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Abstract.  The possibilities and ways for operational tuning of opti-
cal lattice parameters, which make it possible to minimise the fre-
quency-standard uncertainties caused by nonlinear, nondipole, and 
anharmonic effects of interaction of magnesium and calcium atoms 
with the optical lattice field of a magic wavelength, have been inves-
tigated.

Keywords: atom, electromagnetic radiation, standing wave, mag-
netic field, polarisability, hyperpolarisability, multipole interaction.

1. Introduction

Currently, the atoms belonging to the IIA (Mg, Ca, Sr) and 
IIB (Zn, Cd, Hg) groups of the Periodic system of elements, as 
well as rare-earth Yb atoms, are considered to be the most 
promising objects for designing ultrahigh-precision frequency 
and time standards of new generation. An attractive feature 
of these atoms is that they possess a metastable state nsnp(3P0), 
whose radiative decay to the ground state ns2(1S0) corre-
sponds to oscillations of an oscillator with an extremely high 
Q factor. The record stability and accuracy of reproducing 
periods of these oscillations (at a level of a few parts in 1018) 
[1 – 6] stimulate stable interest in the potential of the afore-
mentioned atoms as a base of frequency and time standards. 
The application of optical lattices with magic wavelengths 
lmag, which have been experimentally measured to date with a 
high accuracy [7, 8], makes it possible to advance significantly 
in solving this problem. To this end, consideration of the non-
linear, nondipole, and anharmonic effects of interaction of 
atoms with the optical-lattice field calls for precise lattice fre-
quency control with introduction of the concept of ‘opera-
tional magic frequency’ [9 – 11].

Since magnesium and calcium atoms are the lightest 
among the aforementioned atoms, it is more difficult to cool, 
trap, and confine them in the optical-lattice field as compared 
with the others. In addition, the low natural content of odd 
(fermionic) isotopes of these elements (less than 10 % for mag-
nesium and less than 0.15 % for calcium) with a nonzero mag-
netic moment of atomic nucleus, which provides magnetically 

induced admixture of the 3P1 state to the metastable state 
3P0, is a significant hindrance for observing the strongly for-
bidden line of radiative decay of the metastable state of the 
isotope. However, this transition can be observed in atoms 
of bosonic isotopes by applying an external magnetic field, 
which mixes the 3P0 and 3P1 states [12]. In particular, a mag-
netic field B = 100 G induces a decay of the metastable 3P0 
state in magnesium and calcium atoms at the rate of ~0.01  s–1. 
Thus, a magnetic field may cause a radiative transition (acces-
sible for observation) of an atom from the metastable level to 
the ground state [13, 14]. The frequency shift (quadratic in B) 
of the clock transition, Dncl(B) = – nBB2 (nB  = 2.173 Hz G–2), 
is 21.7 kHz at B = 100  G for Mg atoms. This frequency shift 
of the standard can be taken into account in measurements 
with an uncertainty of ~4 mHz at DB/B » 10–7; i.e., with an 
uncertainty of the magnetic field amplitude |DB| at a level of 
0.01 mG. These estimates show that the necessity of using a 
magnetic field hinders significantly the development of fre-
quency standards based on bosonic isotopes with record 
accuracies.

The nsnp(3P0) ® ns2(3S0) transition is a unique natural 
oscillator with a maximum attainable Q factor of oscillation 
frequency, which is determined by the strength of external 
magnetic field and the spin – orbit splitting energy in magne-
sium and calcium atoms. However, the advantage of light 
atoms, which is provided by the smaller splitting of the triplet 
states 3PJ =  0, 1, 2 into fine-structure sublevels and facilitates 
their mixing by the magnetic field, is lost to a great extent due 
to the lower (as compared with heavy atoms) probability of 
the intercombination transition 3P1 – 1S0. In addition, the 
high radiative recoil energies significantly impede the sec-
ondary cooling of light atoms and achievement of operating 
temperatures at a level of few microkelvins, which are neces-
sary for efficient trapping and confining of atoms by optical 
lattice.

