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Abstract.  We have performed an analysis of plasma structures 
formed as a result of the quantum electrodynamic (QED) cascade 
development in the field of a standing linearly polarised plane 
wave at various field amplitudes. In view of the spatially inhomo-
geneous cascade dynamics and complicated particle motion, it is 
proposed to use spatial distributions of plasma density averaged 
over the half-period of the field, i.e. integral structures. Based on 
the analysis of of particle trajectories  and integral structures with 
and without allowance for the QED cascade, various plasma 
structures are revealed and the amplitude thresholds of their 
occurrence are determined. It is shown that the integral structure 
maxima may arise not only at the electric field nodes or anti-
nodes, as in a circularly polarised field, but also in the intermedi-
ate regions between them.

Keywords: radiation friction, quantum electrodynamic cascade, 
electron – positron plasma.

1. Introduction

A quantum electrodynamic (QED) cascade [1] is one of the 
expected processes that can be initiated in experiments on 
multi-petawatt laser facilities [2 – 4]. The nature of a QED cas-
cade in superstrong laser fields consists in the emission of 
gamma photons by oscillating electrons and positrons and in 
the subsequent decay of emitted photons into electron – posi-
tron pairs [5]. Recent studies show that the cascade initiation 
at optimal focusing requires a total laser power of about 
5 – 8  PW [6 – 8], the target ionisation [9, 10] and its initial den-
sity [11] being of great importance. When the rate of produc-
tion of new pairs exceeds the rate of their losses (for example, 
the rate of escape from the region of production), an expo-
nential increase in plasma density is observed.

As long as the density is less than the critical value with 
allowance for relativistic effects, the cascade develops in a lin-
ear regime, and the plasma effect on the field can be neglected. 
Otherwise, when the density reaches the critical value, a non-
linear regime is realised, in which plasma has a significant 
effect on the radiation that generates plasma. In particular, 
the produced plasma causes strong absorption of incident 

radiation [12 – 16], which limits the maximum achievable field 
intensities and may also lead to the development of instabili-
ties and the formation of extreme plasma states [17, 18]. The 
importance of the linear stage is that it largely determines 
which self-consistent plasma field structures will be formed at 
the cascade’s nonlinear stage. In addition, at the linear stage, 
photons with the highest energy are generated [7], the spec-
trum of which depends on the plasma spatial distribution [19]. 

Note that plasma structures at the linear stage have been 
actively studied in the fields of colliding laser beams [20 – 27]. 
In particular, in the case of circular polarisation, the analysis 
of structures was carried out not only numerically, but also 
analytically [25, 27], which is stipulated by a relatively simple 
particle motion. In this case, the motion can be decomposed 
into a rotation in the electric field plane and a drift from the 
field antinode to the field node. If the cascade develops slowly, 
the particle drift causes the plasma localisation at the field 
node. However, with the rapid cascade development, the par-
ticle escape from the antinode towards the node can be com-
pensated for, and plasma can be localised both at the anti-
node and simultaneously at the node and antinode, depend-
ing on the field amplitude.

In this paper we consider in more detail the case of linearly 
polarised radiation, which is of great practical importance. 
The particle motion in a linearly polarised field is more com-
plicated and, as a consequence, the spatiotemporal structure 
of the cascade also becomes more complicated. In contrast to 
the circularly polarised field, not only an unstable equilibrium 
position at the field antinode and an attractor at the field 
node exist in the case of linear polarisation (ponderomotive 
trapping and normal radiative trapping (NRT) [27 – 30]), but 
also an attractor near the field antinode is formed, which is 
caused by radiation losses (anomalous radiative trapping 
(ART) [29, 30]). In addition, oscillations at the oscillation fre-
quency of the Poynting vector are clearly distinguished in the 
spatiotemporal structure of the cascade [22]. Particle motion 
complexity and complex structure of the cascade, on the one 
hand, complicate theoretical analysis, thus making numerical 
modelling the main tool of investigation, and on the other 
hand, lead to a variety of plasma-field structures.

Despite the fact that a number of studies have been dedi-
cated to linear structures in the field of counterpropagating 
linearly polarised laser pulses [22 – 24, 26], the dependence of 
these structures on the laser parameters has not yet been suf-
ficiently studied. This paper answers the question of what 
plasma-field structures can be formed in the field of a plane 
linearly polarised standing wave, depending on its amplitude 
at the linear stage of the cascade. First, we present a detailed 
analysis of the motion of particles and their distribution with-
out allowance for the QED cascade. We then show how these 
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structures are modified by quantum processes. In addition, 
the rate of particle escape from the field antinode and the cas-
cade   growth rate are considered as functions of the field 
amplitude, which to a large extent determines the threshold 
values of the amplitudes at which the plasma structure 
changes.

