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Abstract.  A statement of the quantum turbulence problem in both a 
Bose – Einstein condensate (BEC) and superfluid helium is formu-
lated. In superfluid helium use is made of a so-called vortex fila-
ment method, in which quantum vortices are represented by string-
like objects, i.e. vortex lines. The dynamics of the vortex lines is 
determined by deterministic equations of motion, supplemented by 
random reconnections. Unlike He II, the laws of the dynamics of 
quantum vortices in BEC are based on the nonlinear Schrödinger 
equation. This makes it possible to obtain a microscopic description 
of the collision of vortices, the structure of a vortex filament, etc. 
A comparative analysis of these complementary approaches is car-
ried out. It is shown that there are some features that do not auto-
matically transfer the results obtained for BEC to vortices in He II 
and vice versa. 

Keywords: Bose – Einstein condensate, quantum vortices, superfluid 
turbulence, topological defects. 

1. Introduction 

The investigation of quantum vortices initiated by the discov-
ery of superfluidity in liquid helium has received a new power-
ful impetus after the discovery of a Bose – Einstein condensate 
(BEC) for ultracold atomic gases (see, for example, reviews 
[1, 2]) and observations of a new type of quantum liquids with 
experimentally controlled parameters. A critically important 
circumstance is that, unlike superfluid helium, for BEC there 
is a microscopic theory that describes the dynamics of the sys-
tem and, in particular, the structure and evolution of quan-
tum vortices. Theoretical aspects of the BEC dynamics were 
set forth in a well-known book by Pitaevskii and Stringari [3]. 
In the domestic literature we should mention papers by 
Chapovsky [4], Likhanova et al. [5], and Taichenachev et al. [6]. 

As in superfluid helium, of special, possibly leading, place 
is the study of vortex states in BEC, in particular, the exami-
nation of the dynamics of a chaotic tangle of vortices, or the 
so-called quantum turbulence (QT). The presence of micro-
scopic theory and expanded experimental possibilities make 
BEC a more advanced system that allows a deeper and more 
thorough research of QT problems. However, the question 

arises as to how far the results on chaotic vortices obtained 
for BEC are applicable to superfluid helium. In this paper, a 
statement of the QD problem in both BEC and superfluid 
helium (Sections 2 and 3) is formulated and a comparative 
analysis of the various approaches is carried out (Section 4). 
The Conclusion discusses the degree of compatibility of both 
approaches. 

2. Quantum turbulence in superfluid helium 

Based on quantum mechanical properties of a superfluid liq-
uid, Feynman [7] and Onsager [8] predicted that the He II 
vortex motion is realised in a very specific way. In particular, 
they suggested that one-dimensional singularities, or vortex 
threads, arise in helium, on which the condition Ñ ́  us = 0 is 
violated. A circular motion or circulation of a superfluid 
helium component is possible around these singularities. The 
quantum mechanical properties of a superfluid liquid impose 
restrictions on the circular motion. For example, the circula-
tion of the superfluid component velocity takes only certain, 
quantised values: 

d j=ls kuy ,	 (1)

where the integral is calculated along any contour enclosing 
the filament, and the vorticity quantum is 

2 /mHe'pk = =  9.97 ́  10–4 cm2 s–1.	 (2)

The vorticity field #( )r sdw u=  is such that w(r) = 0 and  
w(r) = ∞ outside and on the line, respectively. Formally, the 
vorticity field w(r) can be represented as follows: 

#( ) [ ( , )]d tr s r ssd dk xw u= = -y ,	 (3)

where the integration takes place along the filament. 
Thus, quantum vortices behave absolutely identical to 

thin vortex tubes studied in classical hydrodynamics, except 
that the latter are considered only as a convenient and fruitful 
mathematical model. A vortex filament can be described in 
parametric form by the function s(x, t), where s is the radius 
vector of the point of the line, and the parameter x ‘recalcu-
lates’ the points of the line; often, the value of x is the arc 
length (Fig. 1). The set of lines {s(x, t)} evolves, obeying the 
equations of motion and boundary conditions. If the vorticity 
field w(r) is known, we can easily write the expression for the 
velocity of the elements of the vortex filament ( , )tsi xo  induced 
by the vortex line. This expression using the Biot – Savart law 
will have the form: 
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In addition to deterministic evolution, there is a stochastic 
element of dynamics, i.e. random collisions of filaments with 
each other, followed by reconnection. The study of vortices 
and vortex dynamics within the framework of the described 
procedure is called the vortex filament method. 

