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Abstract.  Within the framework of the time-dependent effective 
range theory, we have calculated the spectra of high harmonics in a 
field containing an intense low-frequency component and a weak 
(perturbative) high-frequency component with a photon energy 
exceeding the ionisation potential of the atomic target. We have 
presented a quantum-mechanical substantiation of the quasi-classi-
cal theory [A.V. Flegel et al. Quantum Electron., 47, 222 (2017)], 
which describes additional generation channels of high harmonics 
induced by a weak high-frequency field. 

Keywords: high harmonic generation, effective range theory, strong 
field, vacuum ultraviolet. 

Investigations of high harmonic generation (HHG) are closely 
related to a wide range of practical applications, in particular, 
the generation of extremely short laser pulses [1 – 3] and the 
development of new methods for spectroscopy of ultrafast 
processes based on the analysis of HHG spectra [4 – 8]. A 
characteristic feature of HHG in strong laser fields is the 
appearance of a plateau in the spectrum of high harmonics, 
i.e., a weak dependence of the harmonic yield on its energy 
EW. The number and shape of plateau-like structures in the 
HHG spectrum depend substantially on the laser pulse 
structure. For example, in the simplest case of a monochro-
matic linearly polarised field, one plateau is observed with a 
cut-off energy Ec » | E0 | + 3.17up, where E0 is the binding 
energy of the external electron; up = F 2/(4w2) is the average 
vibrational energy of an electron in a field of intensity F and 
frequency w [9] (hereafter the atomic system of units is used). 
In this case, the height of the plateau and the cut-off posi-
tion can be controlled only by changing F and w. The addi-
tion of electric or magnetic fields to the initial intense field 
leads to a modification of the plateau-like structure in the 
HHG spectrum, as well as to an increase in the number of 

parameters that allow us to control the shape of the high 
harmonic spectrum.

Recently, a two-component HHG scheme has attracted a 
lot of attention, in which a high-frequency component with 
one or several carrier frequencies lying in the UV range is 
added to the intense IR field [10 – 12]. Adding a weak UV 
component leads to a significant modification of the spectrum 
of high harmonics. If the energy of the UV photon does not 
exceed the ionisation potential of the atomic system, it is pos-
sible to increase the efficiency of the yield of high harmonics 
due to resonant population of the excited states of the system 
[10, 11, 13, 14]. The use of high frequency fields lying in the 
vacuum UV range leads to the appearance of additional pla-
teau-like structures of both one-electron [15 – 17] and many-
electron [18 – 20] origin. Flegel et al. [17] proposed to use the 
quasi-classical analysis of the dynamics of an electron in a 
two-component field to solve the problem under consider-
ation and estimated the cut-off position of the emerging pla-
teau-like structures. 

The purpose of this paper is to calculate quantum-
mechanically the high harmonic spectrum in the framework 
of the effective range theory [21, 22] and to determine the 
accuracy of the quasi-classical estimates of the position of 
spectral cut-off of plateau structures obtained in Ref. [17]. 

Consider an atomic system with a valence s-electron with 
a binding energy E0 = – k2/2 in a two-component laser field. 
We parametrize a two-component laser field with a frequency 
w and a strength F, determining the IR component, and also 
with a frequency W = kw (k is an odd integer) and an intensity 
Fk for the UV component of the field, 

t( ) ( ) ( )cos cosF t F tF ez kw fW= + +6 @ ,	 (1)

where f is the phase shift. Note that the choice of the spatial 
orientation of the field components does not change the struc-
ture of the high-energy part of the high harmonic spectrum, 
but leads to a modification of the polarisation properties of 
the harmonics. 

The interaction of the atomic system with a time-periodic 
field of form (1) can be described in the framework of the 
model approach combining the time-dependent efective range 
theory [21, 22] and the method of complex quasi-energy [23]. 
Within the framework of this approach, the wave function of 
the quasi-stationary quasi-energy state of the atomic system in 
an external periodic field can be given in the form [24] 

f( , ) ( , )t C tr r( )q

q
0 p

kF F=- ee q/ ,	
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where C0 is the dimensionless asymptotic coefficient of the 
unperturbed wave function of the bound state; ( , ; , )tG tr 0( )+ l  
is the retarded Green’s function in the laser field; 

, , ,) ) )t t t=( , ; ( , ; [ ( , ; ( , )]exp i iG t G t R t S t tr rr r r r( ) ( )
0 -+ +l l l l l l l ;
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A(t) is the vector potential of the two-component field; and c 
is the speed of light in the vacuum. The coefficients fq are 
found from the system of homogeneous equations for the 
complex quasi-energy e, 

( ) f 0qqm e =
q

ql

l

l/ ,	 (4)

where the matrix element ( )qqm el  can be expressed as a double 
integral: 

( ) ( ) ( )q M2Rqq qq qq0m e e w d e= + -l l l ;	 (5)
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The function ( )ER0  can be expressed in terms of the main 
parameters of the effective range theory, i.e. the scattering 
length a0 and the effective range r0: 

( ) iE a r E E1 2R0
0

=- + -0 .	 (7)