Until now, the aforementioned specific features of magne-
sium and calcium atoms hindered detailed study of the possi-
bility of their application for designing frequency standards. 
Nevertheless, theoretical calculations of the magic wave-
length for calcium atoms [15] and its approximate estimation 
based on the single-electron model potential [16] for magne-
sium atoms and even lighter divalent helium and beryllium 
atoms were performed more than ten years ago [17 – 19].

However, the model potential approach, which yields sat-
isfactory results for monovalent alkali metal atoms, turned 
out to be fairly rough for estimating the susceptibilities of 
divalent atoms and called for additional modifications. These 
modifications provide more correct results, which are in satis-
factory agreement with the quantitative results of experiments 
and more detailed theoretical calculations. A comparison 
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with the precise experimental data on the magic wavelengths 
for strontium, ytterbium, and mercury atoms [7, 8] and with 
the recently measured magic wavelength for magnesium 
atoms [20] made it possible to refine the rules for choosing the 
model potential parameters and the algorithm for taking into 
account the contributions from the inner electrons for numer-
ical estimation of the electromagnetic susceptibilities of atoms 
[9 – 11, 21].

An experimental observation of the clock transition of 
magnesium atoms in a sufficiently strong magnetic field [20] 
makes it possible to design frequency and time standards 
based on an optical oscillator with an extremely high Q fac-
tor, controlled by a dc magnetic field. Since the splitting of the 
3PJ =  0, 1, 2 triplet states of calcium atom exceeds the corre-
sponding splitting in magnesium atoms by a factor of almost 
3, it is quite obvious that a stronger magnetic field is necessary 
for detecting the clock transition line of calcium atoms. To 
take into account the frequency shift of the clock transition 
due to the quadratic Zeeman effect and the related uncer-
tainty of the standard clock frequency, one must perform pre-
cise measurements of the magnetic field amplitude in the 
atomic localisation domain.

In this study, we consider the optimal parameters of the 
optical lattice for magnesium and calcium atoms, which are 
necessary to minimise the standard clock frequency uncer-
tainties induced by nonlinear and nondipole interactions of 
atoms with the standing-wave field. The calculations were 
carried out using previously calculated polarisabilities for 
clock transitions [11, 21]. 

Below, unless otherwise specified, we use the atomic sys-
tem of units, in which 1e m'= = =  and the speed of light c 
numerically coincides with the inverse fine-structure constant 
a = 1/137.036 (c = 1/a).

2. Energy of atomic vibrational motion  
in an optical-lattice potential well 

The vibrational character of atomic motion in the field of the 
optical-lattice Stark potential makes the frequencies of the 
radiation emitted (absorbed) by the lattice-trapped atoms 
deviate from the frequencies of the radiation emitted by an 
isolated atom, even when one chooses the magic frequency 
wmag for the laser radiation forming the optical lattice [9 – 11]. 
This is related to the difference in the spatial distributions of 
the efficiencies of the dipole (E1) and multipole (M1 and E2) 
interaction components between the atom and the fields of 
travelling and standing electromagnetic waves [22, 23]. 
Therefore, the equality of the shifts of clock transition levels 
in a travelling wave in no way means their equality in a stand-
ing wave. In addition, the equalisation of the polarisabilities 
determining the intensity-linear Stark effect is insufficient in 
the field of the atom-trapping optical lattice. Under real con-
ditions, the intensity of the lattice laser field that is necessary 
to confine atoms is so high that, disregarding the nonlinear 
effects caused by higher order hyperpolarisabilities, one can-
not determine the magic frequency with an accuracy required 
to compensate completely for the Stark shift of the standard 
frequency. Along with the difference in the frequency depen-
dences, the hyperpolarisabilities of the clock levels depend 
differently on the degree of elliptical polarisation of the opti-
cal lattice laser radiation [24].

