylor series near the carrier frequency to 
the quadratic term G(w) » g – Dw2 allows us to pass from 
equation (1) to the well-known Ginzburg – Landau equation 
[26, 27, 29]: 
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Equation (2) in the absence of Raman nonlinearity ( m = 0) 
has been well studied in a number of papers [27, 29, 30]. Note 
that in the framework of equation (2), in the case m = 0, there 
exist stable soliton solutions, which are called dissipative 
solitons [26]. 
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Further analytical and numerical analysis of the influence 
of the Raman nonlinearity ( m ¹ 0) on the mechanism of adia-
batic reduction of the laser-pulse duration during its amplifi-
cation in the active medium will be performed on the basis of 
equations (1) and (2). To obtain analytical estimates, we use 
the variational approach. This will allow us to obtain a closed 
system of ordinary differential equations for the characteris-
tic integral parameters of the distribution of the Gaussian 
wave field (laser-pulse energy, duration, and chirp). Despite 
the complication of the situation in the active medium due 
to the absence of a Hamiltonian, the variational problem can 
be formulated both for the Ginzburg – Landau equation (2) 
and  for the initial equation (1). Moreover, along with the 
Lagrangian of the conservative part of the system 
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which coincides for equations (1) and (2), it is necessary to 
determine the dissipative function of the system dQ. 

We confine ourselves to the evolution of Gaussian wave 
packets: 
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is the laser pulse energy; and tp, b, w
– and q are, respectively, 

the pulse duration, chirp, frequency and phase of the wave 
field at the intensity maximum of the packet, whose position 
is determined by the parameter q(z). In the conservative case, 
the change in the parameters aj = {W, tp, q, b, w

–, q} during the 
pulse propagation is described by the Euler equations 

j

¶
¶

¶
¶

d
d

d
d

z a a
a

z
a

0L L

j j
j- = =o
oc m	 (5)

using the truncated Lagrangian L  – the Lagrange function 
(3) – calculated on a given field distribution (4): 
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A generalisation of the Euler equation for determining the 
parameters of the variable function (4) in the nonconservative 
case consists in taking into account the contribution of the 
dissipative part of the system [29]:
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3. Self-compression of laser pulses in the  
framework of the Ginzburg – Landau equation 

Let us first analyse the self-action of a laser pulse in an active 
fibre with a finite gain bandwidth on the basis of the 

Ginzburg – Landau equation, taking into account the nonsta-
tionarity of the nonlinear response (2). For it, the variation of 
the dissipative function is 
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Accordingly, equations (7) for the parameters of the wave 
packet (4) in the considered nonconservative case have the 
form 
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The right-hand side in (9) determines an additional contri-
bution to the change in the longitudinal structure of the pulse 
associated with the dissipative factors in the original equation 
(2). Calculating and differentiating the integrals, we arrive at 
the system of ordinary differential equations for the parame-
ters of the localised structure (4): 
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Note that equation (10e) for the position of centre of 
intensity of the wave packet is isolated from the rest of system 
(10). As a result, the problem of investigating the self-action 
of a laser pulse has been reduced to an analysis of the first 
four equations (10). 

Let us first analyse the case of the absence of the Raman 
nonlinearity ( m = 0). An analysis of the system of equations 
(10b) – (10d) shows the existence of a stable equilibrium point 
(knot which becomes the focus for m ¹ 0) at w– = 0 and 
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with a characteristic oscillation frequency wu  » 2W 2/(4p) >> g. 
Since the characteristic time of the change in energy 1/g is 
much larger than the period of oscillations, the position of 
the centre (tf) and the amplitude (dtp µ 8p/W 2) of the oscilla-
tions will vary adiabatically slowly with increasing energy W. 
This behaviour corresponds to the evolution of soliton-type 
field distributions, arising at a competition of anomalous 
group-velocity dispersion and cubic nonlinearity. Being stable 
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particle-like formations, solitons maintain the relation of their 
duration and energy (amplitude) of form (11). In this case, the 
solutions for D << 1 have a weak frequency modulation: 

b(z) » 
( )z
D

4 p
2t

- .	 (12)

This means that the structures differ from the NLSE solitons 
by the presence of a negative chirp. The presence of the chirp 
(12) practically did not change the ratio well known for NLSE 
solitons: tp µ 1/W. 

