
Quantum Electronics  48 (5)  401 – 404  (2018)	 © 2018  Kvantovaya Elektronika and Turpion Ltd

Abstract.  The results of experimental and theoretical studies of a 
smooth crossover from a kinematically 2D Fermi gas of ultracold 
atoms into a Bose gas of molecular dimers are compared. The main 
attention is paid to the measurements and calculations in the zero-
temperature approximation. The discrepancies between the results 
are discussed along with the questions that remain still open.

Keywords: laser cooling, low temperatures, Bose – Einstein conden-
sation, Fermi gas.

Laser cooling and trapping of matter [1 – 3] are widely used in 
fundamental and applied research: standards of frequency 
and time have been created on the basis of ultracold atomic 
gases [4, 5]; the interference of de Broglie waves of atoms has 
made it possible to perform highly accurate measurements of 
angular and linear accelerations, including gravity accelera-
tion [6]; gyroscopes based on ultracold atoms are being devel-
oped [7, 8]; the gas of ultracold atoms excited to Rydberg 
states [9, 10] is a promising medium for the implementation of 
quantum informatics algorithms [11].

In experiments with ultracold gases of Bose and Fermi 
atoms, a number of effects were first observed, the mathemat-
ical models of which form the basis of quantum physics, for 
example, the Fermi pressure [12] and Bose condensation [13]. 
To date, a wide range of experiments have been performed 
with Bose condensates [14 – 16] and Fermi gases [14, 17, 18].

Rearranging the interactions by means of the Fano – 
Feshbach resonance [19] made it possible to adiabatically 
transform the gas of Fermi atoms into a Bose condensate of 
molecular dimers [14, 17]. From the theoretical viewpoint, a 
similar crossover was considered in the late 1960s for excitons 
[20] and electrons [21] and later for quarks [22], though only 
recently it was implemented in a gas of ultracold Fermi atoms 
[23] for 3D systems, and then for 2D ones [24].

Kinematically, 2D quantum systems attract attention due 
to the role of fluctuations, which increases with decreasing 
dimensionality. On the one hand, this complicates the descrip-
tion of such systems, and on the other hand, makes their 
physics more interesting [25, 26]. Two-dimensional fermion 
systems include an electron gas in layered systems, such as 
heterostructures [27] and high-temperature superconductors 
[28], 3He films [29], and a so-called nuclear lasagne of neutron 
stars – a region with predominant 2D kinematics, which pos-
sibly limits the pulsar rotation period [30].

In this paper we discuss the results of studying the cross-
over between the fermion and boson states of a two-dimen-
sional Fermi gas, that is, the crossover between the Bardeen –
Cooper – Schrieiffer state and the Bose – Einstein condensate 
(BCS – BEC crossover). We consider a gas of Fermi atoms in 
two equally populated spin states interacting through s-wave 
scattering, the magnitude of which can continuously vary 
within the widest possible limits. The previously published 
experimental data and theoretical calculations are compared. 
The main attention is focused on measurements and calcula-
tions in the zero-temperature approximation. In experiments 
[24,  31,  32], measurements were conducted in an ultracold gas 
of Fermi atoms 6Li trapped in a disk-like potential whose 
shape is close to parabolic:
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where m is the mass of atom; and wz and w= are the potential 
frequencies. The retention along the z axis is much ‘stronger’ 
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than that along other directions, i.e. wz >>  w=. Atoms or pairs 
of atoms mainly populate the ground state of motion along 
the z axis, which makes the system kinematically two-dimen-
sional. 

The pressure value is an indicator of the transition between 
the boson and fermion regimes. In the case when the total 
pressure of both spin components P is close to the pressure 
Pideal of the ideal Fermi gas, the system is fermionic, while 
P/Pideal << 1 corresponds to the bosonic regime. Note that 
Pideal = 2pn2'2/m, where n is the 2D concentration of each of 
the spin components, it also represents the concentration of 
molecules in the BEC limit; and the 2D pressure measurement 
units are the force divided by length.

The measured dependence of the normalised pressure 
P/Pideal on the interaction parameter a n2 , where a2 is the 2D 
length of s-wave scattering, is shown in Fig. 1. Another alter-
native of the interaction parameter accepted in the literature 
is kFa2, where 4k nF p=  is the Fermi wave vector. The rela-
tive pressure increase with increasing a n2  qualitatively cor-
responds to the picture of a crossover from the Bose gas of 
molecular dimers (a n2  << 1) to the Fermi gas of atoms (
a n2  >>  1). The pressure and concentration are measured at 
the centres of the disk-like clouds, because near the centre the 
gas state is closer to the state of a homogeneous gas and has 
the greatest degeneracy due to the smallest local value of T/eF, 
where T is the temperature, and eF = 2pn'2/m is the Fermi 
energy. The dependence presented in Fig. 1 can be regarded 
as the equation of state of the gas, since the dependence 
relates the thermodynamic quantities P and n.