The aforementioned effects lead to the occurrence of addi-
tional ‘nonmagic’ uncertainties, related to the difference 
between the lattice and magic frequencies; these uncertainties 

must be compensated for or taken into account when mea-
suring the standard clock frequency with a higher accuracy. 
To estimate, compensate for, and successfully control the 
influence of these uncertainties on the measurement accu-
racy, one can vary the laser field frequency, intensity, and 
other optical-lattice parameters. In this case, it is necessary 
to know the details of lattice-induced energy shifts of clock 
levels with allowance for the nonlinear and nondipole effects 
of the interaction between an atom and the standing-wave 
field.

An atom trapped by an optical lattice formed by laser 
radiation with a frequency w and intensity I undergoes vibra-
tions in the vicinity of the minimum of Stark potential well. 
The dependence of the atom-confining potential on the shift 
X with respect to the equilibrium position (with allowance 
for the first nonvanishing anharmonic term) can be written 
as [9 – 11]

( , , )U X I( )g e
latt x  » ( , ) ( , )D I U I X( ) ( )g e g e

harm 2x x- +

	 ( , ) ...U I X( )g e
anh 4x- + ,	 (1)

where 

( , ) ( ) ( , )D I I I( ) ( ) ( )g e g e
E

g e
1 2x a w b w x= + 	 (2)

is the well depth counted from the minimum energy of free 
atom; and ( )( )g e

E1a w  and ( , )( )g eb w x  are, respectively, the 
dynamic dipole polarisability and hyperpolarisability of the 
atom in the ground (g) or excited (e) states. The parameter x 
determines the degree of circular polarisation of lattice laser 
radiation, which affects the hyperpolarisability [24]:

( , ) ( ) [ ( ) ( )]( ) ( ) ( ) ( )g e g e
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g e
c

g e
lin2b w x b w x b w b w= + - .	 (3)

Here, ( )( )lin cb w  is the hyperpolarisability in the field of linear 
(circularly) polarised radiation. The dependence of the atomic 
oscillation frequency in the potential well (1) on intensity is 
square-root-like [22, 23]:
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of the dipole and multipole ( ( ) ( ) ( )( ) ( )
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E
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polarisabilities and by the clock-level hyperpolarisabilities. 
The relation for frequency (4) can be derived from the expres-
sion for the coefficient in the harmonic (quadratic in X) term 
of potential (1):

( , ) ( ) ( , )U I I I k2( ) ( ) ( )g e
harm

g e
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g e
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( , )M I
2
( )g e
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= ,	 (5)

where M is the atomic mass and k = w/c is the wave number, 
which coincides with the momentum of optical lattice pho-
ton. In fact, with allowance for the smallness of multipole 
polarisabilities in comparison with the dipole polarisability 
(| ( )( )e g

qm
maga w | << | ( )( )

1
e g
E

maga w |), the atomic oscillation fre-
quency (4) is twice the geometric mean of the photon recoil 
energy E rec = k2/(2M) and the potential depth (2). The expres-
sion for the coefficient in the anharmonic term of potential (1) 
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also depends on the difference between the dipole and multi-
pole polarisabilities and on the hyperpolarisability:

( , ) ( ) 5 ( , )U I I I k
3( ) ( ) ( )g e

anh
g e
dqm

g e
2

4
x a w b w x= +8 B .	 (6)

The energy levels of bound vibrational states of atom in 
potential (1) have the form

( , , ) ( , ) ( , )E I n D I I n
2
1

( ) ( )
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g e g ex x xW=- + +( )g e ` j

	 ( , )E I n n
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where n = 0, 1, . . . is the vibrational quantum number, which 
can be made minimum (n = 0) via additional cooling of lat-
tice-trapped atoms.