The solution of system (4) makes it possible to find the 
shift and level broadening in an external laser field. However, 
as analysis shows, the allowance for the above correction in 
the HHG problem makes a negligible contribution to the 
amplitude of the process and the exact value of quasi-energy 
can be replaced by the binding energy of the valence electron 
in the absence of the field, e » E0. Then, to find the coeffi-
cients fq, system (4) can be solved by using the iterative proce-
dure [25]. After choosing  fq = dq 0 as a zeroth approximation, 
we obtain the following expressions for the coefficients fq 0! :

( 2 )
f

E q
M

Rq
q

0
0 0

0
.

w+
! .	 (8)

Knowing the wave function (2), we can write the HHG ampli-
tude with a given polarisation eh in the form [24]: 

( )A e d*N h N= ,	 (9)

( , ) | | ( , )d eT t t td r r r1 i
N

N tT

0
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w
e euy ,	 (10)

where ( , )trFeu  is the dual function obtained from the quasi-
stationary quasi-energy state function ( , )trFe  by complex 
conjugation and time reversal [24, 26]. Taking into account 
expansion (2), the Fourier transform of the dipole moment dN 
can be written in the form of a double sum containing the 
coefficients fq: 
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( )
i

N N T
CD

2
1

qq
0
2

p w
k

=-l

	 ´ 
( )
[ ( ) ]exp

d
d i i

t
t t

t t t q t2
/

T t

3 2
0

e w
-

- +

3- l

l ly y

[ ( )] ( ; , ) (i ), Nexp expi i dq t S t t t tP2
t

t
# w t wt t- -l l l l

l
y .	 (12)

If the UV pulse parameters satisfy the condition kW/Fk >> 1, 
the interaction with this field can be considered in the frame-
work of perturbation theory [27]. In this case, the HHG 
amplitude in a two-component laser field can be represented 
in the form of partial amplitudes describing HHG with the 
participation of n-photons of the UV field:

dd e ( )
N z N

n

n

= / .	 (13)

We present the first two terms of this expansion in the form:

d f D f( ) ( ) ( )( )
q qq q

qq
N

0 0 00
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/ ,	 (14)
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To analyse the relative contribution of processes occurring 
with the exchange of n-photons of the UV field, it is also 
convenient to introduce the partial probabilities of the HHG 
process: 
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In the case when the IR and UV components of the field 
are monochromatic, the expressions for the matrix elements  
D ( )
qq
i
l  and M

( )
q
i
0  [determine the coefficients f

( )
q
i  in accordance 

with (8)] can be represented as one-dimensional integrals of 
the Bessel function. For example, for the zero-order matrix 
elements they have the form [22]
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where 

( ) ( ( )); ( ) /J z q q N n 2Jn t t h= = - + +h l ;

( )
( /2)

sin cos
sin

z
u2

2 2
2pt w

t t
t
t

= -; E ;

( )
sin ( / )u
4

2p
2

l t w t t
t

= -; E ;

( )
( / ) ( /2) [( ) / ]sin sin sin

j
N

N
N N

2
2

1
1 2

!

!
t t

t t t
= -! ;

i
N
C u

N / pq q N 2
2
0
2

p
k

w=- - +l .

For first-order corrections with respect to the strength Fk, 
the corresponding matrix elements have the form:
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To analyse the influence of the UV field on the HHG pro-
cess, we calculated the HHG spectra for an atomic system 
with a binding energy E0 = –13.605 eV and an asymptotic 
coefficient C0 = 2 (corresponding to the parameters of the 
hydrogen atom). The frequency of the IR component corre-
sponds to a wavelength l = 1200 nm (w = 0.038 at. units), and 
W = 41w or 51w. The intensity of the main component is I = 
2 ́  1014 W cm–2, and the intensity of the additional field is 1 % 
of the intensity of the main field. Note that in the first order 

of perturbation theory the partial yield of RN
(1) depends lin-

early on the intensity of the UV component of the field. At the 
same time, as seen from (20) and (21), the dependence of the 
partial yield on the frequency of the UV photon cannot be 
expressed as an elementary function. The partial probabilities 
of RN

(0) and RN
(1) are shown in Fig. 1. For the partial yield of  

RN
(1), two plateau structures with different lengths and intensi-

ties are observed. The cut-off energy of a shorter plateau is 
smaller than that for a monochromatic IR field. When the 
energy of the UV photon is increased, the cut-off energy of 
the short plateau decreases. The cut-off energy of a long pla-
teau exceeds the maximum energy in a monochromatic IR 
field by exactly the energy of the UV photon. 