Near the focus, the quantity b2tp4 <~ D2/4 <<< 1 for D << 1. 
Let us consider the most interesting case, i.e. w– = 0, which is 
an exact solution of equation (10d) for m = 0. This allows us 
to use relation (11) and equation (10a) to obtain an equation 
for the duration of a soliton-like pulse as it propagates in the 
fibre: 
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shows that the laser pulse duration decreases exponentially to 
the maximum possible pulse duration 

2
D
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We rewrite this expression by substituting D = g/W2 into it: 

W2
1
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It follows from (16) that the minimum possible duration of a 
soliton-like wave packet in the process of an adiabatic increase 
in the wave field energy is determined only by the gain band-
width W. 

Next, we take into account the influence of the nonlinear 
response nonstationarity of the medium ( m ¹ 0) on the self-
action dynamics of the laser pulse in the active fibre. Since the 
carrier frequency w–  does not enter into equations (10b) and 
(10c), the equilibrium point [see (11) and (12)] of these equa-
tions is the same as in the case m = 0. This equilibrium point 
corresponds to the soliton-like distribution of the wave field. 
From relation (11) and equations (10a) and (10c) we obtain 
the equations determining a decrease in the duration tp and 
the transformation of the carrier frequency w– of the wave 
packet as it propagates in the fibre: 
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It follows from Eqn (17b) that the Raman nonlinearity only 
leads to a down-shift of the soliton frequency (toward larger 
wavelengths). The rate of the frequency shift increases with 
decreasing soliton duration: dw– /dz µ –m/tp4 [31]. 

The above considered limiting case m = 0 is a special case 
of equations (17). A typical phase plane for the system of 
equations (17) in this limit is shown in Fig. 1a. It is seen that 
the duration of a soliton-like wave packet is bounded below 
by the value tlim (16). In this case, the carrier frequency w

– 
tends to zero if its initial value is different from the carrier 
frequency of the gain band. The reason is that the gain in 
the spectral region of G(w) reaches its maximum value only at 
w– = 0. 

Analysis of the system of equations (17) in the general 
case (m ¹ 0) shows the presence of an equilibrium state: 
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whose type at m = 0 corresponds to a node, and at m ¹ 0 – 
to a focus. For the small coefficients m << [D3/(16g)]1/2 = g/(4W3), 
formula (18a) gives values close to tlim found in (15):
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In this case, the minimum duration is determined primarily 
by  the gain bandwidth of the active medium, W. At the 
same time, the maximum frequency shift w– lim increases with 
increasing m according to the linear law. Thus, the Raman 
nonlinearity leads only to a shift of the carrier frequency 
of  the soliton to the long-wavelength part of the spectrum. 
As  follows from formula (19), the frequency shift w–  can be 
reduced by increasing the gain of the medium, g. 

As an example, Fig. 1b shows the phase plane tp, w
–  for 

the system of equations (17) at m = 10–4, g = 0.3, and W = 10. 
We see that at the initial stage, as in the absence of the Raman 
nonlinearity ( m = 0), the duration of the soliton-type wave 
packet decreases down to the duration tlim (15). In this case, 
a  decrease in the laser pulse duration is accompanied by a 
shift of the frequency w–  to wlim due to the frequency depen-
dence of the gain. The shift of the carrier frequency becomes 
particularly strong when the wave packet duration is com-
mensurable with tlim (15) and the nonstationarity of the non-
linear response of the medium begins to exert influence. Note 
that the estimates (19) obtained for these parameters are in 
good agreement with the results of numerical simulation of 
the initial Ginzburg – Landau equation with allowance for the 
Raman nonlinearity (2). 