We should note that in the case of a plane wave, there is 
no cascade’s amplitude threshold for a contnuous signal, 
since there are no particle losses. However, at the electric field 
amplitudes a  << 1000 (in relativistic units), the cascade  
growth rate Gcs << 1 normalised to a reciprocal of field period 
is much less than unity [26], and the cascade does not change 
the structure of electron – positron plasma caused only by 
particle motion. The amplitude is a = eE0 /(mwc), where m and 
e are the electron mass and charge, respectively; E0 is the elec-
tric field amplitude; c is the speed of light; and w = 2.36 ´ 1015 
s–1 is the field frequency (the wavelength l = 0.8 mm). For a < 
1, plasma oscillates around the field node in the regime of 
ponderomotive trapping. For 1 < a < 600, particles can be 
trapped into the node region for a random time interval and 
then leave this region and move along the Poynting vector 
[28, 31 – 33], i.e. relativistic chaos is realised. On average, this 
leads to maximisation of the particle density near the nodes. 
It should also be noted that the above regimes do not disap-
pear when the amplitude increases, only their ‘basins’ change, 
i.e. the phase space volumes from which the particles can be 
captured into this or that regime. For example, at relativistic 
amplitudes, the spatial size of the ‘basin’ of ponderomotive 
trapping is limited to the range of l /(2pa) values, and the par-
ticles are stronger localised in the electric field node vicinity 
than in the NRT regime [31].

Below we present a detailed analysis of plasma structures 
in the fields with amplitudes of 500 < a < 10000, at which all 
motion regimes can be realised, and when not only the radia-
tion losses are of importance, but also the cascade itself, the 
growth rate of which, at the field amplitudes considered, var-
ies within the range of 1.7 ´ 10–2 < Gcs < 12.7. This range of 
amplitudes corresponds to a wide range of intensities 5 ´ 1023 
W cm–2 < I < 2 ´ 1026 W cm–2, which are planned to be 
achieved on the multipetawatt laser facilities being designed, 
for example, XCELS [4].

2. Particle density distribution in the field  
of a standing linearly polarised wave  
without taking the cascade into account

Consider the dynamics of particles in the field of a standing 
plane linearly polarised wave:

E = E0cos(wx/c)cos(wt)z,	
(1)

B = –E0sin(wx/c)sin(wt)y

(E, B are the electric and magnetic fields directed along the z 
and y axes, respectively; t is the time; and the x axis is 
directed along the Poynting vector) and determine which 
plasma structures can be formed. Let the particles, initially 
at rest, be evenly distributed in space. To analyse the emerg-
ing plasma structures, we use the PICADOR programme 
[34] based on the particle-in-cell method. In this program, a 
module [35] is implemented, which allows the stochastic 
emission of photons in a semiclassical approximation [36] 
and the decay of photons into pairs in a laser field [5] to be 

modelled. Since the wave is plane, it is sufficient to use a 
one-dimensional space modification of the programme. The 
size of the simulation box was equal to the wavelength l = 
0.8 mm, the number of cells was 128, and the time step was 
0.005T, where T = 2.7 fs was the wave period. Periodic 
boundary conditions were set for the particles, which corre-
sponded to the mapping of the x axis onto the segment – 0.5l 
< x < 0.5l. Note that in the PICADOR programme the par-
ticles are not bound to cells, i.e. the particle coordinates are 
not conditioned by the discretisation in space and may take 
arbitrary values. In this regard, as many as 256 points on the 
considered segment are used to retrieve the particle distribu-
tions in order to reveal all their features. This technique is 
valid at the linear stage of the cascade, when the plasma 
back reaction can be neglected, and also it saves the compu-
tational resources.

To avoid the influence of leading edges of laser pulses, we 
set a standing wave formed in the entire simulation box and 
resting electrons (positrons) evenly distributed over the entire 
computational region at the initial time moment. The phase 
of the initial wave corresponds to a zero magnetic field; how-
ever, as the computer simulation shows, the steady-state 
plasma structures do not depend on that phase. Since the lin-
ear stage of the cascade was considered, the initial particle 
density was chosen to be sufficiently small (n0 = 0.01 cm–3) to 
ensure that, as a result of the cascade development, the plasma 
produced would not change the field that forms the plasma. 
In the linear regime, the initial density determines the lifetime 
of this regime rather than affects the shape of plasma struc-
tures. The initial number of macroparticles in the simulation 
was 105 cm–2 (this physical dimension for the number of par-
ticles appears in one-dimensional modelling), i.e., about 
800  cm–2 macroparticles in the cell, one real particle corre-
sponding to about 1011 macroparticles.

