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Abstract.  We consider two methods of lowering thermal noise, 
which limits the attainable frequency stability of lasers stabilised to 
a high-Q external Fabry – Perot cavity. These are cavity lengthen-
ing and use of high-Q mechanical materials in the production of its 
constituent parts. The results of numerical simulation are outlined 
for the horizontal and vertical suspension systems of the cavity 
body and its sensitivity to vibrations in these cases. The progress in 
the development of ultrastable laser systems using cryogenic silicon 
cavities is also discussed. 

Keywords: ultrastable cavities, thermal noise, vibrational sensitiv-
ity of cavities.

1. Introduction

The development of laser sources with a spectral linewidth 
less than 1 Hz is a major avenue in the modern physics of 
high-precision measurements. Initially aimed at solving the 
tasks of precision spectroscopy, this research largely paved 
the way to the progress in the area of frequency standards 
and lent impetus to the development of new areas, such as 
gravitational wave detection [1], studies of interparticle 
interactions in quantum gases [2], and the development of 
femtosecond optical frequency combs [3]. Ultrastable lasers 
are employed for the spectroscopy of ultranarrow clock 
transitions in optical frequency standards based on atomic 
ensembles [4] and single atoms [5]. On a shorter averaging 
time than the time of particle ensemble preparation and 
measurement, the optical clock stability is completely deter-
mined by the frequency stability of laser radiation. On a lon-
ger time, the clock stability may be limited by the Dick effect 
[6], which is also determined by the level of laser noise. For 
a frequency instability of laser radiation of ~10–15, the con-
tribution made by the Dick effect may far exceed the funda-
mental limit imposed by quantum noise [7]. That is why the 
further progress of optical frequency standards aimed at 

attaining precision and stability at a level of 10–18 and better 
calls for a more efficient stabilisation of laser radiation fre-
quency [8]. 

The key element of an ultrastable laser system is a passive 
monolithic high-Q Fabry – Perot cavity with an as high as 
possible stability of the mirror separation. The frequency of 
the laser light is stabilised to the cavity transmittance peak 
with the use of a feedback loop. The most frequently used 
method of frequency stabilisation to external cavity mode is 
the phase-modulation Pound – Drever – Hall technique [9], 
which has proved itself to be advantageous. To date, the best 
fractional instability of the laser frequency over an averaging 
time of 1 – 100 s amounts to ~10–17, which was obtained using 
a silicon cryogenic cavity [10] and a ULE-glass cavity of 
length ~0.5 m [11].

In this work we consider the use of such cavities in ultrast-
able laser systems. In Sections 2 and 3 we discuss the thermal 
noise limit, which limits the cavity stability, and the methods 
for lowering this fundamental limit. The latest results in the 
development of ultrastable lasers for an optical frequency 
standard based on strontium atoms are outlined in Sections 4 
and 5. 

2. Thermal noise and cavity stability

The stability of the frequency n of Fabry – Perot cavity eigen-
modes is determined primarily by the stability of its mirror 
separation Lt : 

L
L

n
nD D
=- t

t
,	 (1)

The relative displacement of the cavity mirrors may result 
from the fluctuations of the cavity body length due to tem-
perature variations or vibrations, but their effect may be 
effectively suppressed by isolating the cavity from external 
perturbation factors. The fundamental limitation on the sta-
bility of mirror separation is imposed by the thermal motion 
of interferometer body particles (thermal noise). 

In formula (1), Lt  is not the absolute distance between the 
geometric centres of two mirrors, which is impossible to stabi-
lise with an accuracy of 10–15, but the generalised coordinate, 
which characterises the cavity length. It may be shown [12] 
that the phase shift of a laser beam with a radiation intensity 
profile g(r) in its reflection from the mirror surface distorted 
by thermal vibrations is expressed as 