In the opposite limiting case [m >> g/(4W3)], expressions 
(18) take the form 

tlim » g
mW ,   w– lim » 

4 2m
g

W
W

- + .	 (20)

It can be seen that the minimum duration of a soliton increases 
with increasing coefficient m according to the root law. In this 
case, the centre of the soliton spectrum is concentrated near 
the boundary of the gain band of the active medium,  w– lim » –W. 

Examples of the phase plane in this limiting case are 
shown in Figs 1c and 1d. Far from the equilibrium state (Wtp 
>> 1), there occurs only a change in the duration of the soli-
ton-like laser pulse at an almost constant carrier frequency. 
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Conversely, at small durations (Wtp » 1), the carrier frequency 
shifts quite rapidly to the long-wavelength part of the spec-
trum, i.e. to the edge of the gain band (w–  » –W) because of the 
Raman nonlinearity. The duration of the oscillating wave 
packet at the final stage tends to the value of tlim in (20). 
Moreover, at mW3/g >~ 3.383, trajectories appear that envelop 
the equilibrium state and lead to an increase in the pulse dura-
tion (grey curves in Fig. 1d). This case will be considered 
below in more detail. 

Figure 2 shows the results of numerical simulation of 
the  initial Ginzburg – Landau equation (2) with parameters 
g = 0.03, W = 10, and m = 10–4, corresponding to the phase 
plane in Fig. 1c. At the nonlinear medium input, the distribu-
tion of the soliton-type wave packet was set as 

( 0, )
( / )
( )
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exp i

z
0 0

t t t t
w t

Y = =
2 0 	 (21)

at w– 0 = 0 and t0 = 10. Figure 2a shows the dynamics of the 
self-action of the wave packet envelope in the active fibre. The 
minimum duration of the wave packet is reached at z » 100. 
The inset illustrates the distribution of the wave packet on a 
larger scale. At the same time, during the shortening of the 
wave structure, a radiation drop (z » 80) is observed. Figure 2b 
shows the dynamics of the wave packet spectrum. It can be 
seen that the Raman nonlinearity makes the laser pulse spec-
trum shift to the edge of the gain band (w–  » –W). The presence 
of a drop in the time domain explains the irregular character of 
the wave-field spectrum (z » 80). However, in the future this 
irregularity disappears (z » 96), since the ‘dropped’ part of 

the laser pulse escapes rather quickly from the main part of 
the pulse due to the strong difference in group velocities and 
is absorbed near the boundaries of the computational 
domain. 

Figures 2c and 2d show the dependence of the maximum 
amplitude and duration of the wave packet on the evolu-
tionary coordinate z. One can see that a maximum increase 
in the field amplitude and a maximum decrease in the laser 
pulse duration are achieved at z » 100; then, the amplitude 
decreases and the duration increases. In this case, after a short 
transient process, the duration and amplitude of the wave 
packet do not change. Consequently, a soliton solution is 
excited, in which the duration, amplitude, and carrier fre-
quency do not change. Note that the output pulse duration is 
approximately 2.6 times longer than the laser pulse duration 
(16) in the absence of the Raman nonlinearity ( m = 0). Thus, 
the results of numerical calculations of the initial equation (2) 
(Fig. 2) are in good agreement with the results of the qualita-
tive analysis of relation (20). 