The term ‘quantum turbulence’ was introduced by 
Feynman in his fundamental work [7], where he explained 
the results obtained by Gorter and Mellink [9]. Gorter and 
Mellink observed a sharp increase in the temperature dif-
ference in a He II counter flow, when the velocity exceeded 
a certain, rather small, value. Feynman associated the cri-
sis of Gorter and Mellink with the appearance of an unor-
dered set of quantum vortex lines, or a vortex tangle in the 
system, which impedes the entropy-transferring flow of the 
normal component. Feynman also proposed a qualitative 
scenario for the development of the vortex tangle. In par-
ticular, he described the mechanisms that lead to an 
increase in the density of the vortex filaments, and pro-
posed the laws of a decay of the vortex tangle. Feynman’s 
ideas were developed in a series of experimental works by 
Vinen, who constructed a phenomenological theory of 
superfluid turbulence. The first clear confirmation of 
Feynman’s ideas was obtained three decades later in the 
work of Schwarz [10], who demonstrated the appearance 
of a vortex tangle in direct numerical simulation. An exam-
ple of a vortex coil developing in a He II counter flow from 
initially smooth (six) vortex rings is shown in Fig. 2. After 
almost another three decades, a series of experiments was 
performed on the visualisation of helium flows, in which 
the authors observed many disordered vortices (see, for 
example, review [11]). 

At present, the QT theory is an actively developing field, 
which has many applications both in the theory of superfluid-

ity and in other spheres of physics. Examples include classical 
turbulence theories [11 – 13], cosmic strings [14], dislocations 
in solids [15] and phase transitions [16]. The QT concept is 
also used in the study of quark – gluon plasma [17] and in the 
physics of neutron stars [18]. 

Another justification for interest in QT, attractive to theo-
rists, is that the theory of superfluid turbulence is an elegant 
task of statistical physics for the set of string-like objects with 
nonlinear and nonlocal interactions. An additional complex-
ity is the reconnection, leading to the merging or splitting of 
the vortex loops (see review [19]). 

3. Quantum turbulence in a Bose – Einstein 
condensate 

Because of the absence of a rigorous microscopic theory for 
He II, the results related to vortices in superfluid helium have 
a phenomenological character. This concerns the equation of 
motion, the structure of the nucleus, the reconnection proce-
dure, etc. Therefore, there are various artificial recipes, such 
as ‘reconnection ansatz’ [19]. In contrast, the dynamics laws 
for vortices in BECs are based on the Gross – Pitaevskii equa-
tion (GPE) for the macroscopic wave function y(r, t), which is 
nothing but a variant of the nonlinear Schrödinger equation. 
The GPE was used by different authors to study turbulence 
(see review [20]). In this regard, many of the listed problems 
have solutions that are widely used to interpret similar phe-
nomena in superfluid helium. 

Following [21], we write the GPE for the macroscopic 
wave function y(r, t) in the form 
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The Ginzburg – Landau free energy functional H{y} can be 
represented in the form 
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Figure 1.  Schematic representation of a vortex line in an arbitrary coor-
dinate system. Each point of the vortex line  s(x, t) is determined by the 
Cartesian coordinates x, y, z and the parameter x along the line. The 
vectors s', s'' and s' ́  s'' are the tangential vector, the local curvature vec-
tor, and the binormal vector, which coincides with the direction of the 
locally induced velocity so  of the point of the vortex line s(x, t). 

Figure 2.  Vortex tangle in a He II counter flow (see the text). The figure 
is borrowed from [10] (Fig. 13). 



407Chaotic vortex filaments in a Bose – Einstein condensate and in superfluid

	 +  ( )V r+| | | |
m
U
2 ext

0 24y ( )ry E.	 (6)

A term with a coefficient L describes relaxation processes at 
finite temperatures, and, consequently, evolution must be of 
dissipative character. An external potential Vext(r) (for exam-
ple, a potential of confinement of BEC atoms in a trap) is 
introduced into the expression for the energy of the system. 
The quantity d( )U U r r0 = y  is the interaction amplitude of 
two particles [U(r) is the real two-particle interaction poten-
tial of atoms]. In this case, the chemical potential is  m = nU0 
(n is the concentration of particles in the condensate). 

The vortex lines (more precisely, the central lines of the 
vortex) are the geometric locus of the intersection points of 
the surfaces Re y(r, t) = 0 and Im y(r, t) = 0 (Fig. 3). Thus, fol-
lowing the evolution of the zeros of the function y(r, t), we 
can describe the evolution of vortices. Due to the fact that the 
vortex lines are a set of points involving the vanishing of the 
macroscopic wave function, they are also called topological 
defects. 