When reading the clock transition frequency, the differ-
ence in the energies of the initial and final atomic states auto-
matically includes the difference between the vibrational ener-
gies (7). As a result, the recorded clock transition frequency 
acquires an additional shift, which can be written [neglecting 
the side vibrational frequencies, i.e., on the assumption of 
invariable vibrational quantum number n during the atomic 
transition between clock levels (Lamb – Dicke regime)] as

( , , ) ( , , ) ( , , ) ( , )I n E I n E I n D Icl
latt

e
vib

g
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A specific feature of the anharmonic term of vibrational 
energy (7) is its linear dependence on intensity: 
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Thus, the anharmonic interaction yields an additional contri-
bution to the term of lattice-induced shift that is linear in I 
and proportional to the hyperpolarisability [11]:
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The shift (8) introduces an uncertainty into the measured 
standard clock frequency, which is related to the nonuniform 
distribution of the radiation intensity DI = I – I0 in the locali-
sation domain of lattice-trapped atoms (it is assumed that I0 
is the intensity on the laser beam axis, whereas the intensity 
distribution in the transverse direction is described by a 
Gaussian). The deviation d = w – wmag of the optical lattice 
frequency w from the exact value of magic frequency wmag 
and the uncertainty of the distribution of vibrational quan-
tum numbers n over atoms emitting photons with frequency 
w also contribute to the uncertainty of shift (8). The uncer-
tainty of the distribution of atoms over vibrational states with 
different n can be reduced by decreasing the kinetic compo-
nent of the vibrational energy (7) to the recoil energy E rec, 
which should be lower than the energy of the transition with 
frequency W between vibrational levels. To reduce the uncer-
tainties of the standard clock frequency related to those of the 
laser field intensity and optical lattice frequency, one must 
perform a detailed analysis of the dependences of shift (8) on 
I, d, and x.

3. Determination of the operational magic 
frequencies of optical lattices for magnesium  
and calcium atoms

The accuracy of theoretical calculation of the magic frequen-
cies of such many-electron objects as divalent atoms of alka-
line-earth like elements is not higher than four or five decimal 
places. In the long run, the accuracy of determining the magic 
frequency at a level of eight or nine significant figures is 
obtained only in precise experimental measurements [7, 8]. 
One must take into account that the magic frequency provid-
ing equality of Stark shifts of atomic clock levels in a travel-
ling wave differs from the magic frequency in a standing wave 
of the optical lattice [11].

The absence of the intra-atomic magnetic field in bosonic 
isotopes significantly hinders the observation of the clock 
transition line and determination of magic frequencies for 
magnesium and calcium atoms. Obviously, for this reason the 
magic frequency for magnesium atoms was experimentally 
measured only accurate to the fifth decimal place [20]. In the 
case of calcium, only approximate theoretical estimates of 
wmag are known to date [11, 15], whose accuracy does not 
exceed three decimal places. Nevertheless, the up-to-date 
quantitative estimates of the electromagnetic susceptibilities 
at magic frequencies make it possible to determine a possible 
strategy of minimising the nonlinear and nondipole contribu-
tions to shift (8) using operational fitting of frequency, polar-
isation, and intensity of the optical-lattice laser field.

For simplicity, we will consider a one-dimensional lattice 
and determine the magic frequency by the condition of equal-
ity of electric dipole polarisabilities of atoms in the states cor-
responding to the clock transition levels:

( ) ( )g
E

mag e
E

mag
1 1a w a w= .	 (11)

Having presented shift (8) as a sum of the first few nonvanish-
ing terms in the expansion in powers of intensity I, which 
includes root dependences of the difference in the oscillation 
frequencies DW (I, x) of atom with the same quantum number 
n in the lower and upper clock states,
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we obtain expressions for the coefficients cj (n, w, x) ( j = 1/2, 
1, 3/2, 2) in the form of combinations of the electromagnetic 
polarisabilities and shift d = w – wmag:
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Here, ( )
m
E qm1aD  and Dbm are the differences in the polarisabili-