In the case of an even smaller gain ( g <~ 0.295mW3), the 
dynamics of the system (Fig. 1d) essentially depends on the 
initial frequency w– 0 of the wave packet (21) injected into the 
active fibre. In Fig. 1d, two characteristic groups of trajecto-
ries in the phase plane are clearly distinguished as functions of 
the initial frequency w– 0. If the initial frequency is close to the 
boundary of the gain band (black curves), then the dynamics 
of the system leads to solutions with a finite pulse duration 
(trapping into a focus), as in the case of Fig. 1c. Note that 
with a further decrease in the gain g, the width of this region 
will decrease. 
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Figure 1.  Phase planes tp, w
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The results of numerical simulation of the initial 
Ginzburg – Landau equation (2) are in good agreement with 
the results of qualitative analysis (Fig. 3). A laser pulse with 
an initial distribution (21) and parameters w– 0 = – 9 and t0 = 10 
was injected to the fibre input. One can see from Fig. 3 that 
the wave packet frequency remains practically unchanged 
during an adiabatic decrease in the laser pulse duration 
(Fig.  3b). In addition, a radiation drop is not observed in the 
time domain (Fig. 3a). In this case, the output pulse duration 
(at z = 2240) is 4.5 » 20  times larger than the compressed 
wave packet duration in the absence of the Raman nonlinear-
ity ( m = 0) (16), in full agreement with the estimate in (20). 
Figures 3c and 3d show the dependences of the maximum 
amplitude and duration of the wave packet on the propagation 
path length z. It can be seen that a maximum increase in the 
field amplitude and a maximum decrease in the laser pulse dura-
tion are achieved at z » 900. In the future, after a short tran-
sient process, the considered quantities become stationary. 

Let us now analyse the case when the initial frequency of 
the injected laser pulse is in the centre of the gain band. This 
corresponds to the phase trajectories in Fig. 1d (grey curves). 
It follows from this figure that it is impossible to initiate a 
soliton solution at the final stage. For a complete understand-
ing of the situation, Fig. 4 shows the results on the dynamics 
of the self-action of the wave packet with the initial time dis-

tribution (21) for w– 0 = 0 and t0 = 10 in the active fibre with 
parameters g = 10–2 , m = 10–4, and W = 10. One can see that at 
the initial stage there is a significant decrease in the laser pulse 
duration at an almost unchanged carrier frequency (Figs 4a 
and 4b for z = 205), which agrees well with the results of qual-
itative analysis given above (see Fig. 1d). However, after that, 
the Raman nonlinearity begins to exert an influence, which 
leads to a shift in the wave packet spectrum beyond the gain 
band of the active medium at practically unchanged laser 
pulse duration. This boundary is shown in Fig. 4b by a dashed 
line. The subsequent dynamics of the wave packet self-action 
consists in a substantial increase in the duration and a decrease 
in the amplitude of the wave packet (Figs 4c and 4d). 

Thus, the results of the qualitative analysis carried out 
within the framework of the variational approach are in good 
quantitative agreement with the results of numerical simula-
tion performed within the framework of the Ginzburg – 
Landau equation (2). 

4. Self-compression of laser pulses  
in the framework of the general model 

In the previous section, we analysed the self-action of a laser 
pulse in an active medium when the gain profile in the spectral 
region G(w) was approximated by a parabola [G(w) = g – Dw2]. 
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Figure 2.  Evolution of (a) the envelope of the wave packet Y(z, t) and (b) its spectrum Yu (z, w) along the propagation path of length z (the electric 
field strength and its spectrum are normalised to their maximum values), as well as dependences of (c) the maximum amplitude of the wave packet 
and (d) the duration of the laser pulse on z. The calculation was performed for g = 0.03, m = 10–4, and W = 10. At the input of the nonlinear medium, 
the initial distribution (21) was set at w–0 = 0 and t0 = 10. The horizontal dashed line in Fig. 2d indicates the duration, corresponding to the equilib-
rium state (18a), and the vertical dashed line in Fig. 2b shows the boundary of the gain band of the active medium. 
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The suitability of the considered model for describing the gain 
profile of the medium raises many questions, one of which is 
the artificial injection of large losses into the spectral wings at 
|w| > W. It should be noted that sometimes this model is 
valid. For example, in practice, losses at the edge of the gain 
band are additionally introduced into the fibre amplifier to 
counteract the parasitic signal amplification, while the central 
part of the laser pulse spectrum is subjected to amplification.