In one-dimensional geometry, spatial structures with a 
period of 0.5l are formed, which is stipulated by periodic 
variation in the Poynting vector magnitude in space. These 
structures also possess a reflective symmetry with respect to 
the axes passing through the electric field nodes or antinodes; 
therefore, all information about the structure is contained 
within the segment 0 < x/l < 0.25. Another property of such 
structures is that they are nonstationary in time and oscillate 
with a doubled field frequency (with a frequency of Poynting 
vector oscillation). Moreover, the oscillation phase difference 
for electron density and fields is determined by the radiation 
losses increasing with the wave amplitude, by analogy with 
the forced oscillations of a harmonic oscillator with allow-
ance for dissipation [37]. This fact may lead to incorrect con-
clusions about the plasma dynamics if we only consider 
plasma structures at a certain phase of the field. Due to all 
these factors, we analysed the electron density distribution 
integrated over the half-period of the field. This approach 
does not allow exact distribution of electrons to be restored at 
a certain time moment, but makes it possible to determine the 
qualitative changes in their spatial structure. Relevant 
changes can be reflected in the integral structure if, firstly, 
they are noticeable in instantaneous distributions and, sec-
ondly, if they remain for a considerable time during the half-
period of the field.

In numerical simulation, the electron densities nk(x) at 
each kth time step, divided by the total number NS k of parti-
cles at a given time moment in the entire simulation box, were 
summed up at each point xi of space, and the result was 
divided by the total number Nt of time steps within the half-
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period of the field and by the maximum value M of the total 
electron density distribution:

( ) ( ) ( )n x N M n x Nst ti k i k
k

N
1 1

1

t

= S
- -

=

/ .	 (2)

The steady-state integral structure and instantaneous dis-
tributions at various time moments

ne(x) = nk(x)(NS kM)–1	 (3)

corresponding to the case of the most complex spatiotempo-
ral dynamics of electrons are shown in Fig. 1. It is seen that, 
on the whole, the integral structure reproduces the maxima 
observed in the dynamics of the electron density. However, 
the exception is a maximum near x = 0.21l, observed for a 
short time, 14.53 < t/T < 14.56.

Figure 2 shows the steady-state integral structures for 
various field amplitudes. The issue of relaxation time for inte-
gral structures has not been studied in detail; however, as 

numerical simulation shows, by the time t = 15T, the struc-
tures became steady-state for all the field amplitudes under 
consideration. At amplitudes a < 600, the particle motion 
occurs in the regime of relativistic chaos. Due to the fact that 
the particles, diffusively propagating along the x axis, fall for 
random time intervals into the node region, the particle den-
sity maximum at x = 0.25l is clearly visible. Examples of par-
ticle trajectories in this regime are shown in Figs 3a and 3d. 
To analyse the particle motion, the motion equations were 
solved numerically with allowance for radiative losses, which 
were modelled in the quasi-classical approximation (stochas-
tic radiation) [31, 36] or described using the Landau – Lifshitz 
force with allowance for quantum corrections [20, 27]. 

At larger amplitudes (a > 600), the radiation effects start 
to play an important role in the particle dynamics and the 
NRT regime arises, in which the particles are attracted to a 
field node. Note that in the case of circular polarisation, the 
corresponding threshold amplitude is equal to 70 [27]. In the 
case of linear polarisation, the oscillations of the Poynting 
vector and, as a consequence, of the longitudinal driving 
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Figure 1.  Instantaneous (ne, solid curves) and integral (nst, dashed curves) electron density distributions in the field of a plane standing linearly po-
larised wave at an amplitude of a = 3500, obtained during the half-period of the field.
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force, substantially raise this threshold up to a » 600. 
Moreover, even despite the radiation stochasticity in a circu-
larly polarised field, a ‘pure’ NRT regime is realised, whereas, 
in the case of linear polarisation, the particle are capable of 
leaving the capture region and then enter the region of another 
field node (compare Figs 3b and 3e). This is also clearly seen 
from Fig. 2a: as the amplitude increases, a narrower particle 
density distribution is formed near the node, but nst(x) does 
not vanish anywhere in this case.

