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Abstract.  We report the application of the resonant dipole – dipole 
interaction of Rydberg atoms for the realisation of quantum com-
putations with ultracold neutral atoms. Coherent population oscil-
lations between the collective states of systems consisting of two 
interacting atoms make it possible to implement two-qubit phase 
gates, which are necessary for universal quantum computations. 
The schemes studied are alternatives to two-qubit gates based on 
the Rydberg dipole blockade effect. In contrast, the schemes we 
propose do not require large dipole – dipole interaction energies and 
can be realised for atoms that are at a considerable distance from 
each other.

Keywords: Rydberg atoms, quantum computations, adiabatic passage.

1. Introduction

Considerable progress has been recently made in the experi-
mental realisation of quantum computations [1]. The most 
important recent achievements are related to the creation of 
quantum registers consisting of 50 separate qubits, two-level 
quantum systems, based on Josephson tunneling in supercon-
ductors [2]. At the same time, the accuracy of two-qubit oper-
ations in such systems remains insufficiently low, and scaling 
to a large number of qubits while maintaining individual 
addressing is quite a challenge [3]. The high accuracy of two-
qubit operations is demonstrated with ultracold ions in radio-
frequency electric traps [4, 5]. Yet, the scaling of quantum 
registers consisting of ions is also hampered by complex oscil-
lations of the ion chain [6].

In this connection, ultracold neutral atoms are of particu-
lar interest for creating a large-scale quantum register [7 – 9]. 
Recently, one-dimensional, two-dimensional and three-dimen

sional arrays of optical dipole traps loaded with single ultra-
cold alkali metal atoms with individual addressing to each 
individual atom have been demonstrated [10 – 13]. An exam-
ple of a two-dimensional array of optical dipole traps is 
shown in Fig. 1a. The logical states of qubits are long-lived 
hyperfine sublevels of the ground state of atoms, which ensure 
a long-term storage of quantum information [7, 9].

The methods of initialising the initial quantum state of the 
register with the use of optical pumping and optical detection 
of quantum states of qubits by the resonance fluorescence sig-
nal have been successfully implemented. Accurate single-qubit 
gates are demonstrated using resonant microwave radiation 
that induces magnetic dipole transitions between hyperfine 
sublevels of the ground state of alkali metal atoms. The indi-
viduality of addressing to individual qubits is achieved by 
irradiating individual atoms with focused nonresonant laser 
radiation. Due to the light shift arising in the field of such 
radiation, the energy levels of the chosen qubit are tuned to 
the resonance with microwave radiation [11].

The main difficulty preventing the creation of quantum 
computers based on ultracold neutral atoms is the compara-
tively low accuracy of the two-qubit gates. For their imple-
mentation, use can be made of the Rydberg dipole blockade 
effect [14] when, upon irradiation of two atoms by resonant 
laser radiation exciting Rydberg energy levels, there occurs a 
collective energy level shift due to a strong interatomic inter-
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Figure 1.  ( a ) Scheme of a quantum register consisting of single ultra-
cold neutral atoms trapped in an array of optical dipole traps with indi-
vidual addressing to each individual atom by focused laser radiation, 
( b ) dipole – dipole interaction of two Rydberg atoms (the quantisation 
axis is directed along the external electric field), ( c ) Förster resonances 
for two interacting Rydberg atoms and ( d ) detuning from the Förster 
resonance for the transition between the collective states ,| r ra b  and 
,| r rs t .
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action, for which both atoms are in the Rydberg state. With a 
sufficient strong interaction (for example, much higher than 
the Rabi frequency of laser excitation), such collective energy 
levels are expelled from resonance with laser radiation and 
the simultaneous excitation of two Rydberg atoms becomes 
impossible. As a result, a system of two interacting atoms 
turns out to be in an entangled collective state containing only 
one Rydberg excitation. This can be used to implement two-
qubit ‘controlled-Z’ (CZ) and ‘controlled-NOT’ (CNOT) 
gates. Despite the fact that, according to theoretical calcula-
tions, the accuracy of such quantum operations can reach 
99.99 % [15], the experimentally measured accuracy does not 
exceed 73 % [16].