ties and hyperpolarisabilities of atoms in the states corre-
sponding to the clock transition levels. The increase in the 
coefficients c1/2, c1, and c3/2 with an increase in the vibrational 
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quantum number indicates that atoms must be retained in the 
fundamental vibrational state with n = 0. Therefore, the 
results of numerical calculations of shift (12) are given below 
for only the fundamental vibrational state. As follows from 
(13), when the lattice frequency exactly coincides with the 
magic frequency (d = 0) and the multipole and nonlinear 
effects are neglected ( 0m

qmaD =  and Dbm = 0, respectively), all 
coefficients cj (n, w, x) turn to zero, as well as shift (12). The 
multipole effects and lattice frequency shift relative to the 
magic frequency (d ¹ 0) induce terms with root and linear 
dependences on I, although the contribution of hyperpolaris-
ability (Dbm(x) ¹ 0) to the linear term is related to the differ-
ence in the anharmonic parts of atomic vibrational energy (9), 
(10) at the upper and lower clock levels. The higher order 
terms ( j = 3/2, 2) arise only when the atomic hyperpolaris-
abilities in the upper and lower clock transition states are 
taken into account. The atomic polarisabilities in expressions 
(13) have a subscript m, which corresponds to the frequency 
argument of the coefficients in formula (12) equal to the 
magic frequency (w = wmag).

Table 1 contains numerical values of all the quantities 
entering expression (13); their measurement units suggest that 
the clock standard frequency shift (12) and laser radiation 
intensity are expressed in mHz and in kW cm–2, respectively. 
It can be seen that the minimum values of the hyperpolaris-
abilities of magnesium and calcium atoms correspond to lin-
early polarised laser radiation of the optical lattice (x = 0). We 
choose specifically this case for further numerical calcula-
tions. In particular, having expressed d = w – wmag in MHz, 
we arrive at the following expression for magnesium atoms: 

( , , ) (6.33 8.25)( 1/2)n I n I /cl
latt 1 2n d dD = - +

	 [0.42 (0.397 0.021 )( / )]i n n I1 22d- + + + +

.(0.334 0.0177 )( 1/2) (0.111 0.0059 )i in I I/3 2 2
+ + + - + 	 (14)

The imaginary part of this shift determines the clock-transi-
tion line broadening related to the two-photon ionisation of 
the upper clock level 3s3p(3P0). The data of Table 1 indicate 
that at least two bound vibrational states with quantum num-
bers n = 0, 1 in the optical-lattice potential well may exist only 
at I ³ 20 kW cm–2. In this case, the binding energy of the 
fundamental vibrational level with n = 0 is approximately six 
times higher than the recoil energy E rec, and the binding 
energy of the state with n = 1 almost coincides with E rec; 
hence, the atom located at this vibrational level becomes free 
after the first scattering of optical lattice photon. For the fun-
damental vibrational state at I > 20 kW cm–2, the most 
important term in expression (14) is that quadratic in I. 
Numerical estimates show that, at I < 200 kW cm–2, the cor-
rections to expression (14) that are proportional to higher 
powers of intensity (I 5/2, I 3, . . .) do not exceed 0.01 % of the 

quadratic correction. The negative contribution of the last 
term on the right-hand side of (14) can be compensated for by 
only the linear term with a negative d value. Relation (14) can 
be used to estimate numerically the lattice parameters satisfy-
ing the most important conditions for the metrology of mag-
nesium atoms, which require, on the one hand, to hold atoms 
in the bound states of potential (1), and, on the other hand, to 
minimise the uncertainties of the clock transition frequency.

Figure 1 shows a dependence of shift (14) on intensity I 
and detuning d. Obviously, at a small decrease in the lattice 
frequency relative to the magic frequency (– 80 < d < 
– 40 MHz) and intensities I < 100 kW cm–2, the term linear in 
I makes a positive contribution to the shift of standard clock 
frequency. At sufficiently high intensities (I > 100 kW cm–2), 
this contribution is compensated for by the negative qua-
dratic term. Thus, intensity fluctuations in the range of 
90 – 110 kW cm–2 barely affect the frequency shift, reducing to 
minimum the uncertainty of measuring the clock transition 
frequency. It can be seen in Fig. 1 that the dependence 

( )Icl
lattnD  is weakest at d values in the vicinity of –50 MHz. In 

this case, the shift cl
lattnD  is close to zero.