( ) ( ) ( , )dt g t rr ku r
S

2fD = y ,	 (2)
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Here, the integral is taken over the mirror surface S; r is the 
position vector of a point on the mirror surface; u(r, t) is the 
displacement of the mirror point with coordinate r from its 
unperturbed position; k is the wave vector of the incident 
radiation aligned with the z axis, which is perpendicular to the 
mirror surface. By using the phase shift Df(t), it is possible to 
introduce the effective surface displacement along the z axis 
for one of the mirrors: 

( )
| |
( )

( ) ( , )dU t
t

g u t r
k

r rz z
S

2fD
= = y .	 (3)

Although the cavity mirror is a complex object with a multi-
tude of degrees of freedom, its effect on the phase of laser 
radiation may be characterised by one generalised coordinate 
(3). The power spectral density of the thermal fluctuations of 
the quantity Uz(t) may be calculated using the fluctuation-
dissipative theorem and the approach introduced in Ref. [13]. 
The formulas for the power spectral density of the thermal 
noise of the mirrors, Gm, and the cavity body, Gsp, are given 
in Ref. [14]:
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where E is the Young modulus; Q is the mechanical Q-factor; 
s is the Poisson coefficient; subscripts sp, sub, and coat apply 
to the materials of the cavity body, the mirror substrates, and 
the reflective coating, respectively; f is the frequency; kB is the 
Boltzmann constant; T is the temperature; D is the thickness 
of the reflective coating; w0 is the radius of the radiation beam 
on the mirror; and L and R are the length and radius of the 
cavity body. The fractional mode frequency instability may 
be calculated from the total spectral noise power Gtot( f ) = 
2Gm( f ) + Gsp( f ) using the formula [15]

( )ln
L
fG f2 2 tot

ys = .	 (6)

The working temperature of the cavity is selected at its 
‘zero CTE point’, i.e. the temperature at which the thermal 

expansion coefficient of the material is equal to zero. This 
minimises the responsivity of the interferometer intermir-
ror distance to temperature fluctuations. Collected in 
Table 1 are the limiting relative instabilities of the mode 
frequency calculated for different materials and cavity 
lengths. One can see that the contribution from the cavity 
body is insignificant for almost all calculated configura-
tions and that the stability is primarily determined by the 
thermal noise of the mirrors. 

3. Lowering of the frequency instability limit 
caused by thermal noise

Among the ways of lowering the thermal noise, the following 
method should be mentioned : lowering the amplitude of the 
thermal noise itself and weakening the effect of thermal noise 
on the stability of cavity length. 

The amplitude of thermal vibrations is determined by the 
specific amount of heat contained in a system and its dissipa-
tion power [13]. The amplitude may be lowered by lowering 
the operating cavity temperature and using high-Q mechani-
cal materials – crystalline sapphire and silicon, fused silica, 
etc. – for making its components [10, 11, 16]. Also showing 
promise for this purpose is a change-over from the commonly 
employed high-reflectivity SiO2 /Ta2O5 coatings to the crystal-
line AlGaAs/GaAs ones, which possess a higher mechanical 
Q-factor [17]. 

One way to suppress the effect of thermal fluctuations on 
the cavity length is to increase the distance between the cavity 
mirrors. First, the relative frequency instability decreases with 
increasing length in accordance with formula (6). Second, in a 
longer cavity the TEM00 spot radius on the mirrors is longer 
and is defined by the expressions: 
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Formulas (7) and (8) apply to the mode of a Fabry – Perot 
cavity of length L consisting of a plane mirror and a concave 
spherical mirror with a radius of curvature R1. In accordance 
with expression (3), increasing the mode spot on the mirror 
contributes to a higher stability of the value of Uz(t) due to a 
greater area of thermal vibration averaging over the mirror 
surface. 

Table  1.   Limiting relative frequency instability of a cavity eigenmode induced by thermal noise.