The crossover between the fermion and bosonic regimes 
can also be observed from the change in the chemical poten-
tial m, the results of the measurement of which are shown in 
Fig. 2; the designation eB corresponds to the binding energy 
of a diatomic molecule. In the zero-temperature approxima-
tion dP = ndm, which allows us to compare the data in Figs 1 
and 2. Besides, we can compare the data with the calculations, 
the results of which are also presented in these Figures.

We start the comparison from the fermion regime, a n2  
>>  1, or (conditionally) a n2  > 5, for which the expansion 
with respect to a small parameter is known. In the Fermi-
liquid approximation [34], the pressure is given by expression 
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where f0 = –1/[2ln(kFa2)]. This approximation is shown in 
Fig. 1 by curve ( 3 ). At T = 0, there should be an energy gap 
arising from pairing, which, however, does not significantly 
change the pressure due to gap smallness in the fermion 
regime and the pressure continuity in the course of phase 
transition.

In addition, for the data in Fig. 1, for a n2  ³ 5 (ln(kFa2) 
³ 2.9), the gas is most likely in the regime of a Fermi liquid, 
since the temperature T = (0.02 – 0.15)eF exceeds the pairing 
and phase transition temperature, which is 0.01eF at a n2  = 5 
and decreases with increasing a n2  [38]. For the data in 
Fig. 2, it was also noted (see [36]) that for ln(kFa2) > 2 the gas 
is in a normal non-superfluid phase; the corresponding part 
of the data is plotted by circles. The Fermi-liquid equation of 
state (2) for a n2  >>  1 coincides with the calculation by the 
Monte Carlo method with auxiliary fields [36]. The latter cal-
culation is shown by curves ( 6 ) in Figs 1 and 2 and serve as a 
benchmark for comparing the data on these Figures. 

The data in Fig. 1 lie systematically above the curves cal-
culated from the Fermi-liquid equation of state (2) or by the 
Monte Carlo method [36]. In the experiment [32], the oppo-
site shift of the data is obvious: In the Fermi region, at  
ln(kFa2) > 2.9, the data lie systematically below the Monte 
Carlo curve [36] and, therefore, systematically below the 
curve corresponding to the Fermi-liquid formula (2). Thus, 
the difference between the experimental data in Figs 1 and 2, 
obtained by different research teams in [24] and [32] respec-
tively, is obvious. Therefore, if the corresponding pressure 
values would have been restored from the data in Fig. 2, they 
would be substantially lower than the data in Fig. 1. In these 
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Figure 1.  Normalised pressure at the cloud centre as a function of the 
interaction parameter: ( 1 ) data [24]; ( 2 ) mean-field approximation 
supplemented by fluctuations [33]; ( 3 ) Fermi-liquid theory [34]; ( 4 ) dif-
fusion Monte Carlo method [35]; ( 5 ) Monte-Carlo method on the lat-
tice [37]; ( 6 ) calculation using the Monte Carlo method with auxiliary 
fields [36].
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Figure 2.  Low-temperature equation of state in the 2D BEC – BCS 
crossover. Experimental data [32] were obtained for a quasi-2D gas at 
the lowest attainable temperatures that correspond to /T F -e  0.05 and 
0.1 on the boson and fermion sides. Diamonds and circles are ( 1 ) super-
fluid and ( 2 ) normal phases; ( 3 ) mean-field formula ( m + |eB|/2)/eF = 
–1/[4ln(kFa2)]; ( 4, 5 ) non-self-consistent (1/[1 + ln–1(kFa2)]) and self-
consistent (1 – ln–1(kFa2)) calculations by the Hartree – Fock method for 
weakly attracting fermions; ( 6 ) state equation calculated for the ground 
state by the Monte Carlo method with additional fields [36] (reproduced 
with permission from [32], the rightholder is the American Physical 
Society, 2016).
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experiments, a significantly different number of atoms were 
used, ~103 and ~105, respectively. It remains an open ques-
tion whether the difference in the results of the two experi-
ments is due to the difference in the number of particles or an 
experimental error. It should also be noted that the models 
for a homogeneous medium are used for comparison with the 
data in Fig. 1. The models that take into account retention in 
the parabolic potential do not currently exist. 

The construction of a model describing a 2D Fermi sys-
tem for arbitrary values of the interaction parameter has long 
remained an unresolved problem. Such a model should 
include a description of the fermionic and bosonic limits, and 
also the intermediate region of strong interactions. For 3D 
systems, the approach based on the self-consistent mean field 
of the Cooper pairs turned out successful [14, 21, 39]. This 
approach made it possible to qualitatively correctly calculate 
the thermodynamic quantities at T = 0. After taking into 
account the order parameter fluctuations, it also was possible 
to obtain a quantitative agreement with the experiment, 
including the bosonic regime [40, 41]. For a 2D system, the 
mean-field approach [42] gives a qualitative error in the calcu-
lation of many-particle quantities, for example, the pressure, 
which, in the model framework, remains equal to the Fermi 
pressure even in the Bose limit.