Figure 2 shows the dependences ( )Icl
lattnD  for d = – 50 ± 

0.02 MHz. It can be seen that, for d = – 50 MHz [curve ( 3 )] 
and intensity I = 100.5 kW cm–2 distributed over different 
atomic sites in the lattice with a relative uncertainty of ±1.5 %, 
the shift induced by the lattice field is 938.7 ± 0.1 mHz, which 
corresponds to an uncertainty of the standard clock frequency 
of no more than three parts in 1019. At a shift of the lattice 
frequency with respect to the magic one by d = – 50 ± 0.2 MHz 
and a relative spread of intensity over atomic sites of 10 %, the 

Table  1.  Polarisabilities of magnesium and calcium atoms, determining the main parameters of the ‘magic’ lattice, which are necessary to calculate 
the lattice-induced shifts (12) – (15) and related uncertainties of frequency clock standards.

Atom lmag/nm
ncl/
THz

amE1/[kHz
(kW cm–2)–1]

Dam
qm/[mHz

(kW cm–2)–1]
D  bmlin/[mHz 
(kW cm–2)–2]

D  bmc /[mHz 
(kW cm–2)–2]

Wm/I1/2/[kHz 
(kW cm–2)–1/2]

¶(DamE1)/¶n/
[10–9 (kW cm–2)–1]

E rec/
kHz

n0
BBR/
GHz

nB/
Hz G–2

Mg 468.46 [20] 655 17.5 5.48 111 + 5.88i 1735 + 8.69i 51.5 0.42 39.7 0.424 2.173

Ca 747 455 48.0 –2.0 497 1024 41.4 0.273 8.94 0.64 0.8355

Note: the constant n0
BBR determines the dependence DnclBBR(T ) = – n0

BBR(T/300)4 of the thermally induced frequency shift on the environmental 
temperature T, and the constant nB determines the dependence of the quadratic Zeeman frequency shift on the magnetic field; Dncl(B) = –nBB2.
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Figure 1.  Dependence of the frequency shift (14) of the clock transition 
in magnesium atoms on intensity I and detuning.
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contribution of shift (14) to the uncertainty of the standard 
clock frequency does not exceed two parts in 1017.

The expression [similar to (14)] for the frequency shift of 
the clock transition in calcium atoms, induced by a lattice 
with magic frequency, can be written as

( , , ) (0.0589 0.432)( 1/2)n I n I /latt 1 2n d dD = + +cl

	 [0.2 . ( 1/2)]n n I73 0 138 2d- + + +

	 0.4 ( 1/2) 0.n I I28 497/3 2 2
+ + - .	 (15)

The numerical data of Table 1 show that an intensity of I = 
10  kW cm–2 is sufficient to trap and confine calcium atoms 
with four bound vibrational states having vibrational quan-
tum numbers n = 0, 1, 2, 3. In this case, the well depth D is 
more than 55E rec, the vibrational frequency W  » 15E rec, and 
the binding energy of the ground state exceeds 50E rec.

Figure 3 shows a dependence of shift (15) on intensity I 
and detuning d for calcium atoms. It can be seen that, at d = 
–30 MHz, the intensity dependence of shift (15) is fairly 
smooth, so that lattnD cl  » 34.5 mHz, with an uncertainty of no 
more than 1.5 mHz (caused, for example, by a 20 % nonuni-

formity of intensity distribution over atomic sites in the opti-
cal lattice [I = 9 ´ (1 ± 0.2) kW cm–2]. This uncertainty corre-
sponds to an uncertainty of standard clock frequency of three 
to four parts in 1018.