Body/substrate/coating  
material

Cavity 
temperature/K

Cavity body 
length/mm

Relative 
frequency 
instability*

Body  
contribution  
(%)

Substrate 
contribution  
(%)

Coating 
contribution  
(%)

ULE glass/ULE glass/ 
(SiO2 /Ta2O5)

297 77.5 8.7 ´ 10–16 0.5 65 34

ULE glass/fused silica/ 
(SiO2 /Ta2O5)

297 77.5 4.9 ´ 10–16 2 1 97

ULE glass/fused silica/ 
(SiO2 /Ta2O5)

297 480 6.8 ´ 10–17 11 1 88

Silicon/silicon/ 
(SiO2 /Ta2O5)

124 77.5 2.2 ´ 10–16 10–3 0.1 99.9

* The relative frequency instability caused by thermal noise may be lowered to 10–16 by using higher-Q materials, lowering the working temperature, 
and lengthening the cavity.
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4. Finite element method for modelling  
suspension systems and determining  
the vibrational stability of long cavities 

ULE glass, whose ‘zero point’ is close to the room tempera-
ture, is the traditional material for making high-Q cavities. 
The spectral linewidths of laser systems stabilised to ULE 
cavities approximately 10 cm in length range down to 
0.5  Hz. A characteristic feature of ULE-glass cavities is an 
approximately linear frequency drift of about 0.1 – 1 Hz s–1 
caused by material recrystallisation. The good linearity of 
the drift permits subtracting it and obtaining a relative 
instability of ~10–15 on an averaging time frame of 1 – 10 s 
[18]. The thermal noise of short cavities becomes a hindrance 
to a further improvement of frequency stability. The 10–15 
instability limit was overcome with the use of long mono-
lithic cavities of mass ~20 kg with an intermirror distance of 
~0.5 m [11, 19]. It is evident that lengthening a cavity height-
ens its sensitivity to vibrations as well as to fluctuations and 
uniformity of the temperature. Design and fabrication of 
long monolithic cavities is a challenging scientific and tech-
nical problem. 

For the purposes of spectroscopy of the clock transition in 
a strontium optical clock, which now is under development at 
the VNIIFTRI [20], we designed two laser systems, in which 
698-nm lasers are stabilised to 480-mm long external refer-
ence cavities of ULE glass in horizontal and vertical configu-
rations. It is planned to make the mirror substrates of fused 
silica, which will permit the frequency instability limit induced 
by thermal noise to be lowered to 6.8 ´ 10–17 (see Table 1). 
The requirement of making two ultrastable systems is caused 
by the necessity of comparing their frequencies and determin-
ing the individual characteristics of each of the two systems 
[15]. The development of stabilisation systems with long ULE 
cavities brings up the burning question of temperature stabil-
ity and vibrational cavity stability. Each configuration invites 
the design of a suspension system least sensitive to external 
vibrations. 

The cavity length is affected by two types of mirror defor-
mations under external forces: rotations and displacements 
(translations) [21]. A quantitative analysis of the elastic defor-
mations of reference cavities performed by the method of 
finite elements [19] turns out to be highly beneficial when 
solving the optimisation problem, i.e. the search for support-
ing point positions whereby the displacements and tilts of 
cavity mirrors turn to zero simultaneously. Generally, to 
describe the vibrational susceptibility calls for a complete 
dynamic analysis of cavity motion under the action of peri-
odic perturbing forces at different frequencies, but in our case 
we can restrict ourselves to the solution of the static problem 
for three reasons. First, of highest significance for our sys-
tems is low-frequency noise (with frequencies below 100  Hz), 
because it is poorly averaged over the short and medium 
times (1 – 100 s) of interest to us. Second, the higher fre-
quency noise is quite well suppressed with the use of com-
mercially available passive and active vibration isolation 
systems. Third, the wavelength of a sound wave in the cavity 
material is far greater than its geometric size. This signifies 
that different cavity parts oscillate in phase, and therefore it 
would suffice to consider the deformation induced by a con-
stant ‘instantaneous’ force. It is noteworthy that the cavity 
eigenfrequencies usually exceed several kilohertz, which per-
mits neglecting the resonance nature of vibrations in our 
consideration. 

We denote the susceptibility to vibrations by s and define 
it in accordance with the expression

L
L saD

=t

t
,	 (9)

where a is the acceleration. We set ourselves the task of calcu-
lating the x-, y-, and z-components of vector s. Also, the sus-
ceptibility pertaining to the mirror rotation will be denoted by 
st and the susceptibility pertaining to the mirror tilt by sr. In 
this case, s = st + sr. 