A qualitatively correct description of the crossover for 2D 
systems has appeared only in recent years. The first such cal-
culation was performed by the Monte Carlo diffusion method 
[35] for the ground state; the calculation result is shown in 
Fig. 1. In subsequent years, Monte Carlo methods have been 
significantly developed. Thus, in the Monte Carlo method 
with auxiliary fields [36], it turned out possible to abandon 
the fixed-node approximation previously used in [35]. The 
fixed-node approximation can lead to errors that are hard to 
predict [36]. In addition, the original diffusion Monte Carlo 
method was also developed: The scheme for optimising the 
variational parameters was improved, and a smooth potential 
of the two-particle interaction was used instead of the square 
well [43]. The results of this improved calculation turned out 
to be almost identical to the values obtained by the Monte 
Carlo method with auxiliary fields [36], and therefore they are 
not shown in Fig. 1. Both diffusion methods [35, 43] are vari-
ational, and thus, the lower pressure values correspond to a 
more correct model. Also, in addition to calculating the 
ground state, a Monte Carlo method for the final temperature 
has appeared [37]. It should be noted that all Monte Carlo 
methods give fairly close pressure values, which can be seen in 
Fig. 1. Small differences appear in the region of strong inter-
actions lying between the fermionic and bosonic limits for 
a n2  ~ 1.

The ground state was also investigated in the framework 
of the model [33], in which a mean field of the Cooper pairs is 
used, and the order parameter fluctuations are taken into 
account. The calculation result is shown in Fig. 1 [curve ( 2 )]. 
We note that, unlike the fully mean-field approach [42], this 
model gives a qualitatively correct pressure dependence on 
the coupling parameter a n2 , which lies above the predic-
tions by Monte Carlo methods and is closer to the experimen-
tal data [24] (see Fig. 1). 

The system properties, including those at finite tempera-
ture, are also calculated by the self-consistent T-matrix 
method (the Luttinger – Ward method) [44] and within the 
framework of the analytical approach [45] based on the 
Bethe – Goldstone integral equation, which takes many-parti-
cle effects into account approximately.

In the Bose regime, the pressure and chemical potential 
are determined by the weak repulsion between the molecular 
dimers. Thus, to calculate the pressure, we can use the ana-
lytical approximation for point-type bosons [46]: 
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where a2 – 2 is the 2D s-wave scattering length of molecules on 
each other. In the limit |eB| >> 'wz the pressure can be 
expressed via the 3D molecular scattering length amol: 
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where /( )l m2z z'/ w . In turn, amol can be related to the 
atomic 3D s-wave scattering length a as amol = 0.6a [47 – 49], 
from which the scaling law P/Pideal µ a/lz follows. For the 
Bose region, the normalised pressure dependence on the inter-
action parameter is shown in Fig. 3. The experimental data 
[24] and formula (4) are compared. The vertical axis direction 
is chosen to check the dependence of P/Pideal µ a/lz. It can be 
seen that this dependence is valid in a wide range of a n2  
values.

For the region of strong interactions, a n2  ~ 1, the ques-
tion of violating the two-dimensionality by interparticle inter-
actions remains nontrivial [24, 50 – 52]. Even a small interac-
tion between two atoms mixes the states of atom motion in 
potential (1) along the z axis. The motion of a pair of atoms 
remains strictly two-dimensional, since in the harmonic 
potential the problems of the mass centre motion and the pair 
interaction are separated. The contribution of three-, four- 
and many-particle interactions to the kinematic dimensional-
ity requires clarification. Such a contribution is undoubtedly 
present in the regime of strong interaction, i.e. at the interpar-
ticle interaction energy of the order of kinetic energy. The 
experimental data presented in [50] evidence in favour of vio-
lating the kinematic two-dimensionality in the case of strong 
interatomic attraction. At the same time, these data can also 
be explained without the supposition on violating the kine-
matic two-dimensionality [52]. 

In conclusion, observations and modern calculations of 
the crossover between the Fermi-gas of atoms and Bose-gas 
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Figure 3.  Testing the linear scaling for normalised pressure, P/Pideal µ 
a/lz, in the Bose crossover region. Dots show the measurement results 
(P/Pideal)/(a/lz) vs. the interaction parameter [24], the dashed line is the 
approximation (4).
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of molecules are in qualitative agreement with each other. 
Quantitatively, there are some discrepancies. First and fore-
most, this is the discrepancy between the data of two experi-
ments performed with a significantly different number of par-
ticles. Also, the question of violating the kinematic two-
dimensionality in the regime of strong interactions still 
remains open.
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