The Gross – Pitaevskii equation corresponds to the case of 
weak external perturbations and asymptotically weak atomic 
interactions. Therefore, in describing turbulence (which cor-
responds to strong perturbations), this equation can provide 
only qualitative results. The general picture, which follows 
from the numerical simulation of the GPE, is as follows. With 
strong perturbations, quantum vortices appear that evolve, 
collide, join with each other (or split), and finally form an 
entangled vortex tangle. The decay of turbulence occurs due 
to the appearance of Kelvin waves and phonon emission. The 
importance of vortex reconnection was emphasised by 
Svistunov [22]. Numerical simulation based on the GPE was 
considered by Kobayashi and Tsubota [23]. 

The method for producing highly nonequilibrium states 
of atoms was developed by Yukalov (see, for example, 
[24,  25]). The idea of this method is to modulate the trap 
potential through a nonstationary, inhomogeneous and 
anisotropic perturbation. When the trap rotates at a normal 
speed, separate vortices must appear. At a higher rotation 
speed, there are many vortices that form the Abrikosov lat-
tice. In contrast, if the nonstationary field modulating the 
trap potential, like Yukalov’s method [24 – 26], does not have 

a fixed rotation axis, then vortices and anti-vortices randomly 
located in space are produced, so that the vortex system 
becomes a mixture of such random vortices [27]. The main 
idea is that the perturbing alternating potential does not have 
a single fixed rotation axis. For example, a modulated field 
can have two dielectric axes. It is also possible, instead of 
modulating the trap potential, to modulate the atomic scat-
tering length by using the Feshbach resonance methods with 
an oscillating magnetic field [25, 28]. 

In the case of applying an external variable potential to a 
trap of Bose-condensed atoms, many coherent topological 
modes are generated that decay into vortices with quantised 
vorticity, since they are the most energetically stable modes 
[29]. When the number of generated vortices becomes suffi-
ciently large, they form a random tangle typical of QT. The 
generation of QT of trapped Bose gases by the nonstationary 
modulation of the trap potential was experimentally realised 
by the Bagnato group [30]. The method for visualising vortex 
filaments in weakly interacting Bose – Einstein gases consists 
in measuring the optical density, the lines with an abnormally 
low density being associated with vortex filaments (Fig. 4). A 
description of all the dynamic regimes, starting from an equi-
librium Bose gas to producing individual vortices, and then 
generating QT, is given in [30, 31]. 

4. Comparative analysis of the two approaches 

One of the key questions is whether the two approaches are 
identical and whether the results obtained for BEC can be 
used to explain the results in the case of superfluid helium and 
vice versa. As discussed above, because of the absence of a 
rigorous microscopic theory for He II, the conclusions con-
cerning the dynamics of vortices in superfluid helium have a 
phenomenological character. In contrast, the dynamics laws 
for vortices in BEC are based on the widely applied Gross – 
Pitaevskii theory. Therefore, many problems of vortex 
dynamics in BEC have solutions that can be used (with some 
reservations) to interpret similar phenomena in superfluid 
helium [32]. 

The representation of vortex filaments in helium in the 
form of infinitely thin lines gives an indisputable advantage 
associated with computer calculations. Indeed, in the case of 
three-dimensional computations with a chosen step of the 
spatial partition, or the number N of nodes connected to it, 
computer costs grow as N 3 for BEC. At the same time, in 

Rey(r, t) = 0

Imy(r, t) = 0

Figure 3.  (Colour online) Schematic representation of the vortex line as 
a topological defect. The vortex line is the geometric locus of points 
where the values of the macroscopic wave function (its real and imagi-
nary parts) vanish. 

200 mm

a b

Figure 4.  (a) Atomic optical density in BEC after 15 ms of free expan-
sion, showing the presence of vortex structures (dark regions; vortex 
filaments spread all around the sample and resemble the vortex tangle 
regime), and (b) schematic diagram showing the inferred distribution of 
vortices as obtained from the image in Fig. 4a. The figure is borrowed 
from [30].
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studying the dynamics of vortex lines in superfluid helium, 
computer costs grow much slower, namely, as N lnN. This 
allows one to calculate very dense vortex tangles. Then, the 
fact that quantum vortices in superfluid helium are linear sin-
gularities is very important also from the point of view of 
applications for other systems, for example, for vacancies in 
solids or for cosmic strings. 