We should note that the NRT regime due to these transi-
tions is similar to the regime of relativistic stochasticity: the 
maximum density in both regimes is formed at the field node, 
and random particle transitions between the field nodes are 
observed (compare Figs 3a and 3b). However, in contrast to 
the regime of relativistic stochasticity, the ratio of maximum 
and minimum densities in the NRT regime is m >> 1. At the 
threshold amplitude a » 600, the ratio is m » 5, and for a = 
1600 we have m » 86. It is also worth noting that the NRT 
regime exists for all amplitudes, a > 600, but the regime’s 

basin is greatly reduced and the particles become more 
localised near the field node with increasing amplitude (com-
pare the distributions for a = 1000 and 10000 in Figs 2a and 
2c). With increasing amplitude, in contrast to a decrease in 
spatial scale of particle oscillations in the framework of the 
force approach to the radiation loss description (compare 
Figs 3e and 3f), the particles in the quasi-classical approxima-
tion perform transitions from node to node of the field and 
also start to linger near the field antinode (Fig. 3c). In the 
integral distribution, this is manifested as an increase in the 
background density level between the node and antinode at 
a >1600 (Fig. 2a). As a result, starting from a » 2590, when 
the rate of particle drift to the node becomes comparable with 
the rate of particle inflow into an antinode region, the ART 
regime arises.

At amplitudes a > 2590, the ART and NRT regimes can 
be realised simultaneously, a fraction of particles in each of 
them being determined by the initial conditions and the rate 
of particle transitions from regime to regime. The evidence of 
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Figure 3.  Electron trajectories in the regimes of relativistic stochasticity and NRT in the field of a plane standing linearly polarised wave at various 
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particle motion in the NRT regime at these amplitudes is a 
maximum at the field node. In the ART regime, various struc-
tures are formed, differing in the set of extremes (local min-
ima and maxima). The amplitude, starting from which a 
change in the set of extremes occurs, is considered as a thresh-
old. The error in its determination Da » 50 corresponds to the 
amplitude step, with which our numerical modelling was car-
ried out near the threshold amplitudes. Based on the results of 
numerical simulations, three types of structures were revealed 
in the ART regime. At 2590 < a < 3000, a maximum appears 
between the field node and its antinode, whereas a local mini-
mum turns out located at the field antinode (Fig. 2b). For 
larger amplitudes 3000 < a < 4120, a maximum instead of a 
minimum arises at the field antinode, so that two density 
maxima correspond to the ART regime (Figs 2b and 2c). At 
a > 4120, only maxima at the field node and antinode and a 
minimum between them remain (Fig. 2c). With increasing 
amplitude, the position of minimum is stabilised at point x » 
0.21l.

2.1. Particle motion in the ART regime

The variety of integral structures is explained by the special 
features of particle motion in the ART regime (Fig. 4). In this 
regime, particles oscillate both along the Poynting vector and 
the electric field during each half-period of the field near its 
antinode. As the amplitude increases, the particles on average 
approach the field antinodes, which is marked by vertical 
dashed lines for various field amplitudes in Figs 4a – 4c. This 
fact has been earlier analysed both for a plane wave and for a 
tightly focused field in the form of a dipole wave [19]. In addi-
tion, at random time moments particles can pass through the 
field node and antinode. The fraction of particles that pass 
through the field antinode increases with increasing ampli-
tude. It is most probable that a particle, after its transition, 
will fall into the neighbouring regions between the field node 
and antinode. The probability of the NRT regime is much 
less, because the NRT basin becomes much smaller compared 
to the ART basin. From a comparison of the trajectories in 
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Figs 4а – 4c and 4d – 4f it is clear that the transitions are caused 
by radiation stochastisity, since, in the description of losses by 
means of force, certain attractors are formed, which do not 
allow particle transitions. These attractors are characterised 
by a drift of particles along the electric field, but at large 
amplitudes (a > 7500) this drift is suppressed, and an eight-
like trajectory is localised in space. Taking into account the 
radiation stochasticity, particles diffuse both along the 
Poynting vector and the electric field. Stochasticity does not 
allow perfect synchronisation of particles (compare Figs 4b 
and 4e), so the electron density in the region between the field 
node and antinode can be considered distributed along the 
Poynting vector within a segment of length lst located at dis-
tance dst from the field antinode:

f (x) = tanh[k(x – dst + 0.5lst)] – tanh[k(x – dst – 0.5lst)],	(4)