This behaviour of the cut-off position of plateau-like 
structures is in agreement with the quasi-classical theory pro-
posed in [17]. In accordance with it, the emergence of an 
intense short plateau is associated with the absorption of the 
UV photon during the ionisation stage, whereas the less 
intense long plateau arises from the absorption of the UV 
photon during the recombination stage. In [17], analytical 
expressions for estimating the boundaries of high-energy pla-
teaus are also given. The cut-off positions of the plateau-like 
structures calculated in accordance with the indicated ana-
lytical expressions are shown in Fig. 1 by vertical dashed lines. 
One can see that the quasi-classical theory describes with 
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Figure 1.  Dependences of the partial yields of high harmonics RN
(0) (1) 

and RN
(1) (2) on the harmonic number for an atomic system with binding 

energy E0 = – 13.605 eV in a two-component laser field. The wavelength 
of the IR component is l = 1200 nm, and the intensity is I = 2 ́  
1014   W  cm–2. The wavelength of the UV component with Ik = 2 ́  
1012 W cm–2 corresponds to the (a) 41st and (b) 51st harmonics of the IR 
component. The results are normalised to the condition  R99

(0) = 1, where 
N = 99 corresponds to the plateau cut-off position in a monochromatic 
IR field. Here and in Fig. 2, the vertical dashed lines indicate the posi-
tion of the plateau cut-off in accordance with the quasi-classical esti-
mates proposed in [17].  
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good accuracy the position of the cut-off of a long plateau, 
but for a short plateau the estimates of the cut-off position 
given by it lead to overestimated results. The good agreement 
of the cut-off position of the long plateau with the classical 
estimates proposed in [17] is due to the fact that the dynamics 
of the electron in the continuum is determined by the zero 
initial velocity and, hence, by the minimal spreading of the 
wave packet formed as a result of electron tunnelling from the 
bound state. In the case of a short plateau, the transition of an 
electron to a continuum occurs through the absorption of a 
UV photon, which corresponds to a nonzero initial electron 
velocity in the continuum. The spreading of such a packet 
occurs much faster; as a result, the actual cut-off position of 
the plateau differs significantly from the classical result.

An important approximation, widely used for calcula-
tions in strong laser fields, is the strong field approximation 
(SFA). It consists in neglecting the effects of the atomic 
potential at the stage of electron motion in the field-modified 
continuum. Within the framework of the effective range the-
ory, SFA is reduced to the substitution fq  = dq,0, and the 
dipole matrix element dN takes the form: 

( , )e N kD ,
( , )

,

i
N z 0 0

1!

mj m n

n m=
d e= / .	 (22)

Moreover, each of the terms in sum (22) has a transparent 
physical meaning. Obviously, the terms with  m = +1 corre-
spond to the emission of the UV photon in the HHG process, 
and the terms with m = –1 correspond to the absorption of the 
UV photon. To understand the meaning of the variable v, it is 
necessary to turn to the general expression for the dipole 
moment (11). It is seen that the expression for any matrix ele-
ment is represented as a double integral with respect to the 
variables t and t', which can be interpreted as the starting and 
ending times of motion in the field-modified continuum. The 
value of the variable v corresponds to the instant of time in 
which the interaction with the UV field occurs: for  m = n this 
is the moment of ionisation (t' ), and for  m = –n this is the 
moment of return of the electron to the parent core (t). It 
should be noted that, in addition to the cases described above, 
the exchange of a UV photon is also possible at the stage of 
electron motion in the continuum. The HHG amplitude in the 
corresponding channel is described by terms containing non-
zero coefficients  f q(1). Thus, the analysis of the accuracy of the 
SFA also makes it possible to estimate the relative contribu-
tion of the HHG channel to the emission or absorption of the 
UV photon at the stage of electron motion in the continuum.

Figure 2 shows the partial probabilities 
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| ( , ) |R

c
N

D N k
2

( , ) ( , )
N 3

3

00
2

p
w

=
m n m n ,	 (23)

corresponding to the absorption of the UV photon in the 
stage of ionisation (RN

(–, –)) and recombination (RN
(–, +)), calcu-

lated for a two-component field with the same parameters as 
in Fig. 1. It can be seen that the contributions of the partial 
yields RN

(–, –) and RN
(–, +) completely describe the observed pla-

teau-like structures in the HHG spectrum. This indicates that 
in the first order of perturbation theory in terms of the inten-
sity of the UV pulse, only two channels considered in [17] 
make the main contribution to the total yield of HHG, and 
the contribution of the remaining channels is negligibly small. 

In conclusion, let us formulate the main results of this 
paper. Using the time-dependent effective range theory, for a 
two-component field consisting of a low-frequency (IR) and a 
high-frequency (UV) components we obtained analytical 
expressions for the HHG amplitude in the first order of pertur-
bation theory in terms of the strength of the UV field both in 
the strong-field approximation and with the effects of rescatter-
ing of higher orders taken into account. We have shown that in 
the strong-field approximation the analytic expression for the 
HHG amplitude allows one to single out the contributions of 
the channels corresponding to the emission/absorption of the 
UV photon during the ionisation or recombination stage. It 
follows from the calculations that in the first order of perturba-
tion theory in terms of the intensity of the UV field, the emerg-
ing plateau-like structures are completely described by the con-
tribution from the channels corresponding to the absorption of 
the UV photon during the stages of ionisation and recombina-
tion. Thus, the quantum-mechanical calculations carried out 
qualitatively confirm the conclusions of paper [17].
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