This can be due to a number of reasons. The Rydberg 
energy levels are extremely sensitive to parasitic electric fields 
(their polarisabilities increase with increasing principal quan-
tum number n as n7 ). The complex structure of the Stark sub-
levels of strongly interacting Rydberg atoms can lead to par-
tial or complete destruction of the dipole blockade and to a 
loss of coherence during laser excitation. In this connection, 
of interest are alternative schemes for the implementation of 
two-qubit gates that do not require a high dipole – dipole inter-
action energy. Such schemes can make use of electrically tun-
able Förster resonances, which have been demonstrated and 
investigated in a number of experiments [17 – 21].

In this paper, we consider schemes of two-qubit gates based 
on a resonant dipole – dipole interaction. In the first scheme, 
a coherent dipole – dipole interaction of rubidium atoms is 
used in the conditions of an exact Förster resonance tuned by 
an electric field. The accuracy of the two-qubit gate is esti-
mated taking into account the finite lifetimes of Rydberg 
states and the influence of nearby Rydberg levels. The second 
scheme uses the adiabatic passage of the Förster resonances in 
a time-dependent electric field. Adiabatic passage allows the 
quantum gate accuracy sensitivity to interatomic distance 
fluctuations to be reduced.

2. Förster resonances tuned by the electric field

Consider the interaction of two Rydberg atoms located at a 
distance R from each other, as shown in Fig. 1b. We choose 
the quantisation axis z coinciding with the direction of the 
external control electric field E. Let q be the angle between the 
quantisation axis and the vector connecting the atoms. The 
dipole – dipole interaction operator of atoms is described by 
expression

Vdd = 3
R
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Here, d1t  and d2t  are the dipole moment operators for atoms 1 
and 2; n is the unit vector connecting the atoms; and e0 is the 
dielectric constant. We write equation (1) in the following 
form convenient for calculations:
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are the angular factors. The dipole – dipole interaction desc
ribed by the operator Vddt  leads to transitions between the col-
lective Rydberg states of two interacting atoms | ,r ra b  ® | ,r rs t , 
as shown in Fig. 1c, where for the state of each individual 
atom | |r nljmj=  (n is the principal quantum number, l is the 
orbital angular momentum, j is the total angular momentum, 
and mj is the projection of the total angular momentum on the 
z axis). The matrix element of the operator is described by the 
expression [22]:
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Here, Rn l
n l
a a
s s  and Rn l

n l
b b
t t  are the radial matrix elements for the 

transitions |n la a  ® |n ls s  and |n lb b  ® |n lt t , respectively. We 
calculated the matrix elements using the quasi-classical appro
ximation and the quantum defect method [23].

The dipole – dipole interaction operator Vddt  relates the col
lective states of two interacting atoms for which the total mag-
netic quantum number M = m1 + m2 changes by DM = 0, ± 1, 
± 2.

The collective energy levels of the two interacting atoms 
are shown schematically in Fig. 1d. The energy difference bet
ween the collective states is determined as:

0'd  = [U(ra) – U(rs)] + [U(rb) – U(rt)].	 (5)

In the case when these levels are degenerate, i. e., d0 = 0, 
the Förster resonance is observed, which manifests itself as a 
significant increase in the probability of a transition between 
such states. The value of d0 is the energy defect, or detuning 
from the Förster resonance. To tune the energy levels to the 
exact resonance, one can use an external electric field. Figure 2a 
shows a numerically calculated Stark diagram of the energy 
levels of rubidium in an external electric field for the states 
with the projection of the total angular momentum of the 
atom | |m  = 1/2 onto the electric field direction. Figure 2b 
demonstrates the numerically calculated collective energy lev-
els |70 ,73S S/ /1 2 1 2  and |70 ,72P P/ /1 2 1 2  in an external electric field. 
The Förster resonance corresponds to the intersection of these 
levels and is observed in an electric field with 0.222 V cm–1. 
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The choice of this particular resonance is due to the fact that 
in its vicinity the Stark effect for Rydberg nS states retains, as 
can be seen from Fig. 2, a quadratic character. The quadratic 
character of the Stark effect is necessary to ensure that the 
working levels do not intersect with a hydrogen-like set of a 
large number of states experiencing the linear Stark effect 
(Fig. 2a) and that the accuracy of quantum operations inc
reases. For higher states, the search for such resonances is a 
challenging task.