where k is the coefficient characterising the growth rate of the 
function f (x) at the edges of the specified segment. The func-
tion beyond this segment corresponds to particles migrating 
to the neighbouring regions. To calculate the model integral 
structures, we take into account the electron density distribu-
tions oscillating on both sides of a given field antinode. We 
neglect the contribution of particles coming from more dis-
tant regions and roughly assume that the oscillations (with 
the amplitude Dl ) of the mass centre of electrons along the 
Poynting vector are described by the function Dl |coswt|. This 
function takes into account the change rate of the particle 
motion direction along the x axis in the vicinity of the field 
antinode at the time moment t » 0.25Tj ( j is an integer), when 
the electric field is close to zero. With given assumptions, the 
time dependence of the electron density distribution near the 
field antinode has the form

f (x, t) = fR(x, t) + fL(x, t),	 (5)

where

fR(x, t) =  tanh[k(x – dst + 0.5lst + Dl |coswt|)]

	 – tanh[k(x – dst – 0.5lst + Dl |coswt|)],	
(6)

fL(x, t) =  tanh[k(x + dst + 0.5lst – Dl |coswt|)]

	 – tanh[k(x + dst – 0.5lst – Dl |coswt|)].

The integral distribution is determined as follows:

.( , )df x t t( ) (0.5 )n x TM
.

st

T1

0

0 5
= - y 	 (7)

According to the properties of particle dynamics in the ART 
regime, as the amplitude increases, the values of lst, dst, and Dl 
decrease, while the coefficient k increases. It is possible to 
select such values of these parameters that distributions (7) 
characterised by them would correspond to all possible inte-
gral structures in the field antinode vicinity in the ART regime 
(Fig. 2). The model structures with selected parameters are 
shown in Fig. 5.

The above qualitative model description of the particle 
ensemble dynamics also allows us to understand what causes 
a change in integral structures in the ART regime. With this 
aim in view, we introduce the parameter h, which determines 
a fraction of particles passing over the field antinode:
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To find this parameter, it is suffice to use only one of the func-
tions fR or fL, which are localised mainly on the right or on the 
left of the field antinode, respectively. The chosen time 
moment t = 0 corresponds to the closest position of particles 
(on the ensemble average) with respect to the field antinode in 
accordance with expressions (6). The values of h for various 
field amplitudes are shown in Fig. 5. For amplitudes that cor-
respond to the ART regime emergence, only a small fraction 
of particles can pass through the field antinode. The integral 
structure is characterised by a local density maximum in the 
intermediate region and a local density minimum at the field 
antinode. However, as the field amplitude increases, the 
parameter h also increases, and the local maximum appears 
directly at the electric field antinode, while the maximum in 
the intermediate region gradually decreases relative to the 
maximum at the field antinode and eventually disappears. An 
increase in the fraction of particles passing through the field 
antinodes with increasing amplitude is confirmed by the 
examples of trajectories in Fig. 4, obtained during the same 
period of time. Thus, it can be concluded that the rate of par-
ticle transitions through the field antinode determines all the 
structures observed in the ART regime.

3. Plasma structures taking into account the 
cascade development

In the previous section, we have considered the electron den-
sity structures formed by the interaction of particles with a 
plane linearly polarised wave. Such structures are determined 
by the particle motion. However, due to quantum processes, 
these structures can be modified in extremely strong fields. As 
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a result of particle motion in relativistically strong fields, a 
large number of gamma photons are emitted, which can decay 
into electron – positron pairs in a strong laser field, thereby 
generating an avalanche-like process, i.e. a QED cascade [1]. 
The particles are produced unevenly in space and time [22], so 
the cascade can substantially modify the electron density dis-
tribution and cause the appearance of extrema in the integral 
structure.

Integral structures can also be calculated with allowance 
for the QED cascade according to expressions (1). It is impor-
tant to note that, due to an increase in the number of parti-
cles, the NS value depends on time (in numerical simulation it 
depends on the time step number k). Numerical simulation 
has shown (Fig. 6) that integral structures become steady-
state in a time less than 15T, with their set being the same as 
without taking the cascade into account; however, there is an 
important difference. Threshold amplitude values at which 
the structures change are reduced. The error Da » 50 in their 
determination is the same as without the cascade taken into 
account. Due to the presence of a cascade, the integral struc-
tures being characteristic of the ART regime appear at ampli-
tudes a > 1550 (Fig. 6a), i.e. the threshold amplitude is 1.7 
times smaller than in the case when the cascade is not taken 