Among the virtues of the horizontal cavity configuration is 
its low susceptibility to vertical perturbations when the sup-
porting points are located at the so-called Airy points (Fig.  1a). 
Finding these points is a well-known problem in the theory of 
strength of materials: this is precisely how the bearings are 
located which support the length standard [22]. The possibility 
that there exists an arrangement such that the displacement 
and inclination angle of the mirrors turn to zero may be under-
stood from the following reasoning. When the suspension 
points are close to each other, the cavity edges bend down 
under gravity and the mirror surfaces turn upwards. When the 
bearings are close to the edges, the central part of the interfer-
ometer body bends down and the mirrors turn downwards. 
Evidently there should be an intermediate arrangement of the 
bearing such that the mirror surfaces remain parallel to each 
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Figure 1.  (Colour online) Model of vibration-immune suspension sys-
tem for a horizontal ULE cavity: (a) the bearings are located at the Airy 
points, (b, c) deformations of a horizontal ULE cavity under the force 
of gravity. 
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other under the action of a vertical force. Similarly, when the 
upper face of the cavity is the plane of support, its body will 
stretch in the direction perpendicular to the optical axis, and 
the mirrors will come closer together due to the Poisson coef-
ficient. When the lower face is the support plane, they will 
recede from each other. Therefore, a stable arrangement is 
always possible to find by optimising the depth d of position of 
bearings and their distance l from the cavity end face (Fig. 2a). 
Due to Hooke’s law, the optimal arrangement is independent of 
the magnitude of the force that gives rise to elastic deformation. 

The displacement and rotation of the cavity mirrors under 
the constant force of gravity was modelled by the method of 
finite-element analysis. Our simulations were made on a spa-
tial grid consisting of ~105 tetrahedral and prismatic ele-
ments. The simulations were performed for different bearing 
parameters d and l. The calculated shifts and tilts are shown 
in Fig. 2b in relation to bearing coordinates. 

Our simulations for a 480-mm long cavity of square sec-
tion yielded the following optimal parameters of bearing posi-
tions: l = 98.68 mm, d = 74.46 mm. The gravity-induced cav-
ity deformations with the use of the optimal parameters l and 
d are plotted in Figs 1b and 1c. 

For a vertical arrangement of the cavity, it is fixed at three 
equidistant points located on its centre-of-mass plane (Fig. 3). 
This suspension system provides equal displacements of the 
upper and lower mirrors under the action of vertical forces 
and, accordingly, a high immunity to vibrations in this direc-
tion. Unlike the horizontal interferometer, the body of the 
vertical one is symmetrically cylindric in shape. The cavity 
body is 7 cm in diameter and 48 cm in length. The biconical 
shape of the interferometer body is most expedient as regards 
immunity to vibrations, because the greatest part of cavity 
mass is concentrated near the suspension points in this con-
figuration (Fig. 3). 

We calculated the susceptibility to vibrations of the verti-
cal and horizontal cavities for accelerations applied along dif-
ferent axes (Table 2). The susceptibility to all kinds of pertur-
bations does not exceed 3 ´ 10–10/g, with the exception of the 
susceptibility of the vertical cavity to horizontal accelerations. 
This characteristic should not become a factor that limits the 
cavity stability, because horizontal accelerations are normally 
several orders of magnitude weaker than the vertical ones in 
laboratory conditions. 

5. Silicon cavity

Among the highly promising materials for high-Q optical 
cavities is monocrystalline silicon, which is transparent for 
the radiation with a wavelength ranging from 1.1 to 6.7 mm 
and has excellent mechanical characteristics. The fractional 
frequency instability of laser systems locked to silicon cavities 
has reached a presently record figure of 4 ´ 10–17 over an 
averaging time of 1 – 1000 s [10]. Furthermore, in silicon there 
are no ageing processes, which are responsible for the fre-
quency drift in ULE cavities, which opens up the possibility 
of developing laser systems with a small (no greater than 2 
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mHz s–1) frequency drift [23]. With the use of a femtosecond 
generator of optical frequencies their stability may be 
imparted to any laser [24].