Below, based on an analytical and numerical study of the 
initial equation (1), we analyse the possibility of adiabatic 
reduction of the laser pulse duration and determine the char-
acteristic scenarios of the evolution of the wave packet for a 
sign-constant gain profile. As the gain profile of the active 
medium G(w), we choose a Gaussian function 

( ) expG 2

2
w g w

W
= -c m	 (22)

to obtain more illustrative analytical relationships. 
For equation (1), the variation of the dissipative function is 
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As a result, the Euler equations (7) for the parameters aj = 
{W, tp, b, w

– , q, q} of the wave packet (4), describing the self-
action of the wave field in an active medium with a Raman 
nonlinearity, have the form 
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Calculating the integrals on the right-hand side of (24), we 
arrive at the following system of ordinary differential equa-
tions for the parameters of the localised structure (4): 
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Figure 3.  Evolution of (a) the envelope of the wave packet Y (z, t) and (b) its spectrum Yu (z, w) along the propagation path of length z (the electric 
field strength and its spectrum are normalised to their maximum values), as well as dependences of (c) the maximum amplitude of the wave packet 
and (d) the duration of the laser pulse on z. The calculation was performed for g = 10–2, m = 10–4, and W = 10. At the input of the nonlinear medium, 
the initial distribution (21) was set at w–0 = –9 and t0 = 10. The horizontal dashed line in Fig. 3d indicates the duration, corresponding to the equi-
librium state (18a), and the vertical dashed line in Fig. 3b shows the boundary of the gain band of the active medium. 
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where s = (tp2 W 2 + 4tp4 b2 + 1)1/2. As in the case of a qualitative 
analysis of the Ginzburg – Landau equation, equation (25e) 
for the velocity of the maximum of the intensity of the wave 
packet is isolated from the rest of the system of equations (25). 

A further simplification of the qualitative analysis of 
the  self-action of a laser pulse in an active medium with a 
Gaussian gain profile of form (22) can consist in considering 
soliton-like wave structures. In this case, as in Section 3, from 
equations (25b) and (25c), we can find the relationship between 
the laser pulse energy and the duration, analogous to (11): 

W » 8
p

p
t .	 (26)

In this case, the expression for frequency modulation b is 
analogous to (12): 

b » 
4 p
2 2t
g
W

- .	 (27)

As before, we assume that the frequency modulation is 
small at the scale of the wave packet ( btp2 << 1). As a result, 
we arrive at the following system of equations determining a 
decrease in the duration tp and the shift of the central fre-
quency w–  of the soliton-like wave packet: 
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The phase planes for this system of equations are shown 
in Fig. 5. 

Figure 5a shows a change in the duration and carrier fre-
quency of the laser pulse in the absence of nonstationarity of 
the nonlinear response of the medium ( m = 0). It can be seen 
that unlike the above-considered case analysed in the frame-
work of the Ginzburg – Landau equation, the minimum 
duration of the laser pulse is not limited by the gain band 
(see Fig. 1a). This adiabatic unlimited reduction in the wave 
packet duration can be understood from the following simple 
considerations. The central part of the pulse spectrum that 
falls into the gain band of the active medium exponentially 
increases, and then the accumulated energy is redistributed 
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Figure 4.  Evolution of (a) the envelope of the wave packet Y (z, t) and (b) its spectrum Yu (z, w) along the propagation path of length z (the electric 
field strength and its spectrum are normalised to their maximum values), as well as dependences of (c) the maximum amplitude of the wave packet 
and (d) the duration of the laser pulse on z. The calculation was performed for g = 10–2, m = 10–4, and W = 10. At the input of the nonlinear medium, 
the initial distribution (21) was set at w–0 = 0 and t0 = 10. The vertical dashed line in Fig. 3b shows the boundary of the gain band of the active me-
dium. 
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throughout the entire spectrum of the laser pulse due to the 
action of the linear dispersion of the medium in such a way 
that the laser pulse remains a soliton. It should be noted that 
the possibility of obtaining laser pulses with a duration less 
than the inverse gain bandwidth has been discussed in various 
papers (see, for example, [32]). In this case, if the initial fre-
quency w– 0 of the laser pulse injected into the fibre is different 
from the carrier frequency of the gain band (w–  ¹ 0), one 
can observe a frequency shift w–  tending to zero due to the 
inhomogeneity of the gain band (22) (Fig. 5a). This shift is 
described by the second term on the right-hand side of equa-
tion (28b). 