into account. At these amplitudes (up to a » 2590), the NRT 
regime is realised without taking the cascade into account; 
however, the particles can be delayed for some time in an 
intermediate region between the field node and antinode. For 
the emergence of the ART regime without the cascade taken 
into account, it is necessary that the rate of particle inflow 
from the field node becomes equal to the rate of particle 
escape from the intermediate region to the field node. As the 
cascade develops, an additional source of particles appears in 
the intermediate region – the decay of photons into pairs, so 
the amplitude threshold of the ART regime decreases. 
Structures with maxima at the field node and between the 
field node and antinode are observed at the amplitudes 1550 
< a < 2500. The instantaneous distributions of electron den-
sities with and without the cascade taken into account are 
shown in Fig. 7. The instantaneous structures are normalised 
to the maximum M of relevant integral structures. The cas-
cade development leads to an increase in the fraction of par-
ticles located between the field node and antinode. In the case 
when the electric field (in relativistic units) exceeds by abso-
lute value the magnetic field in the intermediate region (at t/T 
= 14.5, 14.55, 14.63, and 14.95 in Fig. 7), the density maxi-
mum appears in this region, whereas, if the cascade is not 
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taken into account, the cascade density increases virtually 
monotonically from the field antinode to node. In the case 
when electric field is smaller than magnetic field, the struc-
tures with and without taking the cascade into account are 
similar in shape, but the cascade increases the fraction of par-
ticles in the intermediate region.

In the range 2500 < a < 4100 (Figs 6a and 6b), due to the 
special features of particle motion (as in the case without the 
cascade taken into account at 3000 < a < 4120), a maximum 
in the field antinode appears. In this range, the ART regime is 
realised even without taking the cascade into account, so that 
produced particles are attracted to the field antinode. Due to 
stochasticity of  particle production, the spatial scale of the 
distribution function becomes larger. This increases a fraction 
of particles passing through the field antinode and causes a 
maximum at the field antinode at lower field amplitudes com-
pared to those determined without the cascade taken into 
account. We should note that the cascade development 
directly at the field antinode is suppressed, since the decay 
probability of photons emitted by particles as a result of their 
oscillations strictly along the electric field vector is negligible 
for the field amplitudes under consideration. In addition, in 
this range of amplitudes, the dynamics of produced particles 
with increasing amplitude leads to a shift of the integral struc-
ture maximum in the intermediate region towards to the field 
antinode.

With a further increase in the amplitude, the ART attrac-
tor moves closer to the field antinode, where the particles are 
rapidly attracted and spend a significant part of time during 
each half-period of the field. In this connection, even in spite 
of the inhomogeneity in time and space of the rate of particle 
production, the integral structure between the field node and 
its antinode vanishes at a > 4100 (Fig. 6b and 6c), though it 
can be observed in certain moments of time.

At the same time, the position of the minimum is not sta-
bilised as in the case when the cascade is not taken into 
account, but shifts closer and closer to the field node, while 
the relative value of the integral structure maximum at the 
field node decreases. This occurs due to a reduction (an 
increase) of the basin of the NRT (ART) regime and a frac-
tion of particles falling into this regime as a result of the cas-
cade development. The dependence of spatial dimensions of 
the basins of these regimes on the field amplitude is reflected 
by integral structures without the cascade taken into account, 
as shown in Fig. 2c. The particle distribution corresponding 
to the NRT at large amplitudes is strongly localised near the 
field node. For this reason, a high spatial resolution is required 
to correctly describe the integral structures near the field 
node. For example, if the resolution is 256 points per wave-
length, a maximum at the field node is changed to a minimum 
at a » 10500. However, an increase in the resolution to 512 
points per wavelength allowed us to establish that the integral 
structure maximum is located at the field node. In the investi-
gated range of amplitudes up to a = 15000 with an improved 
spatial resolution, the integral structure maximum at the field 
node is preserved. Thus, we can assume that, at a > 10000 
and also at 4100 < a < 10000, a maximum at the field node is 
preserved, the spatial scale of integral structure near the field 
node decreases, and the position of local minimum asymp-
totically tends to the field node. It should also be noted that, 
though the integral distribution becomes monotonically 
decreasing except for a small neighbourhood of the field 
node, the integral structure’s spatial derivative is not mono-

tonic, but has several maxima determined by the production 
of particles and their subsequent dynamics (Fig. 6c).