The above calculations demonstrate a number of advan-
tages of calcium atoms in comparison with magnesium ones 
for precise spectroscopy in optical lattices with magic fre-
quency; these advantages are related to the larger weight of 
Ca atom and, correspondingly, smaller degree of its ‘heating’ 
by the recoil energy, and also to its larger electric dipole 
polarisability, which provides efficient confinement of atoms 
by the lattice at a laser field intensity of no more than 
10 kW cm–2 (whereas Mg atoms call for an intensity of no less 
than 100 kW cm–2).

4. Conclusions

We performed theoretical calculations and estimations of the 
frequency shifts of optical clock standards, induced by non-
linear and nondipole effects of interaction of atoms with the 
field of optical lattice with magic frequency, which yielded 
quantitative information for precise spectroscopy of ultracold 
magnesium and calcium atoms in optical lattices. The strongly 
forbidden transitions between the ground and metastable 
states of these atoms can be used to develop new frequency 
standards.

The frequency shifts of the clock transition in magnesium 
and calcium atoms, induced by the higher order effects of 
interaction of these atoms with the optical-lattice field, and 
their dependences on the uncertainty of the frequency and 
intensity of the laser radiation forming the optical lattice must 
be taken into account, along with the corrections for the black 
body radiation (see table), when performing measurements 
and determining the accuracy of frequency standards. In par-
ticular, to reproduce the clock transition frequency in magne-
sium atoms with a relative uncertainty of no more than 10–17, 
the operational magic frequency should be 40 – 60 MHz lower 
than the magic frequency measured in the weak field of trav-
elling wave and the magnitude of laser frequency deviation 
from the operational frequency should not exceed 100 kHz. 
The relative deviation of intensity from the optimal value I = 
100 kW cm–2, which is necessary to hold ultracold atoms in 
the lattice, should not exceed 10 % – 15 %.

The similar decrease in the operational lattice frequency 
for calcium atoms by 29 – 30 MHz in comparison with the 
magic frequency makes it possible to reduce the frequency 
standard uncertainty induced by nonlinear, nondipole, and 
anharmonic effects of interaction of Ca atoms with the opti-
cal-lattice field. In particular, a frequency standard uncer-
tainty at a level of three to four parts in 1018 can be attained 
at a relative uncertainty of laser frequency in the tenth deci-
mal place and at a 20 % nonuniformity of intensity distribu-
tion over atomic sites in the lattice. Since calcium atoms have 
a higher (by a factor of almost 3) electric dipole polarisability 
and lower recoil energy as compared with magnesium, the 
optimal intensity of lattice laser radiation can be almost an 
order of magnitude lower than that for Mg atoms.

Bosonic atoms with zero nuclear magnetic moments dom-
inate in natural magnesium and calcium isotopes. This cir-
cumstance calls for fairly strong magnetic fields in order to 
induce and detect strongly forbidden radiative transitions 
between the clock energy levels in these elements. Estimations 
of the probability of the magnetically induced decay of a 
metastable state show that one must use magnetic fields 
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higher than 100 G for stable observation of a clock transition. 
The clock transition frequency changes due to the quadratic 
Zeeman effect by more than 20 and 8 kHz in Mg and Ca 
atoms, respectively. At an uncertainty of the acting magnetic 
field at a level of seventh decimal place, the Zeeman shift 
introduces an uncertainty into the standard clock frequency 
at a level of a few parts in 1017.

The results of numerical calculations of electromagnetic 
polarisabilities, given in the table, were obtained based on the 
modified model potential method, whose error can be esti-
mated as 5 % – 7 % [11]. 

The data obtained are indicative of significant differences 
in the possibilities of practical manipulation with magnesium 
and calcium atoms in optical lattices. In particular, the uncer-
tainty of the clock standard frequency shift related to the non-
uniform distribution of radiation intensity in the direction 
perpendicular to the laser beam for calcium atoms is much 
smaller than that for magnesium atoms, as follows from com-
parison of Fig. 3 with Figs 1 and 2.
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