To determine the law of a decrease in the wave packet 
duration tp, depending on the evolutionary variable z, we 
consider the case w– 0 = 0. Here the position of the carrier 
frequency of the laser pulse will not change, since w– (z) = 0 is a 
solution of equation (28b) at m = 0. As a result, we can write 
down the solution for the laser pulse duration: 
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where t0 is the initial duration of the wave packet. 

In the case of long pulses (t0W >> tpW >> 1), taking into 
account the small parameter 1/(Wtp), we obtain 

tp » t0 exp(–2gz).	 (30)

This means that the laser pulse duration decreases exponen-
tially at the initial stage. In the other limiting case (tpW << 1), 
we have 

tp µ z2
1
gW
.	 (31)

Thus, at the final stage, the laser pulse duration will decrease 
to zero in accordance with the power law, i.e., rather slowly 
compared with the decrease in accordance with the exponen-
tial law. 

Let us now consider the case m ¹ 0. It follows from Fig. 5b 
that even at a small value of the coefficient m there is a quali-
tative difference from the case m = 0. Taking into account the 
nonstationarity of the nonlinear response leads to the limita-
tion of the minimum laser pulse duration tlim. One can see 
that at the initial stage, when the Raman nonlinearity of the 
medium does not affect the dynamics of the wave field, an 
adiabatic decrease in the wave packet duration occurs at a 
virtually unchanged carrier frequency. Then, the carrier fre-
quency of the pulse w–  will shift to zero because of the frequency 
dependence of the gain G(w). At the final stage, the Raman 
response stops decreasing the laser pulse duration due to a 
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significant shift in the wave field spectrum to the long-wave-
length region. It can be seen from Figs 5b – 5d that the minimum 
value of the compressed laser pulse duration increases with 
decreasing gain g at a constant coefficient.

We obtain an estimate of the minimum duration tlim of the 
wave packet as a function of the parameters of the problem. 
To do this, we turn to the truncated system of equations (28). 
Let a laser pulse with initial parameters t0W >> 1 and w– 0 = 0 
be injected to the input of a nonlinear medium. Then equation 
(28a) reduces to equation 

d
d

z
pt  » –2gtp	 (32)

and has a solution

tp(z) = t0 exp(–2gz).	 (33)

Simultaneously, the carrier frequency is rapidly shifted down 
the spectrum due to the nonstationarity of the nonlinear 
response of the medium in accordance with equation (28b). 
In  the case under consideration, the latter reduces to the 
equation

d
d
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p
4

w
t
m

=- .	 (34)

Substituting the expression for the wave packet duration (33) 
into equation (34), we find the solution for the carrier fre-
quency: 
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m

=- - .	 (35)

The amplification stops and the approximate equation (32) 
becomes inapplicable when the carrier frequency is shifted 
beyond the gain band, that is, at w–  » W. This gives an esti-
mate of the limiting duration of the compressed laser pulse as 
a function of the medium parameters: 

4

/
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1 4
t

g
m
W= c m .	 (36)

In Fig. 5 vertical dashed lines indicate the minimum dura-
tion of the compressed pulse. It can be seen that the values 
obtained are in good agreement with the results of a numeri-
cal analysis of the phase plane for the system of equations 
(28). Note that if the carrier frequency of the wave packet 
injected into the fibre is further shifted up the spectrum, it is 
possible to slightly increase the compression ratio of the laser 
pulse. 