3. Two-qubit operations using coherent resonant 
dipole – dipole interaction

In the case of an exact Förster resonance, coherent oscillations 
of populations of collective states | ,r ra b  and | ,r rs t  are observed 
for two stationary Rydberg atoms, analogous to the Rabi  oscil
lations in a two-level quantum system interacting with reso-
nant radiation. Similar oscillations were experimentally recor
ded in [24]. One can choose such a duration of interaction that 
the system of two interacting atoms will return to the initial 
state, acquiring a phase shift of their collective wave function. 
In this case, use can be made of a two-qubit CZ gate, as shown 
in Fig. 3a.

Atom 1 is excited to the Rydberg state |ra  by a laser 
p-pulse, denoted by 1. Atom 2 is excited to the Rydberg state 

|rb  by a laser p-pulse, denoted by 2. These p-pulses must 
ensure a complete population transfer from the initial states 
of the atoms to the final states. Pulses 1 and 2 can be either 
simultaneous or spaced in time. Atoms are located far enough 
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from each other, so that the van der Waals interaction bet
ween them does not lead to a dipole blockade of the Rydberg 
excitation (in the absence of an external electric field, the 
Förster resonance has a large detuning, and so the interaction 
will be van der Waals). Then, after switching on an electric 
field, it adjusts the collective energy levels to the Förster reso-
nance, which now corresponds to a resonant dipole – dipole 
interaction. After some time the system passes from the state 
| ,r ra b  to the state | ,r rs t , and then returns to the initial state, 
acquiring a phase shift p, which is equivalent to the action of 
the 2p-pulse in the two-level system. After that, the external 
electric field is turned off and the atoms are de-excitated by 
laser – p-pulses 3 and 4, whose optical phases with respect to 
pulses 1 and 2, respectively, should be selected so that in the 
absence of dipole – dipole interaction, each atom returns to its 
original state without a phase shift.

This scheme can be modified for the CNOT gate (see 
Fig. 3b). Thus, before and after the CZ operation, one-qubit 
rotations of the state vector of the controlled qubit are per-

formed around the y axis by an angle of p/2 in opposite direc-
tions. A train of pulses acting on the controlled qubit leaves 
its state unchanged if the controlling qubit is not excited to 
the Rydberg state and the dipole – dipole interaction does not 
lead to a phase shift. Otherwise, the state of the controlled 
qubit will be inverted, which is required for the implementa-
tion of the CNOT gate.

We have numerically simulated the population dynamics 
(normalised to unity, Fig. 3c) and phases (Fig. 3d) of the 
collective states for the Förster resonance |70 ,73S S/ /1 2 1 2  « 
|70 ,72P P/ /1 2 1 2  in rubidium atoms located at a distance of 
15.5 mm from each other in a resonant electric field of 0.222 V cm–1. 
The electric field was directed along the vector connecting the 
atoms. It allowed us to limit all possible transitions between 
those collective states for which DM = 0. In the calculations 
we took into account all the Stark sublevels for the resonance 
|70 ,73S S  « |70 ,72P P . Since the phase values are in the 
range (– p, p), accumulation of the dynamic phase leads a 
phase jump, p ® – p, as shown in Fig. 3d. Previously, we dis-
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covered that nonresonant excitation channels result in phase 
errors that reduce the accuracy of two-qubit gates [24]. There
fore, in order to estimate the accuracy of the two-qubit gates, 
we performed a numerical simulation of the generation of 
quantum-entangled Bell states taking into account the life-
time of the Rydberg levels [25] and the dipole – dipole interac-
tion of atoms during laser excitation. In our calculations the 
laser excitation was assumed to occur under conditions of a 
zero electric field. The entangled Bell states are described by 
the following wave functions:

F + = | |
2

1 00 11+^ h,

F – = | |
2

1 00 11-^ h,

Y + = | |
2

1 01 10+^ h,

Y – = | |
2

1 01 10-^ h.	 (6)

Numerically calculated density matrices of Bell states are 
shown in Fig. 4. These calculations show that the accuracy of 
their generation is rather high and reaches 96 %.