3.1. ART structure threshold with a cascade  
taken into account

In general, the integral structures in the ART regime with a 
cascade taken into account are quite complex, which is due 
not only to the complexity of particle motion determined in 
many respects by radiation losses and stochastic radiation, 
but also to the cascade dynamics being inhomogeneous in 
time and space. Above, various integral structures in the ART 
regime (a > 1550) have been qualitatively considered. 
However, the emergence of structures in the ART regime with 
allowance for the cascade can be investigated in more detail. 
To this end, it is necessary to analyse the dependence of the 
cascade growth rate and particle dynamics on the field ampli-
tude.

As noted above, in the case of a linearly polarised wave, 
the cascade growth rate is not constant in time, in contrast to 
the case of circular polarisation [22]. However, the average 
growth of plasma density during the half-period of the field is 
exponential and can be characterised by the average rate Gcs 
of the cascade growth. After the integral structure has become 
steady-state, in order to find the Gcs value by means of numer-
ical simulation, the maximum plasma density values nemax or 
the total number NS of particles with a step equal to the half-
period of the field are used. The cascade growth rate nor-
malised to an inverse value of the field period is defined as

2 [ ( /2) / ( )]ln
j

n t jT n tmax max

cs
e eG =

+

	
2 [ ( /2) / ( )]ln

j
N t jT N t

=
+S S ,

where j is an integer. The dependence of the cascade growth 
rate on the field amplitude is shown in Fig. 8a. On the one 
hand, in a plane wave, particles do not leave the interaction 
region, so there is no cascade threshold. In this regard, we can 
assume that the cascade should modify the plasma distribu-
tion at any amplitude. However, on the other hand, at low 
amplitudes (a << 1000), the cascade effect on plasma struc-
tures is insignificant, since the time interval 1/Gcs between the 
production of electron – positron pairs is much greater than 
the characteristic transition time to the regime of steady-state 
motion (relativistic chaos or NRT). In the regime of relativis-
tic chaos, the transition time is approximately equal to the 
ratio of the field spatial inhomogeneity to the particle velocity 
along the field gradient, i.e. it constitutes ~0.3T, while the 
cascade growth rate is negligibly small. We should note that, 
in order to determine a small cascad growth rate for ampli-
tudes a < 800, numerical simulation was carried out for a lon-
ger time interval of 300T, since the transition time to the 
regime of the steady-state cascade development at small field 
amplitudes is much greater than the transition time to the 
steady-state motion.

At a » 1000, the cascade growth rate increases, and the 
electron structures with and without allowance for the cas-
cade start to differ: in the first case, a fraction of particles 
between the field node and its antinode increases (see Figs 2a 
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and 6a). The particles falling into the intermediate region also 
require a time of about 0.3T to reach the regime of steady-
state motion. As the field amplitude increases, the role of 
radiation losses increases, and the time to reach the NRT 
regime also increases, since, when a particle travels towards 
the field node, the ‘recoil’ due to emitted photons is directed 
in the opposite direction. At the same time, the cascade 
growth rate also increases. As a result, there is a balance 
between the rate of production of new particles and the rate 
of their transition to the steady-state motion, which deter-
mines the amplitude threshold for the appearance of struc-
tures characteristic of the ART regime. From a comparison 
of Figs 2a and 6a it is clear that this balance is observed when 
the particles move in the NRT regime. The particle trajecto-
ries and the distribution function dynamics in the NRT 
regime without taking the cascade into account are shown in 
Figs 3b, 3c and in Fig. 7.

Particles in this regime are concentrated mainly within the 
regions 0.15 + 0.5j < x/l < 0.35 + 0.5j. As shown above, in 
the steady-state regime the particle density due to the radia-
tion stochasticity is nonzero outside these regions and is fixed 
at a certain level as a result of transitions through the field 
antinodes. To determine the rate of particle return to the field 
node, first we distributed particles uniformly within the seg-
ment 0 < x/l < 0.15 at the moment of time when the magnetic 
field equals zero. Second we found out how quickly the num-
ber of particles decreases within this segment. The segment 
corresponds to the region of the greatest difference in electron 
density distributions with and without taking the cascade into 
account at the time moment when magnetic field tends to zero 
(t/T = 14.5 in Fig. 7)