In contrast to superfluid helium, where the nuclear size is 
on the order of interatomic distances, in a weak ideal Bose gas 
the core radius a0 is much larger. Using equations (5) and (6), 
we can determine the structure of the vortex filament core. 
Near the central line of the vortex, the density of the super-
fluid component increases from zero and at a size of the order 
of a0 becomes equal to the equilibrium value. In other words, 
quantum vortices in BEC, in contrast to He II (where they 
can be considered infinitely thin lines), are tubes with a size 

a
mnU2

0

0

'= .	 (7)

As a result, in numerical studies of QT in superfluid helium, 
such quantities as the characteristic size of the computational 
volume D, the typical distance between the lines and the 
nucleus radius a0, are extremely separated in the space of 
scales. For example, in typical numerical studies, the compu-
tational volume is ~1 cm in size, the intervortex distance is on 
the order of 10–3 – 10–4 cm, and the size of the nucleus a0 in 
helium is about 10–8 cm, and so the total difference in scales is 
eight orders of magnitude. In the numerical simulation of 
BEC it is much smaller. For example, in the works of 
Kobayashi and Tsubota [23], the size of the computational 
volume was D » 10–3 cm, while the size of the nucleus was 
~10–5 cm. Thus, these sizes differ only by two orders of mag-
nitude. This quantitative difference leads to strong qualitative 
differences. Of course, one can choose such parameters in the 
GPE, so that the problem formally corresponds to the case of 
superfluid helium. However, this will require a record number 
of calculations (on a grid of approximately 1000003), which, 
certainly, is unrealistic. 

The difference in the thicknesses of the vortex nuclei 
affects the laws of motion. For example, since the size of the 
nucleus in BEC is not very small compared to the inverse cur-
vature of the line, then, unlike the case of He II, the velocity 
of the central line can be disproportionate to its curvature. 

Another important difference between He II and BEC is 
that the latter is an essentially compressible gas. For small 
perturbations of density, linearised equations (5) and (6) yield 
a solution in the form of sound waves propagating with the 
speed of sound 

c
m
U n0= .	 (8)

The velocity of the linear elements of the vortex filament is 
not very small in comparison with the speed of sound. Indeed, 
it follows from expressions (7) and (8) that the speed of sound 
is c » k/a0 and the velocity of the elements of the line is uline = 
k/d, where d is the characteristic intervortex distance. 
Therefore, the Mach number M = uline /c = a0/d is not very 
small (in comparison with its value in the case of helium). 
This means that even large-scale movements of the filaments 
emit sound. In He II, this process takes place only for 
extremely small scales. In connection with this, the condition 
for the decay of the vortex structure in BEC, associated with 

the emission of sound, is much weaker. As a result, the kinetic 
energy related to the vortices decreases significantly, and the 
distribution of ordinary (nonsound) energy in the k-space 
(energy spectrum) changes. 

Then, because of a ‘thick’ vortex core, the vortices in BEC 
lose a much larger part of their vortex energy during recon-
nection, emitting it in the form of phonons (due to a ‘thick’ 
vortex core and a low sound velocity). For example, recent 
calculations [33] showed that reconnection is accompanied by 
emission of sound waves with a wavelength on the order of 
the core radius a0. In superfluid helium, energy losses during 
reconnection can be neglected. 

In addition to the described differences between super-
fluid helium and BEC, there are such features as, for example, 
the inhomogeneity of the latter due to the presence of traps, 
and also a comparatively small number of atoms. 

5. Conclusions 

Thus, we have demonstrated that a quantitative difference in 
the parameters of quantum vortices leads to strong qualita-
tive differences. In particular, compressibility is essential for 
BEC, vortices are not ‘strings’ and dynamics inside the core of 
vortex tubes is important. The compressibility property 
makes it impossible, for example, to compare the results for 
QT with the results of the Kolmogorov theory for classical 
turbulence. The fact that vortices in BEC are not string-like 
objects, does not allow one to apply the results obtained in the 
case of BEC to other systems with linear typological defects, 
in particular for dislocations or for space strings. The finite 
thickness of the vortex core also leads to a different dynamics 
of the vortex tubes in superfluid helium and in BEC. 

It is often asserted that one can act absolutely formally 
and choose a very large value of U0 in the GPE, such that the 
size of the vortex core a0 is, on the contrary, small and the 
problem would correspond to the case of superfluid helium. 
However, in our opinion, this approach is incorrect. The fun-
damental reason is that in this case, in accordance with for-
mulas (7) and (8), the interaction constant U0 needs to tend to 
infinity. But the system, of course, ceases to be weakly inter-
acting, and the Gross – Pitaevskii theory becomes inapplica-
ble. Then, this procedure cannot be carried out in experimen-
tal studies, since the parameters of the system are specified by 
the properties of the gas. In numerical studies, as mentioned 
above, in this case a record amount of computation, exceed-
ing the capabilities of any modern computers, will be required. 

The caveats stated above show that any results (as numer-
ical and experimental and so analytical) obtained for BEC 
cannot be automatically applied to the case of superfluid 
helium and vice versa. At the same time, separate research 
does not exhaust all scientific problems. It seems that the best 
option is to combine the two described approaches that com-
plement each other. 
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