We pursue research aimed at developing laser systems 
that radiate at a wavelength of 1542 nm and are stabilised to 
silicon 7.75-cm long silicon cavities, whose thermal noise limit 
due to thermal noise is equal to 2.2 ´ 10–16 at a temperature 
of 124 K corresponding to the ‘zero point’ of silicon (Table 1). 
The use of a wavelength from the C band (near 1.5 mm) opens 
up the possibility of transmitting ultrastable signals via fibre 
lines over distances longer than 1000 km [25]. The cavity is 
cooled with the use of our developed cryogenic liquid-nitro-
gen system [26]. The cooler vessel is inside a vacuum chamber, 
and the heat exchange with the cavity is affected by thermal 
radiation. To maintain the level of cooler in the vessel, use is 
made of a system for the production and automatic transfer 
of liquid nitrogen. Its effect on cavity stability, which is pro-
duced by the vibrations emerging in the boiling of nitrogen, is 
eliminated by mechanically decoupling the vessel from the 
remaining part of the vacuum chamber. At a temperature of 
124 K, the measured finesse F * of the silicon cavity for the 
TEM00 mode was greater than 580000. The measurement was 
made by recording the ring-down of the light transmitted by 
the cavity (Fig. 4). 

With the use of the silicon cavity we stabilised the output 
frequency of an erbium fibre laser at a wavelength of 1542 nm. 
The optical configuration of the facility was similar to that 
outlined in Ref. [18]. A slow feedback signal was delivered to 
a piezoelectric actuator and a fast feedback signal was applied 
to an acoustic modulator. This permitted obtaining a total 
loop bandwidth of about 100 kHz, which was limited by the 
PID controller in use. This bandwidth of the feedback loop 

was sufficient for stabilising the spectrally narrow (less than 
10 kHz) emission of the fibre laser with a Bragg grating. 

In the path to achieve the thermal noise limit, various elec-
tronic noise as well as the residual amplitude modulation of 
the laser radiation may be a serious problem. To realise the 
Pound – Drever – Hall technique, the laser radiation is phase-
modulated by an electrooptical modulator (EOM). An inex-
act matching of the plane of light polarisation and the extraor-
dinary axis of the EOM results in a parasitic amplitude modu-
lation of the radiation. The modulation depth may vary due 
to temperature variation, which will introduce additional 
instability into the frequency stabilisation system. As shown 
in Ref. [27], the active compensation of amplitude modula-
tion by applying feedback to the EOM permits its contribu-
tion to the radiation frequency instability to be diminished to 
a level defined by thermal noise and lower. We also plan to 
employ this technique in the future. 

6. Conclusions

The research and development of ultrastable laser systems is 
among the key tasks in the development of optical frequency 
standards and optical frequency transmission lines as well as 
in the generation of radiofrequency fields with a high short-
term stability in the problems of radio photonics. High-Q 
optical cavities make it possible to stabilise the output laser 
frequency to a residual relative instability of ~10–17, which is 
fundamentally limited by thermal noise. A series of investiga-
tions was carried out to develop laser systems stabilised to 
cavities with a low frequency instability limit imposed by 
thermal noise. To achieve a high frequency stability, advan-
tage was taken of two approaches: the use of a long cavity and 
the application of new materials. For the cavity configura-
tions under investigation and development, the fractional fre-
quency instability corresponding to thermal noise was shown 
to be at a level of ~10–16. Cavity mount systems were investi-
gated and optimised, and the attainable cavity susceptibilities 
to acceleration were shown to be equal to ~10–10/g. The sys-
tems under development will be employed in the optical fre-
quency standard based on neutral strontium atoms at the 
VNIIFTRI for interrogating the clock transition at   l = 
698 nm and for stabilising the radiation frequency of a femto-
second optical frequency synthesiser.
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