4. Adiabatic passage of Förster resonances 
tuned by the electric field

An important factor that reduces the accuracy of quantum 
gates based on a resonant dipole – dipole interaction is the 
fluctuations in the distance between the atoms trapped in 
optical dipole traps. To reduce their influence, use can be 
made of a double adiabatic passage of the Förster resonances 
in a time-dependent electric field [26, 27]. To this end, we modi
fied the scheme of the two-qubit CZ gate, as shown in Fig. 5a. 
In paper [26] we considered this two-qubit gate with caesium 
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atoms, and then modified this scheme for the Förster reso-
nances induced by the radio-frequency electric field [27].

Due to the Stark effect, the time-dependent electric field 
shifts the collective energy levels so that the system passes twice 
through the Förster resonance, |70 ,73S S/ /1 2 1 2  « |70 ,72P P/ /1 2 1 2 . 
Due to the resonance dipole – dipole interaction, the system 
undergoes transition from the initial state |70 ,73S S/ /1 2 1 2  to 
the final state |70 ,72P P/ /1 2 1 2 , and then returns back, acquiring 
the deterministic phase shift p.

In [26, 27], we showed that for an accurate fast adiabatic 
passage in the case when the interaction energy is independent 
of time, it is necessary to use the nonlinear dependence of the 
resonance detuning on time. In the calculations, we used the 
following dependence of the Förster resonance detuning on 
time:

d0(t) = 
( ) ( ) , ,
( ) ( ) , .
s t t s t t t
s t t s t t t

0
0

1 1 2 1
5

1 2 2 2
5 2

G- + -

- + -
) 	 (7)

Here, s1/2p = 22.6 MHz ms–1; s2 /2p = 28800 MHz ms–5; and 
t1 = – 0.3 ms and t2 = 0.3 ms. Figure 5b shows the time depen-
dence of the electric field that tunes the Förster resonance
|70 ,73S S/ /1 2 1 2  « |70 ,7P P2/ /1 2 1 2  in accordance with equation 
(6). The numerically calculated dependences of the popula-
tion and phase of the initial state |70 ,73S S/ /1 2 1 2  are shown in 
Figs 5c and 5d, respectively. Nonresonant excitation channels 
result both in a small leakage of the population and in the 
appearance of phase errors, which can be partly corrected by 
a change in the dependence of the electric field on time, for 
example, by changing  t2 = 0.2993 ms. The numerically calcu-
lated dependences of the population and phase of the state 
|70 ,73S S/ /1 2 1 2  with phase error correction are shown in Figs 5e 
and 5f, respectively. Correction of phase errors makes it pos-
sible to compensate for the effect of nonresonant excitation 
channels only for a certain distance between the atoms. When 
the distance is changed, such errors arise again.

To estimate the influence of fluctuations of the interato
mic distance on the error of two-qubit gates, we compared in 
Fig. 6 the accuracy of the numerically calculated Bell states as 
a function of the distance between the atoms for two different 
schemes of two-qubit gates – using coherent population oscilla-
tions and double adiabatic passage. Adiabatic passage requires 
more time to implement two-qubit gates compared to a coher-

ent dipole – dipole interaction at the same distance between 
the atoms. This leads to an increase in the contribution of the 
finite lifetimes of the Rydberg states to errors in the genera-
tion of Bell states. Despite this, it can be seen that the use of 
double adiabatic passage with phase correction makes it pos-
sible to obtain a higher accuracy of the generation of Bell 
states and to reduce the sensitivity to fluctuations in the inter-
atomic distance. The minimum error of the generation of Bell 
states in our calculations was 0.7 %.

5. Conclusions

We have considered the schemes of two-qubit gates based on 
a resonant dipole – dipole interaction of ultracold Rydberg 
rubidium atoms. The accuracy of the generation of quantum-
entangled Bell states has been shown to be increased by using 
the double adiabatic passage of the Förster resonances tuned 
by the electric field.

The main sources of errors in the implementation of two-
qubit gates are the finite lifetimes of the Rydberg states, phase 
errors and population leakage due to nonresonant excitation 
channels, as well as a possible violation of the adiabatic 
regime during double adiabatic passage. The experimental 
realisation of the proposed schemes requires a precise control 
of the electric fields in which the Rydberg atoms are located.
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