Next, let us turn to the results of numerical simulation of 
the initial equation (1) with the Gaussian gain profile (22). 
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Figure 6.  Evolution of (a) the envelope of the wave packet Y (z, t) and (b) its spectrum  Yu (z, w) along the propagation path of length z (the electric 
field strength and its spectrum are normalised to their maximum values), as well as dependences of (c) the maximum amplitude of the wave packet 
and (d) the duration of the laser pulse on z. The calculation was performed for g = 10–2, m = 10–4, and W = 10. At the input of the nonlinear medium, 
the initial distribution (21) was set at w–0 = 0 and t0 = 10. The horizontal dashed line in Fig. 6d indicates the duration, corresponding to the equilib-
rium state (36), and the vertical dashed line in Fig. 3b shows the boundary of the gain band of the active medium.
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Figure 6 shows the dynamics of the self-action of the wave 
packet in an active fibre with parameters g = 10–2,  m = 10–4, and 
W = 10. A laser pulse with an initial distribution (21) with 
parameters w– 0 = 0 and t0 = 10 is injected to the fibre input. 
Figure 6a shows the dynamics of the wave packet, and Fig. 6b 
demonstrates the dynamics of the wave-field spectrum. One 
can see that at the initial stage (z » 200), there is an adiabatic 
decrease in the laser pulse duration in the time domain. 
Simultaneously, in the frequency domain, the spectrum is uni-
formly broadened in both directions at a constant carrier fre-
quency of the laser pulse. At the second stage (z > 200), the 
further shortening of the laser pulse ceases and there is only a 
shift of the spectrum centre down the spectrum. Figure 6c 
and 6d show the dependence of the maximum amplitude and 
duration of the wave packet on the propagation path length z. 
One can see that the maximum increase in the field amplitude 
and the maximum decrease in the laser pulse duration are 
achieved at z » 200. Then, the quantities in question reach 
stationary values. It should be noted that the obtained estimate 
of the minimum wave packet duration (36) is in good agree-
ment with the results of numerical simulations. In Fig. 6d, the 
horizontal dashed line indicates this estimate. 

Thus, the results of the qualitative analysis based on the 
variational approach are in good quantitative agreement with 
the results of the numerical simulation performed within the 
framework of the initial equation (1). 

5. Conclusions 

The influence of the nonlinear response nonstationarity on 
the self-compression of soliton-like laser pulses during their 
propagation in active fibres with a finite gain bandwidth is 
analytically and numerically investigated. The variational 
approximation is generalised to the case of the description of 
the nonlinear propagation of wave packets in nonconserva-
tive systems with an arbitrary dependence of the gain profile 
on the frequency. The variational approach is used to analyse 
qualitatively the self-action of the wave packet in the system. 
The variational approximation makes it possible to reduce 
the partial differential equation to a closed system of ordinary 
differential equations for the characteristic parameters of a 
solitary laser pulse having a Gaussian distribution. Their 
analysis allows one to classify the main regimes of the evolution 
of the wave field and to determine the minimum achievable 
duration of the laser pulse during self-compression as a func-
tion of the parameters of the problem.

In Section 3, the self-action of laser pulses profile is ana-
lytically and numerically studied in the framework of the 
Ginzburg – Landau equation corresponding to a parabolic 
approximation of the gain profile. Apart from gain, the 
Ginzburg – Landau equation describes also diffusion of the 
laser pulse in the fibre, i.e., the attenuation of the wave field 
outside the gain band. An analysis of the system of equations 
for the parameters of a solitary pulse show the existence of 
stable soliton-type structures that are ‘pressed’ in the spectral 
region to the boundary of the gain band of the active medium. 
The minimum duration of the soliton and its frequency shift 
due to nonstationarity of the nonlinear response are determined 
as a function of the parameters of the problem. Numerical 
modelling shows good quantitative agreement with analytical 
estimates. 

An analysis of the self-action of laser pulses in the frame-
work of the NLSE with a constant-sign gain profile is considered 
in Section 4. However, in this case the system of equations for 

the parameters of a solitary pulse does not have a stationary 
solution. An exception is the case of absence of the Raman 
nonlinearity, when it is possible to reduce the laser pulse dura-
tion to zero in accordance with the power law. The presence 
of an arbitrarily small nonstationary nonlinear response 
changes the situation qualitatively. This response leads to a 
significant shift of the carrier frequency of the pulse beyond 
the gain region, which stops the compression of the laser 
pulses. An expression for the minimum duration of the soliton-
like laser pulse is obtained as a function of the parameters of 
the problem, which agrees well with the results of numerical 
simulation of the initial equation. 
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