As a result of interaction with the field, particles oscillate 
along the Poynting vector, and each oscillation increases 
number of particles trapped into the NRT regime (Fig. 8b). 
Eventually, the initial perturbed distribution relaxes to the 
steady-state distribution with a corresponding equilibrium 
ratio of the number of particles located inside and outside the 
segment 0 < x/l < 0.15. In numerical simulation, we may 
approximately assume that the rate of particle escape to the 
regime of steady-state motion (the rate of their escape towards 

the field node) is determined as Gesc = T/tesc, where tesc is the 
time during which the difference between the initial and 
steady-state number of particles inside the segment under 
consideration, averaged over the half-period, is reduced by a 
factor e. The dependence of Gesc on the field amplitude, deter-
mined from numerical simulation, is presented in Fig. 8a. The 
rates of distribution stabilisation and cascade growth are 
compared at a » 1500, which is very close to the threshold 
amplitude a » 1550 found from integral structures (Fig. 6a). 
Thus, numerical simulation confirms that the ART threshold 
with allowance for the cascade is determined by the balance 
of the particle escape rate to the field node and the cascade 
growth rate.

4. Conclusions

Thus, using numerical simulation, we have revealed and ana-
lysed electron – positron plasma structures in the field of a 
standing linearly polarised wave in a linear regime. Due to the 
inhomogeneous spatiotemporal dynamics of the distribution 
function, it is proposed to use the spatial distributions aver-
aged over the half-period of the field (integral structures) to 
determine various regimes of particle motion. In the steady-
state regime, these structures are stationary, and, in accor-
dance with a set of their extrema, various regimes have been 
revealed and the amplitude thresholds for the emergence of 
these regimes have been found. In contrast to a circularly 
polarised field, the linearly polarised structures are more 
diverse, and, depending on the field amplitude, the integral 
structure maxima are observed not only at the field node, at 
the field antinode, or at the field node and antinode simulta-
neously, but also in the intermediate region between the field 
node and its antinode. These differences are dictated by a 
more diverse particle dynamics with allowance for radiation 
losses and a more complicated spatiotemporal cascade 
dynamics.

In the region of amplitudes a < 1550, a maximum at the 
field node and a minimum at the field antinode are observed. 
However, due to cascade development at a > 1000, a fraction 
of particles in the intermediate region increases, which ulti-
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mately leads to a change in the integral structure at a » 1550. 
An additional maximum observed at 1550 < a < 2590 appears 
in the intermediate region, which is associated with the bal-
ance of particle escape to the field node in the NRT regime 
and the production of particles due to the decay of gamma 
photons. For larger amplitudes (2590 < a < 4100), this maxi-
mum is determined by the ART regime. The integral structure 
maximum at the field antinode at a > 2500 is stipulated by 
particle transitions through the antinode, which occurs as a 
result of stochasticity of photon emission. In the range of 
amplitudes under consideration, the cascade development is 
suppressed directly at the field antinode. Note that, in the case 
of circular polarisation, a maximum at the field antinode is 
caused precisely by the maximum rate of the cascade growth 
in this region and appears at a > 1100 [27]. In terms of inten-
sity, this threshold approximately corresponds to the thresh-
old for appearance of a maximum in the intermediate region 
in the field of a linearly polarised wave.

At a > 4100, due to approach of the centre of mass of 
particles to the field antinode in the ART regime with increas-
ing amplitude, and an increase in the fraction of particles 
passing through the antinode, the integral structure maxi-
mum in the intermediate region disappears, and only the 
maxima of integral structures at the field node and antinode 
remain. Unlike the case when the cascade is not taken into 
account, the positions of the structures’ minima are not fixed 
at a distance of about 0.04l from the field node, and, as the 
amplitude increases, they approach the field node where the 
integral structures’ maxima over the entire region of ampli-
tudes (a £ 10000) are reached. High spatial resolutions near 
the field node are required to analyse the structures at even 
higher amplitudes with the use of numerical simulation, since 
the characteristic scale of the particle distribution correspond-
ing to the ART regime decreases significantly with increasing 
amplitude. Numerical simulation at amplitudes up to a = 
15000 with improved spatial resolution for the calculation of 
integral structures suggests that, at a > 10000, the positions of 
the structures’ maxima at the field node are preserved, and 
the positions of their local minima tend asymptotically to the 
field node.

Note in conclusion that the rate of structure stabilisation 
under study strongly depends on the initial seed distribution 
of plasma density. This is especially true for amplitudes 1000 
< a < 2000 when the cascade growth rate is low, and also for 
short laser pulses. Moreover, the use of focused laser beams 
[23] may change the thresholds of the regimes detected for 
plane waves, since this enables the transverse escape of parti-
cles from the focal region and, as a consequence, a threshold 
of the self-sustained QED cascade arises. These factors may 
strongly affect the QED cascade structure in focused, linearly 
polarised laser beams, which requires further studies.
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